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Abstract

Smoothing methods and SiZer are a useful statistical
tool for discovering statistically signiÞcant structure in
data. Based on scale space ideas originally developed in
the computer vision literature, SiZer (SIgniÞcant ZERo
crossing of the derivatives) is a graphical device to assess
which observed features are �really there� and which are
just spurious sampling artifacts.
In this paper, we develop SiZer like ideas in time series

analysis to address the important issue of signiÞcance of
trends. This is not a straightforward extension, since one
data set does not contain the information needed to dis-
tinguish �trend� from �dependence�. A new visualization is
proposed, which shows the statistician the range of trade-
offs that are available. Simulation and real data results
illustrate the effectiveness of the method.

1 Introduction

Smoothing methods in statistics provide a useful tool for showing
structure in data. Many monographs on smoothing are available in
the statistical literature which in the last years include Green and
Silverman [1994], Wand and Jones [1995], Simonoff [1996], Fan and
Gijbels [1996], Hart [1997] and Bowman and Azzalini [1997].
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When smoothing methods are used for exploratory data analysis,
a question that often arises is: which features are �really there� (i.e.
represent important underlying structure) and which are just spuri-
ous sampling artifacts (i.e. reßect unimportant random variation)?
Chaudhuri and Marron [1999] proposed answering this question with
a graphical device called SiZer (SIgniÞcant ZERo crossings of the
derivatives), which is based on scale space ideas from computer vi-
sion.
Scale space is a family of kernel smooths indexed by the �scale� h,

which is usefully viewed as the level of resolution of the data. The
scale h is usually called the �smoothing parameter�, or the �band-
width� in the statistical literature. Marron and Chung [2001], for
example, suggest using an overlay of these smooths for data analy-
sis, and call it the �family plot�. This method is illustrated in
Figure 1 (a), using the Chocolate data set, i.e. the monthly pro-
duction of chocolate in Australia from the late 50�s to the early 90�s
(kilotonnes). This data set comes with the software companion to
Brockwell and Davis [1996]. The green dots show the Chocolate
production after deseasonalising and linearly detrending the time
series. The family of smooths suggests at different levels of res-
olution a dip around the year 78 preceeded by two minor bumps
and an increase in the last years. At the Þnest levels of resolution,
many other features appear. Are all these features �really there�?
SiZer answers this question by assessing statistical signiÞcance of
such features.
In particular, SiZer extends the usefulness of the family plot by

visually displaying the statistical signiÞcance of features over both
location x and scale h. SiZer is based on conÞdence intervals for the
derivative of the underlying function. The graphical device is a color
map, reßecting statistical signiÞcance of the slope at (x, h) locations
in scale space. At each (x, h) location, the curve is signiÞcantly in-
creasing (decreasing) if the conÞdence interval is above (below) 0,
so that map location is colored blue (red). If the conÞdence interval
contains 0, the curve at the level of resolution h and at the point
x does not have a statistically signiÞcant slope, so the intermediate
color of purple is used. Finally, if there is not enough information
in the data set (according to a rule that will be illustrated in the
following sections), at this scale space (x, h) location, then no con-
clusion can be drawn, so the color gray is used to indicate that the
data are too sparse.
The SiZer view of the Chocolate data is shown in Figure 1 (b).

This data set was studied in Marron and Chaudhuri [1998a], who
viewed the errors as independent and indentically distributed (i.i.d.).
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(put Figure 1 (a) and (b) approx. here)
(caption: Exploratory analysis of the Chocolate data set through
the SiZer approach: (a) The Family Plot; (b) The SiZer Plot)

At the coarsest levels of resolution (largest bandwidths), at the
top of the SiZer map, the color purple appears everywhere, indicat-
ing that there is no statistically signiÞcant increase or decrease in
the corresponding smooths. As it can be seen Figure 1 (a), these
curves are close to the simple linear regression line, so the conclusion
is that this line has no signiÞcant slope. Moving down in the plot,
meaning decreasing the scale (i.e. the bandwidth gets smaller) the
smooths are Þrst signiÞcantly decreasing (red), then signiÞcantly in-
creasing (blue) after a short time interval in which the smooths are
neither signiÞcantly increasing nor decreasing (purple). This shows
that the minimum near year 1978 is statistically signiÞcant. As the
bandwidth gets smaller, i.e. further down the plot, some additional
signiÞcant features appear but only for a limited number of band-
width values. At the Þnest level of resolution (smallest bandwidth)
there is not enough information to assess the signiÞcance of any
structure in the data set (gray).
Overall, the SiZer map reveals that only the decrease followed at

around year 78 by the increase in chocolate production are impor-
tant features of the data.
As pointed out by Chaudhuri and Marron [1999], the statistical

inference, which is the basis of SiZer, makes heavy use of the as-
sumption of i.i.d. errors. This assumption is inappropriate in time
series contexts, where dependence is omnipresent, and in fact is usu-
ally the focus of statistical analysis. For SiZer to fulÞll its potential
to ßag signiÞcant trends in time series, its underlying conÞdence
intervals must be adjusted to properly account for the correlation
structure of the data. This adjustment is straightforward when the
correlation structure is known. But in the more important and
common case of unknown correlation, SiZer for time series is not
a straightforward extension. This is because of the identiÞability
problem between �trend� and �dependence artifacts�. Distinction be-
tween these can never be made on the basis of a single time series,
as shown in Figure 2.

(put Figure 2 approx. here)
(caption: An example for the identiÞability problem between �trend�
and �dependence artifacts�: the Strikes data set)

Figure 2 (a) shows the Strikes data from Brockwell and Davis
[1991]. One view of this series is that its underlying distribution is
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nonstationary. In particular the mean function seems to decrease at
the beginning, with an increase in the middle, and perhaps another
decrease later. The variance also appears to be time varying, being
large at both ends, and smaller in the middle. But this apparent
�nonstationarity� can not be proven on the basis of that single time
series, as there are stationary stochastic processes whose realizations
can look quite similar. An example is the simulated series shown in
Figure 2 (b), which is a single realization of a stationary stochastic
process. Note that the qualitative features, in terms of mean and
variance, are very similar to those of Figure 2 (a). The remaining
parts of Figure 2 reveal how this simulation was performed. The
particular series of Figure 2 (b) was carefully selected from the much
longer series shown in Figure 2 (d). It is the part between the
vertical bars, chosen to match qualitatively the features of Figure 2
(a). The long series in Figure 2 (d) was generated as Xt = µt + σtZt
where the curves µt and σt are generated in the same way as drivers of
the intensity function of a Cox process (shown in Figure 2 (c)), and
where the Zt are independent standard normal realizations. Because
µt and σt are stationary stochastic processes, so is Xt.
Now consider this example from the viewpoint of �trend�. The

time series in Figures 2 (a) and (b) can be viewed as containing
a large amount of �trend� in the mean, but that structure can be
equally well explained as �serial dependence artifacts�, or in fact some
of each. The challenge for applications of SiZer in the trend estima-
tion context is that these cases cannot be distinguished. This paper
proposes an approach to this dilemma via a visualization which dis-
plays the range of trade-offs to the statistician.
Background on the local linear Þt and on the SiZer approach will

be found in Section 2. In Section 3 we will discuss the development
of SiZer for studying trends in time series. The performance of our
method is studied via real and simulated data sets in Section 4.

2 Background

2.1 The local linear Þt

One interesting approach to smoothing is local polynomial mod-
elling (see e.g. Fan and Gijbels [1996] for a detailed overview of
this method). Here are the main ideas in the time series context for
trend estimation.
Trend estimation in time series can be viewed as a regression

problem, for Þxed and equispaced design, with correlated errors.
Given the data {(i, Y (i)), i = 1, ..., n}, the regression setting is
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Yi = m(i) + σ²i i = 1, ..., n (1)

wherem is assumed to be a smooth function and the error is assumed
to be a zero mean weakly stationary process, i.e.

E(²i) = 0 ∀i, (2)

V (²i) = 1 ∀i, (3)

and
Cov(²i, ²j) = γ(|i− j|) ∀i, j. (4)

Of interest is the estimation of the regression function m and its
derivatives at i0, i.e. m(i0) = E(Y |i = i0) and m

0(i0), m00(i0), ...,
m(p)(i0).
The ßexibility of smoothing techniques comes from only assum-

ing smoothness of the underlying curve. This means, intuitively,
that data information about the value of the regression function m
at i0 is given by the observations at i near i0 and therefore these
observations can be used to construct an estimator of m(i0).
By assuming that the (p+ 1)th derivative of m(i) at the point i0

exists, the local polynomial approach approximates the regression
function m(i) locally by a polynomial of order p. This polynomial
is then Þtted locally by solving a weighted least squares regression
problem. In particular, in the local linear Þt the function m(i) is
approximated by Taylor expansion of order 1 for x in the neighbor-
hood of x0. The problem to be solved is then

min
β

nX
i=1

[Yi − (β0 + β1(i− i0))]2Kh(i− i0) (5)

where β = (β0 β1)
0, h is the bandwidth controlling the size of the

local neighborhood and Kh(.) =
1
h
K( .

h
), where K is a kernel func-

tion, often taken to be a symmetric probability density, assigning
weights to each datum point.
By Taylor expansion β0 = m(i0) and β1 = m

0(i0), so the solution
to this problem gives estimates of the regression function and its
Þrst derivative at i0.
Because of the excellent interpretability properties of kernel type

smoothers and because of their simplicity, Marron and Chung rec-
ommend the local linear Þt to construct the family plot. Moreover,
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for a better visualization of the family of smooths, it is suggested to
use a �very wide range� of h values in the log scale and for symmetry
an odd number of curves should be chosen (for details see Marron
an Chung [2001]).

2.2 The SiZer approach

To understand the development of SiZer for time series let us
brießy illustrate the mathematical aspects of the original version of
SiZer for regression function estimation in the speciÞc case of Þxed
and equispaced design but where errors are i.i.d.. As previously
stated, the SiZer approach is based on conÞdence intervals for the
derivative of the underlying function. These are of the form

�m0
h(i)± q(h) �sd( �m0

h(i)) (6)

where q(h) is an appropriate Gaussian quantile. There are two crit-
ical points of interpretation.
The Þrst point is that from the scale space view, the center point

of each conÞdence interval is automatically �correct�, i.e. the inter-
val is unbiased. This requires replacing the regression curve m(i)
as �target�, with its scale h smoothed version. This makes sense
because it reßects the part of the regression curve that is available
from the data at the level of resolution, h. I.e. for each value of the
bandwidth, all the information available in the data set is consid-
ered in the inference process. For more details see Chaudhuri and
Marron [1999].
The second point is that the conÞdence intervals are constructed

in a simultaneous way. The approach is, for each level of resolution
h, to approximate the full simultaneous conÞdence limit problem by
m independent conÞdence interval problems. The quantitym, which
reßects the number of �independent blocks�, is estimated through the
quantity Effective Sample Size (ESS), i.e. for the bandwidth h and
at i0

ESS(i0, h) =

Pn
i=1Kh(i0 − i)
Kh(0)

. (7)

Note that when using the uniform kernel, ESS(i0, h) is equal
to the number of data points in the kernel window centered at i0
with the bandwidth h. The number of independent blocks is then
approximated by the quotient:
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m(h) =
n

ESS(i0, h)
. (8)

This results in the quantile

q(h) = Φ−1
³1 + (1− α) 1

m(h)

2

´
. (9)

ESS is also considered to decide when the normal approximation
is inadequate, i.e. for ESS < 5 no conclusion can be drawn. In
particular, the blue, red, purple colors are used on the scale space
set

{(i0, h) : ESS(i0, h) ≥ n0} n0 = 5. (10)

Again detailed discussion of SiZer is available in Chaudhuri and
Marron [1999].

3 SiZer for time series

For time series trend estimation, i.e. in the context of a regression
problem with Þxed and equispaced design with correlated errors,
SiZer can be developed by modelling the error structure and by
adjusting the conÞdence limits for the derivative of the underlying
function according to the assumed error structure.
As suggested by Marron and Chung [2001], the family of smooths

is constructed by considering a �very wide range� of bandwidths h in
the log scale and, in particular, the number of curves is here taken
to be 11.

3.1 The variance

For correlated data, the variance of the local polynomial estima-
tor is given by

V ( �β|X) = (XTWX)−1(XTΣX)(XTWX)−1 (11)

where the design matrix of the local linear Þt at i0 is
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X =


1 (1− i0)
1 (2− i0)
...

...
1 (n− i0)


whereW = diag{Kh(i−i0)} and where, for the assumed correlation
structure, Σ is the kernel weighted covariance matrix of the data
where the generic element is given by

σij = γ(|i− j|)Kh(i− i0)Kh(j − i0). (12)

A sensible estimate of the variance (11) is based on estimating
γ, by the sample autocovariance function of the observed residu-
als from a �pilot smooth�, using the pilot bandwidth hp. One
could take hp = h, but this leads to a confounding of the different
notions of �scale� and �dependence structure�. Hence, we treat
h and hp separately, which means that in the dependent case, an-
other dimension needs to be added to the SiZer plot. We approach
this via a series of SiZer plots, indexed by the pilot bandwidth hp,
which represent the different trade-offs available between trend and
dependence. This is the key to our visualization, which is further
developed in Section 4.

3.2 The quantile

For positively autocorrelated errors, the family of smooths typ-
ically varies substantially as the bandwidth is varied. The reason
is that the strong sporadic patterns that characterize such errors
behave similarly to high frequency regression components, which
appear in the smooth for a wide range of bandwidths. On the
other hand, for negatively autocorrelated errors, the tendency of
data points to alternate above and below the regression function
gives a family of smooths which changes less as a function of the
bandwidth. This is one way of seeing that the amount of infor-
mation, about the underlying smooth regression function, that is
available in i.i.d. data, is not the same as the amount of informa-
tion available in correlated data. Positively correlated data con-
tain �less information� about the regression function than i.i.d. data,
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while negatively correlated data contain �more information� about
the regression function than i.i.d. data. Using statistical information
ideas, a simple measure of �information in the data�, on the scale of
sample size, is provided by the ratio

n? =
σ2

V ar(Ȳ )
, (13)

where

V ar(Ȳ ) =
σ2

n
+ 2

1

n

n−1X
k=1

(1− k
n
)γ(k). (14)

The ratio of n? to n gives a version of the ESS, i.e. the Effective
Sample Size, which properly reßects the type and the magnitude of
the correlation structure to give correct simultaneous inference:

ESS?(i, h) =
n?

n

Pn
i=1Kh(i− i0)
Kh(0)

. (15)

For independent data, n? = n, so ESS? = ESS from conventional
SiZer. But for correlated data, n? is smaller or larger than n de-
pending on the type of correlation, i.e. observations have less effect if
they are positively correlated (since they are �less informative� than
i.i.d. observations) and more effect if they are negatively correlated
(since they are �more informative� than i.i.d. observations).
The computation of m in (8) and q in (9) remains unchanged.
When the data are positively autocorrelated, the number of in-

dependent problems is larger than in the i.i.d. case, so the resulting
conÞdence intervals are longer. Longer intervals are more likely to
contain the value 0, so fewer features are ßagged as statistically
signiÞcant. On the other hand, for negatively correlated data (a
situation that is rare in real data but is worth considering), SiZer
for time series can detect those features that could be hidden in the
family of smooths by the alternating pattern of data points above
and below the regression function.
Finally the quantity n? has to be estimated (since σ2 and γ are

unknown). The estimate given by the sample autocovariance func-
tion can�t be expected to give good results since it is inconsistent. A
simple approach to this problem is to divide the sample into p =

√
n

groups (so as to have a reasonably large number of groups with a
reasonably large number of observations), and to estimate the vari-
ance of Ȳ by
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dV ar(Ȳ ) = 1

p

1

p− 1
pX
j=1

(Ȳj − ¯̄Y )2 (16)

where Ȳj is the mean in the group j and where

¯̄Y =
1

p

pX
j=1

Ȳj. (17)

4 Simulated and real data examples

In this section, we will illustrate some examples of SiZer for time
series, chosen from many simulated and real data sets that we have
explored. We will start with some examples from the simulation
study to illustrate the development of the methodology and graph-
ical presentation of the results.
The simulation study has been carried out by considering differ-

ent combinations of trend, error structure and noise level. A series
of different data sets have been simulated from the model

Yi = m(i) + σei i = 1, ..., n (18)

for different choices of m, {ei} and σ, and for different values of n.
The trends that were considered are characterized by a different

number of �peaks and valleys�, differently located and with different
amplitudes. For each chosen trend we have considered i.i.d. errors
and positively and negatively correlated errors. In particular, i.i.d.
errors have been simulated from N(0, 1) while correlated errors have
been simulated from an autoregressive process of order 2 with high
correlation at lag one (for the examples of the simulation study
shown in this paper, the value of the autocorrelation function at
lag one for positively correlated errors is 0.97 while for negatively
correlated errors the value of the autocorrelation function at lag
one is -0.89). Moreover, in each case, three different noise levels
were chosen to represent �low�, �medium� and �high� variability (in
the examples shown below, these values were respectively 1, 20 and
50).
The real data sets shown here are the Deaths data set, i.e. the

monthly number of accidental deaths in US from 1973 to 1978 (thou-
sands) and the Chocolate data set, that is considered in the intro-
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duction of this paper. As the Chocolate data set, the Deaths data set
comes with the software companion to Brockwell and Davis [1996].

Example 4.1

In the simulation study, several interesting cases among the mod-
els considered had the trend:

m(i) = i+ 10sin(
i

40
2π) i = 1, ..., n. (19)

Given the model in (18) and the trend in (19), let us consider
a simulated time series, that we will indicate by sm1, where errors
are positively correlated and a �medium� level of variability is cho-
sen. An important issue is how many SiZer plots, should be shown.
There will be a different plot for each pilot bandwidth hp, showing
different trade-offs between trend and serial correlation. If hp takes
all 11 values of the bandwidth h then the complete series of SiZer
plots will be 11 in number. The family plot and the complete series
of 11 SiZer plots for the simulated time series sm1 is given in Figure
3.

(put Figure 3 approx. here)
(caption: Example 4.1: the family plot and the complete series of
11 SiZer plots, indexed by hp, for the simulated time series sm1)

The family plot shows a family of smooths with a strong upward
trend.
The Þrst SiZer plot (titled hp(1)) has very small hp. Thus,

the error structure used to construct this plot is estimated from
the residuals of the closest curve of the family of smooths to the
data points, which is essentially i.i.d.. From this plot we observe
some signiÞcant structure at the Þnest levels of resolution, i.e. for
the smallest values of the bandwidth. As the level of resolution
decreases, less and less structure is signiÞcant until the curves are
signiÞcantly increasing everywhere.
In the second SiZer plot (titled hp(2)), which represents a situa-

tion of slightly correlated errors, less structure than in the previous
plot, as expected, appears as signiÞcant. Moreover, at the Þnest
level of resolution the data are too sparse, in terms of ESS?, to
draw any conclusion, i.e. the bottom line is now shaded gray, as
discussed in Section 2.2.
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As we move from the third to the last SiZer plot (i.e. from the
plot titled hp(3) to the plot titled hp(11)), an increasing amount of
correlation appears in the error component, so that only the linear
upward trend seems to be signiÞcant at every level of resolution,
where conclusions can be drawn. Also, at the Þnest levels of reso-
lution there is less perceived useful information in the data, which
means more data sparsity, so more bottom lines of the SiZer plots
are shaded gray.
Statistically signiÞcant structure in a curve can be hidden by a

strong linear component. When this happens, as in this example, it
can be useful to detrend the time series before using SiZer. Figure 4
shows the complete series of SiZer plots, for the same data set after
linear detrending (indicated by sm1d).

(put Figure 4 approx. here)
(caption: Example 4.1: the family plot and the complete series of 11
SiZer plots, indexed by hp, for the simulated and linearly detrended
time series sm1d)

Now, many features appear in the family of smooths which is no
longer closely following an increasing line. In particular, in the Þrst
SiZer plot, many peaks and valleys are signiÞcant for most of the
levels of resolution. As the errors include increasing correlation,
these features are signiÞcant but with a less precise location and for
a smaller number of levels of resolution. From the seventh plot to
the last, all of the structure in the data is explained by the error
component and no signiÞcant structure is highlighted in the trend
at any level of resolution.
This example clearly shows that the complete series of SiZer plots

is too long. The simultaneous view of all 11 SiZer plots is hard to
comprehend and the information contained in several such plots is
often redundant. This motivates the choice of a subset of SiZer
plots.

We develop a method for effective choice of a subset of these,
which usually gives good representatives of the major different cor-
relation structures. We found 4 plots usually conveyed the needed
information. Our choice among the 11 plots is intended to reßect
�a wide array of trade-offs between trend and dependence�. A sim-
ple numerical measure of this trade-off is the IR (Indicator of the
Residual component), which takes values from 0 to 1:

IR(hp) =

Pn
i=1 e

2
hp,i

maxhp
Pn
i=1 e

2
hp,i

. (20)
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When the pilot bandwidth hp is large, the �dependence component of
the data� appears strongly in the residuals, i.e. is viewed as �noise�,
and IR is close to 1. On the other hand, when the pilot bandwidth
hp is small, the �dependence component of the data� appears strongly
in the pilot smooth, i.e. is viewed as �trend�, and the IR is close to
0. Intermediate values of IR reßect intermediate trade-offs.
A good reßection of the range of trade-offs came essentially from

using the SiZer plots chosen (from the set of 11) for which IR is
closest to 0%, 25%, 50% and 75%. This implies that the Þrst plot to
be chosen should always be the Þrst of the 11 plots. However, since
the error structure used to construct this plot is estimated from the
residuals given by a smooth for which the degree of overÞtting may
be too high (mostly when data are positively correlated), a second
option is considered. When this is the case, the second of the 11
plots is chosen as the closest to 0%, i.e. as �more representative
of the independent case�. And if this plot corresponds to a value
of IR which is also the closest to 25%, the 3 remaining plots will
automatically be chosen by considering 25%, 50% and 75% of the
difference between the values of IR for the 11th and the 2nd plots
of the complete series.
When only 4 of the SiZer plots are displayed, it is useful to stay

in touch with the trend-dependence trade-off that each represents.
This is done by several graphical devices. First, all 11 values of
IR that are considered are displayed as a bar graph, and the chosen
4 are highlighted. Second, for each chosen trade-off, we add plots
showing the pilot smooth with bandwidth hp, and the residuals from
that smooth. The pilot smooths show which component of the data
are viewed as trend, in that particular trade-off. The residuals
give a visual impression of the component of the data used in the
covariance estimate.
This is the visualization chosen for SiZer for time series. Figure

5 shows this graphical device for smd1.

(put Figure 5 approx. here)
(caption: Example 4.1: SiZer for time series for the simulated and
linearly detrended time series sm1d)

The data are shown in the Þrst plot above on the left (the contin-
uous line shows m(i), the deterministic part of the simulated time
series), while the next graphic on the right is the family plot. Fur-
ther right, is the bar diagram previously discussed.
The second and the third series of plots represent, respectively,

the smooths and the residuals.
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Note that the chosen SiZer plots give a representative sample of
the complete series of SiZer plots shown in Figure 4. No relevant
information is lost and the graphical representations of the smooths
and the residuals associated to each SiZer give useful insights about
each trend-dependence trade off. This demonstrates the power of the
SiZer method for investigating trends in time series: one graphical
presentation displays all of the relevant information about statistical
signiÞcance.

Example 4.2

Figure 6 shows SiZer for time series for the Deaths data set, after
deseasonalizing and linear detrending.

(put Figure 6 approx. here)
(caption: Example 4.2: SiZer for time series for the Deaths data
set)

Assuming �i.i.d.� errors (Þrst SiZer plot on the left) only some
features of the family of smooths are signiÞcant at the Þnest levels of
resolution. The strongest feature is the minimum around i = 36 for
intermediate values of the bandwidth. But for smaller bandwidths,
there is a signiÞcant increase near i = 20. For the largest value
of the bandwidth the curve is neither signiÞcantly increasing nor
decreasing.
For slightly correlated errors (second SiZer plot on the left), the

major minimum again turns out to be signiÞcant but for a smaller
range of bandwidths than in the previous plot (for the smallest val-
ues of the bandwidth no conclusion can be drawn and for the largest
values no feature is signiÞcant). When the correlation increases, the
number of values of the bandwidth for which no conclusion can be
drawn increases while the minimum previously highlighted is still
signiÞcant but only for a few values of the bandwidth and with a
much less precise location. For a higher degree of correlation, no
feature turns out to be signiÞcant, as we can see from the graphi-
cal presentation of the associated residuals and smooth. For such
correlation structure every feature can be explained by the error
component, thus not resulting in signiÞcant trend.
In this example, according to SiZer for time series, the only fea-

ture that appears to be signiÞcant at most of the levels of resolution,
if we assume that errors are not strongly correlated, is the �valley�
around the third year of observation. For larger error correlation
there is no signiÞcant trend.
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Example 4.3

Figure 7 shows SiZer for time series for the Chocolate data set.
As in the previous example, this data set has been deseasonalized
and linearly detrended. But here the strong upward trend, driven by
increasing chocolate production due to increasing population size,
seems to hide much more structure than in the previous case, as
we can see once we detrend the data, especially when the errors
are assumed to be �i.i.d.�. Nevertheless, SiZer for time series still
gives useful insights about the trends under study, using the same
4 choices of SiZer plots from the complete series of 11.

(put Figure 7 approx. here)
(caption: Example 4.3: SiZer for time series for the Chocolate data
set)

For �i.i.d.� errors (Þrst SiZer plot on the left) many �peaks and
valleys� are signiÞcant at the Þnest levels of resolution, i.e. for the
smallest values of the bandwidth. As the level of resolution de-
creases, fewer and fewer features appear to be signiÞcant.
For slightly correlated errors, no conclusion can be drawn at the

Þnest levels of resolution while for intermediate values of the band-
width the major minimum around i = 250 (which corresponds to
year 78) is the only signiÞcant feature. For the highest value of the
bandwidth the curve is neither signiÞcantly increasing nor decreas-
ing.
As the correlation increases no signiÞcant structure is highlighted

with the only exception being some intermediate values of the band-
width where the curves are signiÞcantly increasing on the right end
of the time domain.
For the strongly correlated error assumption, no signiÞcant struc-

ture appears at any level of resolution.
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