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Abstract
SiZer is a powerful method for exploratory data analysis. In this pa-

per the distributions underlying the statistical inference are investigated,
and large improvements are made in the approximation. This results in
improved size, and also in an improved global inference version of SiZer.
The main points are illustrated with real data and simulated examples.

1 Introduction
SiZer has proven to be a valuable technique for exploratory data analysis by
smoothing methods. These methods include histograms and smoother ap-
proaches to understanding the structure of one-dimensional distributions (called
the �density estimation setting� here), and scatterplot smoothers (called the �re-
gression setting� here). See for example Scott (1992), Wand and Jones (1995)
and Fan and Gijbels (1996), for an introduction to this area. As noted in these
monographs, many smoothing, i.e. estimation, schemes have been proposed.
See Marron (1996) for an overview of the many criteria that have been used to
compare different smoothing methods. Kernel based methods (deÞnitions are
given in Section 2) are considered here for their simplicity, ease of interpretation,
and because they have been very widely studied.
Practical use of kernel methods, in both density estimation and regression,

is profoundly affected by the choice of the window width (the tuning parameter
which controls the amount of local averaging being used). When this is too
small, the resulting estimated curve strongly feels sampling variation, and is
wiggly, reßecting spurious artifacts of the sampling process. For too large a
window width, the curve estimate smooths away important underlying features.
There is a large literature on data based selection of the window width, where
one tries to estimate it from the data, see Jones, Marron and Sheather (1996a,b).
However, the problem is very challenging, there are limits on how well this
selection can be done in practice, and there has never been a consensus on what
is �the best� method of doing this, which has appeared to slow actual use of
these methods, for example through their implementation in software packages.
Scale space ideas (see Chaudhuri and Marron (2000) for broad discussion

of these issues) have provided a practical means of avoiding the problem of
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bandwidth selection. Scale space is a theoretical model for vision, that was
constructed in the computer vision community. The model is simply a family
of Gaussian window smooths, indexed by the window width. It is a model for
vision in the sense that large values of the window width correspond to standing
back and viewing a scene macroscopically, while small values correspond to a
zoomed in view. See Lindeberg (1994) and ter Haar Romeny (2001) for access
to the scale space literature. A fundamental concept of scale space, that is the
heart of SiZer, is that instead of trying to choose a single �best scale� (i.e. best
window width), one should use all of them, i.e. study the full family of smooths.
This is clear in a vision modeling context, because different levels of resolution
(i.e. smooths with different window widths) of an image contain different types
of useful information.
SiZer is a combination of the scale space idea of simultaneously considering

a family of smooths, with the statistical inference that is needed for exploratory
data analysis, in the presence of noise. In particular, SiZer addresses the
question of �which features observed in a smooth are really there?�, meaning
representing important underlying structure, not artifacts of the sampling noise.
For reasonable statistical inference using SiZer, care needs to be taken about

the multiple comparison issue. In particular, the visual display of SiZer, can be
viewed as a summary of a large number (hundreds) of hypothesis test results.
Current implementations of SiZer address this issue using the fairly crude �inde-
pendent blocks� idea, developed in Section 3 of Chaudhuri and Marron (1999).
In this paper, a much deeper distributional investigation is done, with the goal
of improving the statistical performance of SiZer.
The SiZer method, as well as potential advantages from an improved distri-

bution theory, are illustrated in Figure 1. The underlying regression function,
shown as the thick black curve in Figure 1a, is the Blocks example from Donoho
and Johnstone (1994), which appears to be rather challenging to estimate by
smoothing methods, because of the 11 sharp jumps. To make the problem even
more challenging, a high level of Gaussian noise, σ = 0.1, (much higher than
is typical in the wavelet literature) that was Þrst used by Marron et al (1998)
is used in the generation of the n = 1024 data points shown as green dots in
Figure 1a.
The thin blue curves in Figure 1a show the scale space for this data set,

i.e. the family of smooths for a wide range of different window widths. Some
of these are seriously oversmoothed, showing strong rounding of the corners.
Some are undersmoothed showing spurious wiggles. None of these are very
good at attaining the goal of recovering the thick black curve. Wavelets, see
e.g. Donoho and Johnstone (1994), are a compelling approach to the problem
of recovering curves such as this with non-smooth features. However, for this
data, even wavelets give poor signal recovery, because the noise level is so high.
SiZer has a somewhat different goal. Instead of trying to recover the un-

derlying black curve as well as possible, it aims instead at understanding which
of its features can be distinguished from the background noise, i.e. determining
which aspects observable in the blue curves are important underlying structure,
and which are spurious noise-driven artifacts.
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Figure 1: Conventional SiZer analysis of the Donoho - Johnstone Blocks
regression, with high noise. Shows good performance, plus a spurious feature.
True regression, data and scale space shown in Figure 1a. SiZer analysis in

Figure 1b.

SiZer focuses on Þnding regions of statistically signiÞcant slope in the blue
curves. Slope works well in the example of Figure 1, because the interesting
features there are the 11 jumps (elsewhere the regression is ßat). With the
high noise level used in Figure 1a (making signal recovery challenging, even by
the best wavelet methods), determining which jumps are statistically signiÞcant
turns out to be attainable by SiZer. In other cases of data analysis using
smoothing methods, bumps are of interest. Bumps are also determined by
slope, because the curve slopes up on one side, and down on the other. In
general, SiZer ßags features of these various types using a color map, such as
the one shown in Figure 1b.
The horizontal location in the SiZer map are the same as in the scale space
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plot above. The vertical locations correspond to the window widths of the
family of blue curves, shown on the log scale. Each pixel shows a color that
essentially gives the result of a hypothesis test for the slope of the blue curve, at
the point indexed by the horizontal location, and at the scale (window width)
corresponding to that row. When the slope is signiÞcantly positive (negative)
the pixel is colored blue (red, respectively). When the slope is not signiÞcant
(as happens in regions where sampling noise is dominant), the color purple is
used. There is a fourth SiZer color, that does not appear in Figure 1b, which is
gray, used to show pixel locations where the data are too sparse for reasonable
statistical inference.
Note that each jump in Figure 1a corresponds to a red or a blue (depending

on the direction of the jump) region in the SiZer map in Figure 1b. Thus
SiZer has correctly found all 11 of the jumps in the thick black curve, so for the
speciÞc goal of Þnding important features it substantially outperforms wavelet
methods.
A very careful look at the SiZer map shows a small, unexpected feature: a

tiny blue region at the Þnest scales (the bottom of the map) near 0.58. This
is suggesting the slope is statistically signiÞcant, when in fact the underlying
target curve is ßat. Such features have been observed in a number of other
cases as well. This has not presented a serious obstacle to data analysis by
SiZer, because analysts have learned to not put too much credence into such
very small features when they are ßagged by SiZer. But it is still very desirable
to eliminate these, to give a more precise analysis. This goal is attained in the
present paper, by developing an improved distribution theory.
First, we take a deeper look at the extent of the problem of small spurious

features appearing in the SiZer map, by studying some simulations. Figures 2
and 3 show some SiZer maps for simulated data from the null distribution in the
case of equally spaced design regression. Since the regression function is 0, the
data are simply i.i.d. standard Gaussian random variables. In this situation,
the SiZer map should ideally be completely purple, except for perhaps α100%
of the cases in the size α case (here α is always taken to be 0.05).
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Figure 2: Conventional SiZer maps, based on simulated null distributions,
for n = 1600 equally spaced regression data points. Figures 2a, b, c and d are

for 0.5, 0.75, 0.85 and 0.95, respectively, quantiles of distribution.

The SiZer maps shown in Figure 2 illustrate the population of SiZer maps
for this underlying distribution. They were drawn from a simulated sample
of 1000 such SiZer maps. The population was ordered in terms of number of
pixels that ßag signiÞcant structure by being red or blue. Because these were
drawn from the null distribution, it is desirable for the number of such pixels to
be small. The Þrst 405 of the 1000 ordered SiZer maps were completely purple
(and are thus not shown to save space). Figure 2a shows the 500th of these
(essentially the median of the population), where two pixels, at the Þnest scale,
were ßagged as signiÞcant. Figure 2b shows the 750th (the 3rd quartile), with
substantially more signiÞcant pixels at medium Þne scales. Figure 2c shows the
850th SiZer map, with quite a large blue region at medium coarse scales. Figure
2d is the 950th member of the ordered population, showing an even larger red
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region at the coarsest scales, plus the suggestion of a small mode at medium
scales. There appears to be a relationship between the number of spurious
pixels, and the scales at which they appear, which is not surprising because at
coarse scales adjacent pixels are strongly correlated.
This suggests a serious need for improvement in the size characteristics of

the conventional SiZer. The ideal here is that Figures 2a-c should be completely
purple, and that Figure 2d might or might not have some color. The goal of
this paper is to improve this performance, by using a better approximation of
the underlying distribution theory.
The results of our Þrst attempt are shown in Figure 3. The format is the

same as Figure 2, based on the same 1000 underlying data sets, but this time
an improved version of the SiZer map is used. Again the maps were ordered,
and the 500th, 750th, 850th and 950th of the 1000 maps are shown as Figures
3a, 3b, 3c and 3d respectively.
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Figure 3: SiZer maps for simulated null distributions, for n = 1600 equally
spaced regression data points, based on the new row-wise procedure. Figures
3a, b, c and d are for the 0.5, 0.75, 0.85 and 0.95, respectively, quantiles of the

distribution.

The SiZer maps in Figure 3 ßag far less spurious structure than was found, for
the corresponding population quantiles, in Figure 2, In particular, in Figures 3a
and 3b (representing the Þrst 3 quartiles), there were no spurious results. Even
for the 850th ordered SiZer map, in Figure 3c, the spurious structure is quite
small. Hence the improved SiZer map studied in Figure 3 clearly has better size
properties than the original SiZer shown in Figure 2. However, these results
are still not completely satisfactory.
This size problem is driven by a number of factors, that are studied in Section

2, the most important of which is that the simultaneous inference is only row-
wise in nature. This means that the SiZer inference in Figure 3 is only adjusted
row by row. Hence it is not surprising that some spurious structure manages
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to be ßagged here, since each of the maps in Figure 3 includes 11 such rows (so
just by chance, the test ßags signiÞcant structure more often than 5% of the
time).
This problem is addressed in Section 2 by using Bonferroni type adjustments.

The corresponding globally adjusted version of Figure 3 has been plotted, but is
not shown here (to save space) because each of the panels are completely purple,
indicating that the size problem has been solved.
The distribution theory, that drives the improvements in the statistical per-

formance of SiZer shown in Figures 2 and 3, is developed in Section 2, with the
main recommendations summarized in Section 2.5. Detailed analysis of the
impact of these improvements is done in Section 3.
An important issue is that the improved size properties, further investigated

in Section 3.1, come at a sometimes substantial cost in terms of power. Power
issues are studied for simulated data in Section 3.2 and for real data sets in
Section 3.3.
In our personal opinion, the substantial loss of power by the global methods

makes the row-wise improved SiZer more useful for data analysis than the global
versions. The reason is that away from the null distribution (i.e. when the
underlying target curve actually has some interesting structure), the spurious
features of the type illustrated in Figures 2 and 3 tend to come up far less
frequently than suggested by the size analysis. We view this as an acceptable
price to pay for most exploratory data analyses. However, we anticipate that
others will disagree, and furthermore recognize situations where statistical rigor
is imperative, and thus our software allows a choice between row-wise and global
implementations.
In addition to this important row-wise vs. global issue, there are also a

number of other issues, such as the impact of smoothing boundary effects, that
are also dealt with in Section 2.

2 Improved Distributions
To aid in the development of the distributional properties of SiZer, some basics
of kernel smoothing are Þrst reviewed.
Convenient notation for density estimation is X1, ...,Xn for a random sample

from a probability density f(x). The kernel density estimate of f is

bfh (x) = n−1 nX
i=1

Kh (x−Xi) , (1)

where Kh, is a �kernel function�, indexed by a �window-width� h. The esti-
mator bfh (x) is simply interpreted as �putting probability mass 1/n in a region
near each data point, where the window width controls the critical amount of
spread of this mass. The window width h is important enough to appear as a
subscript in bfh. In all examples in this paper, Kh is taken to be the Gaussian
density function, with standard deviation h, because of its very natural scale
space interpretations, as discussed in Chaudhuri and Marron (1999, 2000).
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Our notation for regression data is (X1, Y1) , ..., (Xn, Yn). Such data arise
in several ways, and admit several mathematical models. The term �equally
spaced design regression� is used to mean that the Xi are deterministic, and
equally spaced (in order), and that Yi = m (Xi) + εi, where m is the regres-
sion function, and where ε1, ..., εn are independent and identically distributed.
While the term �random design� means that (X1, Y1) , ..., (Xn, Yn) are a random
sample from a bivariate distribution, with E (Yi|Xi) = m (Xi), so that again m
is the regression function. For random design regression, it can also be useful to
think of �residuals�, deÞned as εi = Yi −m (Xi). For both settings a common
estimator is the local linear smoother, deÞned at each location x as

bm (x) = a0, where (a0, a1) = argmin
a0,a1

nX
i=1

{Yi − [a1 (Xi − x) + a0]}2Kh (x−Xi) .
(2)

This estimator is simply interpreted as providing a local linear Þt, in a window
centered at x determined by Kh, which is then �moved along� over the range
of x values. Again there are many competing estimators, but the local linear
smoother is the focus of this paper, for the same reasons as the kernel density
estimator. As above, the kernel window function Kh is the Gaussian density
function, with standard deviation h.
Because SiZer requires evaluation of a number of smooths (indexed by the

window width h), the fast binned implementation discussed in Fan and Marron
(1994) is important, especially for larger data sets.
The distributional underpinnings of SiZer are reviewed in Section 2.1. The

improved distribution theory of this paper is based on the Gaussian Power
distribution, for reasons given in Section 2.2. This distribution is shown to
be empirically sensible for the SiZer inference, using simulations in Section 2.3.
Useful probability theory for approximation of the Gaussian Power distribution
is developed in Section 2.4. Application of the best of these approximations
improves the statistical inference in SiZer, as detailed in Section 2.5.

2.1 SiZer distribution theory

Like other hypothesis tests, part of the performance of SiZer is driven by the
distribution of SiZer under the null hypothesis of �no signal�. It is desired to
set the size of the test, i.e. the probability of �false positives�, to be a small
pre-set value α. There are two natural approaches to addressing the multiple
comparison problems. The Þrst, called �row-wise� simultaneous inference, seeks
to have at most α100% of the rows containing �false positives�. The second,
called �global� simultaneous inference, aims at having at most α100% of the
SiZer maps containing false positives. In Section 2.5, we will Þrst suggest a
solution to the �row-wise� problem and then extend it to the �global� problem.
For simplicity it makes sense to think Þrst of equally spaced regression, but

our formulas also apply to other settings, including random design regression
and density estimation, because these setting have some very strong connections.
For some interesting mathematics that makes these connections precise, see
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Nussbaum (1996), Brown and Low (1996), and Grama and Nussbaum (1998,
2002).
Each row of the SiZer map contains colored pixel values, which report the

results of a family of hypothesis tests. The distribution theory for each row
is that of a sequence of test statistics (modeled as random variables) at each
grid point in the domain of the smoother, i.e. at each pixel location in the
SiZer map. Let T1, ..., Tg, where g is the number of grid points, denote these
test statistics. At the ith pixel in this given row of the SiZer, the color blue
(signiÞcantly increasing) is used when Ti > C, and the color red when Ti < −C.
The overall size of the row-wise simultaneous SiZer inference will be α when C is
chosen such that, under the null distribution of the target curve being constant,

P [{Ti > C or Ti < −C} for some i] = α. (3)

Distribution theory for T1, ..., Tg under the null hypothesis may be derived
from a linear process approximation

Ti =
∞X

j=−∞
Wj−iZj , (4)

where the Zj are independent, identically distributed random variables, and
where the Wj are weights proportional to the derivative Gaussian kernel. See
Nussbaum (1996) and Grama and Nussbaum (1998, 2002) for technical details
and assumptions under which such approximations hold, in the various settings
considered here. Some of the more technically difficult aspects of the approxi-
mation (4) include boundary issues, and heteroscedasticity in regression, which
require appropriate scaling.
The linear approximation (4) greatly simpliÞes the distribution theory, be-

cause the Central Limit Theorem give an approximate Gaussian distribution,
with mean 0 (under the SiZer null hypothesis) and variance 1, by appropriate
rescaling. The full joint distribution of T1, ..., Tg also depends on the correlation
between them. This correlation is approximated by

corr(Ti, Ti+j) =

P∞
k=−∞Wk−jWkP∞

k=−∞W
2
k

≈ e−j2/(4b2)
·
1− j2

2b2

¸
(5)

where b is the standard deviation of the Gaussian kernel used to deÞne the Wi,
and the last step follows from replacing the sums by integral approximations.

2.2 Motivation of the Gaussian Power distribution

The row-wise simultaneous inference used in SiZer depends on Þnding approxi-
mate solutions, in C, to the equation (3). Chaudhuri and Marron (1999) used a
�number of independent blocks� approach to give a Þrst approximate solution.
In this paper, much more precise approximations are developed. These come
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from

P [{Ti > C or Ti < −C} for some i] = P [|Ti| > C for some i]
= 1− P [|Ti| < C for all i]
= 1− P

h
max
i
|Ti| < C

i
.

If T1, ..., Tg were independent, then the needed distribution is simply a power of
the distribution of the absolute value of a Gaussian random variable, since

P [|Ti| < C for all i] =
gY
i=1

P [|Ti| < C] = P [|Z| < C]g , (6)

where Z is a standard Gaussian random variable.
The calculation in (6) requires independence of T1, ..., Tg. In the dependent,

but still stationary Gaussian, case Berman (1964) has found very mild conditions
under which the same result holds in the limit as g → ∞, suggesting that
this distribution continue to be considered. However, the rate of convergence
is extremely slow, so more careful approximation is needed. Such improved
approximations, including careful tuning of the power, are considered in Section
2.4. But Þrst the appropriateness of this distribution is studied empirically in
Section 2.3.

2.3 Empirical veriÞcation of the Gaussian Power distrib-
ution

Here we use the graphical device of the Quantile-Quantile (Q-Q) plot to study
how well the Gaussian Power distribution Þts the simulated data that was stud-
ied in Figures 2 and 3. See Fisher (1983) for an overview of Q-Q plots and a
number of related graphical devices.
The setting is again Þxed design regression, for sample size n = 1600, based

on a 0 regression function, with standard Gaussian noise. For each of. 1000
realizations, we compute the maximum over all of the pixels in the SiZer map,
of the test statistics used to do inference (i.e. decide on the SiZer color). The
distribution of these 1000 maxima is studied in Figure 4, where it is compared
to a theoretical Gaussian Power distribution.
The Q-Q plot is essentially a scatterplot, of the data quantiles (just the or-

dered data values) on the vertical axis vs. the corresponding theoretical quan-
tiles, from the Gaussian Power distribution, on the horizontal axis. Connecting
the dots give the red curve. If the theoretical distribution were correct, and
there was no sampling variation, the red curve would lie exactly on the 45 de-
gree line, shown in green. Sampling variation leads to some departure from
the green line. An important question is whether the amount of variation is
explainable by the sampling process, or if it represents a serious departure of
the data distribution from the theoretical distribution. This issue is addressed
by the family of blue curves, which are 100 simulated Q-Q plots, from data
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having the theoretical distribution. Note that in this case, the red curve lies
nearly completely inside the blue envelope, suggesting that the theoretical Þt is
good. This shows that the Gaussian Power distribution provides a good Þt to
the simulation results, and suggests continuing with the ideas for Section 2.2.
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Figure 4 QQ Plot showing that a power of Gaussian provides a good Þt to the
maxima of the 1000 simulated SiZer maps under the null hypothesis. This plot

was generated using the same simulated data set as in Þgures 2 and 3.

The theoretical distribution considered in Figure 4 is a member of a para-
metric family. In particular, the Gaussian Power distribution is parametrized
by a scale parameter σ (the standard deviation of the underlying Gaussian dis-
tribution), and a shape parameter α (the power of the Gaussian c.d.f., i.e. the
number of independent Gaussians to maximize). These parameters are esti-
mated in Figure 4 by quantile matching. In particular, they are solutions of
the equations that make the Gaussian power distribution correct at the .5 and
.75 quantile (these were chosen to give good visual impression).
The estimated value of σ = 1 is very good, because the underlying Gaussian

distribution here has standard deviation 1. The estimated value of α = 238 is
very interesting, because it is substantially less than 4, 400 the total number of
pixels in the SiZer map. This shows that the Berman approximation to the null
distribution is too crude, and motivates the more reÞned distributions that are
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developed in Section 2.4. However, the estimated value of the shape parameter
α appears to be unstable, being greatly affected by small changes in the value
of σ and the quantiles we decide to match. For example, if we set σ = 1 we get
α = 552. Moreover if we then decide to approximately match quantiles .8 and
.95 we get α = 689. In all of these cases the Q-Q plot shows a reasonable Þt.
This phenomenon is related to the �distributional fragility� ideas of Gong et al
(2001).
Similar Q-Q plots have been constructed for other simulation settings (de-

tailed in Section 3.1). The results were generally similar (i.e. the Gaussian
Power distribution gave a good Þt) for the density estimation settings, and for
the larger sample sizes. For the smaller sample sizes, in the regression settings,
there were no values of the parameters σ and α that left the red curve within
the blue envelope. The values that gave the best visual Þt, resulted in esti-
mates of σ that were far from 1, and unreasonable values of α. This occasional
poor performance seems to be due to t distribution issues, discussed further in
Section 3.1.
Another natural distribution for modelling data of this type is the Gumbel

distribution, also called the double exponential or the extreme value distribu-
tion, see for example Leadbetter, et al (1983). These plots are not shown here,
to save space, and because the conclusions are essentially the same as for the
Gaussian Power distribution. The fact that both distributions Þt well is not
surprising because the Gaussian power distribution converges to the Gumbel as
α→∞.
The parallel Q-Q analysis for the row-wise maxima has not been done, be-

cause we expect to see entirely similar lessons.

2.4 Approximation of the Gaussian Power distribution

Let us consider a stationary, mean zero, variance one, Gaussian series T1, ..., Tg,
with a j step correlation denoted ρj . We will be interested in the distribution of
max (T1, ..., Tg). As mentioned in section 2.2, Berman (1964) has proved that if
log(j)ρj → 0 the distribution function ofmax (T1, ..., Tg) behaves asymptotically
as the g-th power of the distribution function of a standard Gaussian random
variable, i.e.,

|P [max (T1, ..., Tg) ≤ z]−Φ(z)g|→ 0 as g →∞. (7)

Unfortunately this approximation is usually of little practical signiÞcance as the
speed of convergence is very slow. There are at least two alternate approxima-
tions in the literature based upon more detailed asymptotics, with the aim of
improving the small sample properties of (7).
The Þrst approach, discovered by Rootzen (1983), shows that if the time

series is m dependent, if g(1−Φ(xg))→ κ, and if max(ρ1, ..., ρm) > 0 then

P [max (T1, ..., Tg) ≤ xg]− Φ(xg)g ∼ e−κRg as g →∞,
where Rg is positive quantity depending only on the ρj �s, g and κ. The formula
for Rg is very complicated, so we will not reproduce it here. An interested
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reader can consult section 4.6 of Leadbetter, Lindgren and Rootzen (1983) for
details.
The second approach is discussed in Hsing, Husler and Reiss (1996). Their

approach is based on the observation that for dependent data it is often better
to approximate P [max (T1, ..., Tg) ≤ x] by Φ(x)θg where θ < 1. Their main idea
is to Þnd θ using asymptotic considerations. In order to get θ < 1 they need
the correlation ρj to increase with g for each Þxed j.
In particular they embed the series in a triangular array Tj,γ , where rows are

indexed by γ. For each Þxed γ, the random variables Tj,γ , j = 1, 2, ... are mean
zero, variance one, Gaussian series with the j step correlations ρj,γ satisfying

log(γ)
¡
1− ρj,γ

¢→ δj as γ →∞, for all j,

where δj is a Þnite positive number. DeÞne

θ = P
h
E/2 +

p
δkHk ≤ δk for all k ≥ 1

i
, (8)

where E is a standard exponential random variable and Hk is a mean zero
Gaussian process independent of E and satisfying EHiHj =

δi+δj−δ|i−j|
2
√
δiδj

. The

authors then claim that under certain technical conditions on ρj,γ the distribu-
tion function P [max (T1,γ , ..., Tγ,γ) ≤ x] could be approximated by Φ(x)θγ . The
parameter θ has been called the �cluster index�.
Recently Wilhelm (2002) performed an extensive simulation study com-

paring the three possible approaches for a wide class of stationary Gaussian
processes. The simulation study proved inconclusive as neither of the methods
clearly dominated the other two. In fact none of the approaches seemed to
give reliable answers in the case of highly dependent stationary series. In our
simulation study, described in section 3.1, the implementation of the Rootzen
method was seen to have even worse performance than the conventional SiZer
approach, based on the independent block calculation, whose size characteristics
are illustrated in Figure 2. Thus in this paper, we only work with the second
method of simultaneous inference, based on the paper of Hsing, Husler and Reiss
(1996), which improves the size of SiZer dramatically, as seen in Figure 3. For
this reason we will concentrate on the latter method in the remainder of this
section.
In the particular case of SiZer, as noted in Section 2.1, it is reasonable to

assume that under the null hypothesis T1, ..., Tg are Gaussian, with mean 0 and
variance 1 and j step correlation ρj = e

−j2/(4b2) £1− j2/(2b2)¤, where b is the
standard deviation of the Gaussian kernel used to deÞne the Wi in Section 2.1.
The next step is to embed the series in an appropriate triangular array.
Consider a triangular array T1,γ determined by

ρj,γ =

µ
1− ξ

log(γ)

¶j2 µ
1− 2j2 log

µ
1− ξ

log(γ)

¶¶
. (9)
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Notice that if we set γ = g and ξ = log(g)
£
1− exp ¡−1/(2b)2¢¤ we get ρj = ρj,g

and therefore our series can be considered as a part of this triangular array de-
Þned by (9). Straightforward calculation shows that δj = limγ→∞ log(γ)

¡
1− ρj,γ

¢
=

3j2ξ.
Finally, to determine the value of θ we need to calculate the probability in

(8). This could be a rather difficult task in general, however in this case we are

helped by the fact that EXiXj =
δi+δj−δ|i−j|
2
√
δiδj

= i2+j2−|i−j|2
2ij = 1 and therefore

Z = H1 = H2 = ..., where Z is a standard Gaussian random variable. Thus the
problem in (8) transforms to

θ = P
h
E/2 + k

p
3ξZ ≤ 3ξk2 for all k ≥ 1

i
. (10)

Since E is a non-negative random variable, the inequality in (10) implies Z <√
3ξ. Moreover under this condition E/2 + k

√
3ξZ − 3ξk2 is decreasing as a

function of k and therefore

θ = P
h
E/2 +

p
3ξZ ≤ 3ξ

i
= E

³
P
h
E ≤ 2(3ξ −

p
3ξZ) | Z

i´
=

Z √
3ξ

−∞
(1− e−2(3ξ−

√
3ξZ))

e−
z2

2√
2π
dz

= 2
h
Φ
³p

3ξ
´
− 1
i
.

From here we Þnally get the cluster index for our SiZer row to be

θ(b) = 2
h
Φ
³p

3 log(g) [1− exp (−1/(2b)2)]
´
− 1
i

(11)

and consequently we will approximate [max (T1, ..., Tg) ≤ x] by Φ(x)θg. The
veriÞcation of the technical conditions of Hsing, Husler and Reiss (1996) is
rather tedious and we will not present it here. It can be found in the simpler
case of ρj = e

−j2/(4b2) in Wilhelm (2002).
[blinded reference] have shown that in a number of real data situations,

interesting structure can be found in the data using a curvature based version
of SiZer, which sometimes is not ßagged as statistically signiÞcant by the slope
version. Hence, we derive an analogous formula that can be used for this
curvature version. Using a similar approximation as for the slope version of
SiZer we conclude that under the null hypothesis the curvature SiZer version
test statistics T̄1, ..., T̄g are approximately Gaussian, with mean 0 and variance
1 and j step correlation ρ̄j = e

−j2/(4b2) ¡1− j2/b2 + j4/(12b4)¢ . This leads to
δ̄j = limγ→∞ log(γ)

¡
1− ρ̄j,γ

¢
= 5j2ξ and the cluster index of

θ̄(b) = 2
h
Φ
³p

5 log(g) [1− exp (−1/(2b)2)]
´
− 1
i
. (12)

Detailed discussion, with examples, are of some interest. However, they are not
included here (except for Figure 11), because the general ideas are the same as
for the slope version of SiZer, so it does not seem to be worth the space.
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2.5 Proposed Improvements

As mentioned at the beginning of Section 2, there are two natural goals when
considering the size of SiZer. The Þrst, called �row-wise� simultaneous inference,
seeks to have at most α100% of the rows containing �false positives�, i.e., pixels
ßagged as statistically signiÞcant when no noise is present in the data. The
second, called �global� simultaneous inference, aims at having at most α100%
of the SiZer maps containing false positives.
The row-wise adjustment follows directly from the mathematical considera-

tions of Section 2.4. DeÞne

CR = Φ
−1
µ³
1− α

2

´1/(θ(b)g)¶
,

where θ(b) was deÞned in (11) and b (deÞned just after (5)) is the window-width
used to smooth the data, scaled so it is compatible with the scale of the T �s.
Then color the ith pixel in the gth row blue if the corresponding Ti > CR and
red if Ti < −CR. Notice that under the null hypothesis the distribution of
max (T1, ..., Tg) is the same as the distribution of -min (T1, ..., Tg). It follows
that if the data contains no signal the probability there is a spurious color on
the gth row is

P [Ti < −CR or Ti > CR for some i = 1, ..., g] ≤ P [min (T1, ..., Tg) < −CR] +
P [max (T1, ..., Tg) > CR]

= 2 (1− P [max (T1, ..., Tg) < CR])
≈ 2

³
1−Φ (CR)θg

´
= α.

Thus no more than about α100% of the rows will have spurious colors as desired.
We consider two possible global modiÞcations of our row-wise procedure.

The Þrst is a simple Bonferroni type adjustment, i.e., if r is the number of rows,
we allocate size α/r to each row. In other words we set

CB = Φ
−1
µ³
1− α

2r

´1/(θ(b)g)¶
,

and color the ith pixel in the gth row blue if the corresponding Ti > CB and red
if Ti < −CB . Notice that for both the Bonferroni global as well as the row-wise
simultaneous adjustment the constants CR and CB are different for each row.
The second global adjustment is derived as follows. If all the rows were

independent then the distribution of the maxima across all rows and columns
would be just a product across all rows, i.e.

P

·
max
all rows

max
i=1,...g

Ti < x

¸
≈ Φ (x)(θ(b1)+···+θ(br))g ,

where b1, ..., br are the window-widths used to smooth the different rows of
the SiZer map. Proceeding as thought dependence between rows is not too
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important leads to coloring the ith pixel in the gth row blue if the corresponding
Ti > CI and red if Ti < −CI , where

CI = Φ
−1
µ³
1− α

2

´1/((θ(b1)+···+θ(br))g)¶
.

Observe that the constant CI is the same for all the rows. Of course, since the
SiZer rows were calculated from the same data they are likely to be correlated,
especially at the coarse scales. On the other hand a careful analysis reveals that
the rows are almost independent at the Þnest scale. This makes this �indepen-
dent row� approximation less conservative than the Bonferroni method as the
Þne scales account for most of the sum θ(b1) + · · · + θ(br). It is worth noting
that a similar effect can be achieved using a Bonferroni type adjustment by
allocating a large fraction of the size α to the Þner scales.
This explains the main difference between the two global methods. The Þrst

(Bonferroni) method is more sensitive at the coarse scales and less sensitive at
the Þne scales while the second (independent rows) method is less sensitive for
the coarse scales and more sensitive for the Þne scales. Both of these methods
can be considered rather crude and a careful examination of the distributional
properties of the random Þeld of the SiZer test considered for all rows and all
columns can lead to a slightly less conservative answer. However, the analysis of
the random Þeld seems very challenging and our simulations suggest that the in-
dependent rows method might be in fact a very good approximation already, for
large sample sizes. This is demonstrated in Figure 6 of Section 3.1. In the par-
ticular case studied in Figure 4 of section 2.3 the theoretical value of the shape
parameter α suggested by the independent rows global method is 882 which is
slightly higher than the highest of the various values of the shape parameter
estimated there. This affirms our believe that though slightly conservative the
independent rows global row-wise method is already rather good.

3 Analysis of Improvements
In this section we investigate the properties of these improvements of SiZer.
First the size properties are studied via a simulation study in Section 3.1. The
amount of power that is sacriÞced to get the size correct, is studied via simulation
in Section 3.2, and through some real data examples in Section 3.3.

3.1 Size Simulations

To compare the size performance of the conventional SiZer with our new row-
wise SiZer, and with the two new global versions of SiZer, we did an array of
simulations against several variations of �the null hypothesis�. We tried:

Settings Each of the settings of:

1. (KDE) kernel density estimation, for the Uniform(0,1) density,
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2. (FDR) Þxed design regression, for an equally spaced design, with standard
Gaussian noise, but no signal,

3. (RDR) random design regression, where the Xi are chosen from the Uni-
form(0,1) density, and the Yi are independent standard Gaussian.

Sample sizes For each of the above settings, the following sample sizes were tested:

1. n = 100,

2. n = 400,

3. n = 1600.

For each of the 9 combinations above, 1000 pseudo data sets were drawn,
and the various SiZer maps were calculated, and the numbers of red and blue
pixels (ideally none, since there are no signals in any of these examples) was
counted.
One way to summarize these numbers is row-wise in the SiZer maps. In

particular, for each setting, each sample, and each row, report the percentage
of realizations of the data where there were some red or blue pixels in that row.
Figure 5 shows these summaries.
Instead of showing long tables of numbers, the main ideas are made more

accessible by displaying the results with a parallel coordinate plot, see Inselberg
(1985). Figure 5a summarizes performance for the Kernel Density Estimation
setting, Figure 5b does the same for the Fixed Design Regression setting, and
Figure 5c is for the Random Design Regression setting. The coordinates (points
on the horizontal axes) represents rows of the SiZer map, and thus are quan-
tiÞed via log10 h (only shown on the bottom panel, to avoid overplotting with
the Figure titles), just as on the vertical axes of the SiZer maps. The vertical
axes are the percentage of rows (across the 1000 replications) that showed some
signiÞcant structure (i.e. red or blue pixels). Each curve represents one setting
(indicated by color as shown) and one sample size (indicated by line type as
shown). The curves are piecewise linear, with nodes at each row of the map
(i.e. each window width h). The heights at the nodes contain the useful infor-
mation, and the connecting line segments simply make it easier to understand
the relationships.
Ideally, all of these values should be close to α = 0.05 for the row-wise

procedures such as the conventional SiZer, and our new row-wise SiZer. Hence,
this level is shown by a horizontal black line.
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Figure 5 Row-wise summaries of the percent of signiÞcant pixels for SiZer
under the null hypothesis, allowing comparison of the different simultaneity
adjustments and sample sizes. Clearly shows relationship between sample
sizes. Figures 5a, b and c are for the settings of KDE, FDR and LDR,

respectively.

Note that in almost every case the conventional SiZer ßags signiÞcant struc-
ture far too often. This again veriÞes the main idea in this paper: it is well
worth Þnding less crude approaches to this multiple comparison problem.
Similarly, in a large majority of the cases, the new Row-Wise SiZer is quite

close to the desired α = 0.05.
As expected, the global methods are almost always quite far below the de-

sired level, because they aim at a global size of α = 0.05, which requires them
to be deliberately conservative when studied in this row-wise sense.
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A perhaps surprising feature in the KDE setting, studied in Figure 5a, is
the 0 values everywhere for the second and third coarsest scales. This is due to
the crude type of boundary adjustment used. Boundary adjustment is essential
for estimating the Uniform(0,1) density with kernel estimates, because these
methods tend to �round off the corners� at both edges. If the summaries of
Figure 5 are computed with no adjustment, far too many percentages are %100,
since every realization of most rows has some signiÞcant pixels ßagged at the
edges. To avoid this boundary problem, the simple �circular design� device
was used (where the data are treated as periodic, and shifted copies of the data
are added at each end). While this crude adjustment is reasonably effective
at most scales, there are a few where it introduces artifacts such as the zeros
shown in Figure 5a. Such boundary effects are not a serious issue for the
regression settings, because the local linear smoother that is used in both does
an automatic Þrst order boundary adjustment.
Another departure from the expected size occurs for the regression settings,

shown in Figures 5b and 5c. These are substantial increases in the percentage
of realizations ßagged as signiÞcant at Þner scales. At these scales, there can
be few points in the kernel window, so that the underlying null distributions
are better approximated by a t distribution, than by the Gaussian. This idea
is veriÞed by the fact that it is generally worst for n = 100, better for n = 400,
and the problem is nearly nonexistent for n = 1600. Exceptions include the
FDR in Figure 5b, where the dotted curves for n = 100 disappear for Þne scales
(because there are never enough data points in the kernel windows, i.e. the
SiZer color is always gray), and the RDR in Figure 5C, where the dotted curves
for n = 100 actually go down for Þner scales, because there are typically just a
few locations where the data are rich enough to do any inference (thus most of
the pixels are colored gray), and in those remaining locations the SiZer color is
often completely purple.
A simple approach to this problem is to replace the Gaussian distribution

with the t distribution. This was attempted, but the results were too conserv-
ative to be useful. The reason seems to be the complicated interaction of the t
distribution with the correlation structure.
The comparison in Figure 5 is for the row-wise size of the statistical inference.

But also of keen interest is the global size, for the multiple comparison problem
over the entire map, not just within individual rows. Global size, for the same
simulation settings, is studied in Figure 6.
Figure 6 is a parallel coordinate display of the percent of realizations (out of

1000) for which there were some signiÞcant pixels in the SiZer map. Again color
is used to indicated SiZer type, with the same color scheme. The coordinates
now are taken to be the sample size n, different from SiZer map row as in Figure
5), to highlight the perhaps surprising impact of n on the results. Line type is
now used to show the setting.

20



100 400 1600
0

20

40

60

80

Sample size

G
lo

ba
l %

 S
ig

.
Figure 6

Conventional
Row-Wise
Glob. Indep.
Glob. Bonf.

KDE
FDR
RDR

Figure 6: The global size summaries showing the percent of signiÞcant pixels
in the full SiZer maps, under the null hypothesis, grouped by settings.

In this sense, the size problems of the conventional SiZer map are even worse
than in the row-wise sense indicated in Figure 5 (note the larger vertical axis).
The new Row-Wise SiZer is also always far above the nominal level of a = 0.05,
which not surprisingly shows that there is substantial difference between row-
wise and global statistical inference. This is consistent with the global methods
appearing as generally too conservative in Figure 5.
Performance of the global SiZer approaches, is quite dependent on the set-

ting. For Kernel Density Estimation, both methods are generally conservative.
This is caused by the boundary effect and adjustment discussed above, and by
data sparseness issues at the Þnest scales. In particular, the 0�s at the sec-
ond and third coarsest scales mean that the �effective number of rows� r, is
essentially too large in our calculations. For Fixed Design Regression and Ran-
dom Design Regression, the percentages are often too large. The exception is
n = 1600, where the Global Independent SiZer has excellent size performance
(for both FDR and RDR), and the Bonferroni is a little conservative (both as
expected). For n = 400, the percentage of maps ßagged as signiÞcant increases
substantially, because of the t effect described above (most of which occurs at
the Þnest scales where there are relatively few points in each kernel window, so
the number of degrees of freedom can be as low as 4). As noted above, many
of the curves are lower for n = 100, because of data sparsity effects.
Figure 7 is a reorganization of the parallel coordinates plot in Figure 5, which

highlights an important lesson about how the settings compare, that is obscured
there because the settings are in different panels. This time the panels show
the sample sizes n, with n = 100, 400, 1600 in Figures 7a, b and c respectively.
As in Figures 5 and 6, color represents SiZer type, using the same scheme.
The line type is consistent with Figure 6, representing the setting. Again the
coordinates represent rows of the SiZer map, and are indexed by log10 h .
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Figure 7 Row-wise summaries of the percent of signiÞcant pixels for SiZer
under the null hypothesis, allowing comparison of the different simultaneity
adjustments and settings. This organization shows that settings are very
similar. Figures 7a, b and c are for the sample sizes of n = 100, 400 and

1600, respectively.

The main lesson of Figure 7 is that curves of the same color tend to be very
close to each other, i.e. the settings are very similar. While there are important
differences in the simultaneity type (expressed by colors), and the sample sizes
(different panels), the settings are similar. This validates the approach of using
the common mathematical structure, as developed in Section 2.1.
Another useful feature of the view shown in Figure 7, is that it provides

another way of seeing that the Row-wise method is best in this sense, and that
the best results are for the larger sample sizes. In particular, it is very clear that
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at n = 1600, the percentages virtually achieve their goal of α = 0.05, uniformly
over both rows and settings (except for density estimation at large scales).
A similar simulation study has been carried out to investigate the size prop-

erties of the curvature version of SiZer. The results were similar to those sum-
marized in Figures 5 - 7 for the slope version of SiZer and are not explicitly
reported to save space. The main differences between the results were that
both the boundary effect in the kernel density estimation and the t effect for
the small sample sizes of regression were even more severe in the curvature
version than in the slope version.

3.2 Power Simulations

The previous section showed that our global versions of SiZer were quite good
at achieving the desired overall size for the statistical inference. In this and
the next section, by analyzing some simulated and real data sets, it is seen that
this entails substantial cost in terms of power.
The Þrst example is the same as shown in Figure 1, the Donoho Johnson

blocks regression function, with high noise, as shown in Figure 1a. Figure 8
allows direct comparison between the conventional SiZer shown in Figure 8a,
the new row-wise SiZer shown in Figure 8b, the Bonferroni Global SiZer shown
in Figure 8c and the Global Independent Row SiZer shown in Figure 8d.
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Figure 8: Full range of SiZer analyses of the Donoho - Johnstone Blocks
regression, with high noise. Figures 8a, b, c and d show conventional,

row-wise, Bonferroni and independent rows global SiZer versions, respectively.

As shown in Figure 1b, the conventional SiZer ßags all 11 jumps as statis-
tically signiÞcant, but it also indicates a spurious jump near x = 0.58. As
expected, the new row-wise SiZer (Figure 8b) ßags fewer pixels as signiÞcant,
but still Þnds all 11 jumps. The spurious jump near x = 0.58 is still present,
but smaller. For the two global methods the spurious feature disappears, but
also the jump near x = 0.15 disappears as well. This reßects the loss of power
from insisting on global simultaneous inference.
If one were to use only the global analysis, the upward jump near x =

0.78, would be ßagged as statistically signiÞcant by a very small blue region.
Thinking from the viewpoint of conventional SiZer, it might be tempting to
ignore this. However an important lesson is that any signiÞcant pixel (regardless
of how small it is) at all that is found by a global method, should be regarded
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as important underlying structure.
Figure 9 shows a simulated density estimation example, with the same four

panels as in Figure 8. The underlying density is the Trimodal Gaussian Mixture
Density from Marron and Wand (1992), and the sample size is n = 10, 000.
Both the conventional and new row-wise SiZer show three statistically signiÞcant
modes. However, the conventional SiZer also ßags a spurious Þne scale feature
near x = 1.4, which correctly disappears for the new row-wise version. The
global SiZers show some loss of signiÞcant structure, in particular the small blue
region just left of x = 0, again reßecting some loss of power.
Figure 9 also shows a feature predicted by the analysis of Section 2.5, that the

independent rows SiZer is more sensitive at the Þner scales than the Bonferroni
version.
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Figure 9: Full range of SiZer analyses of the Trimodal mixture of
Gaussians. Figures 9a, b, c and d show conventional, row-wise, Bonferroni

and independent rows global SiZer versions, respectively.
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Similar plots have been constructed for all of the Marron-Wand Gaussian
mixture densities, for the sample sizes n = 100, 1000, 10, 000. Overall, the dif-
ferent versions of SiZer tended to ßag very similar structure as being statistically
signiÞcant. There was generally substantial erosion of the red and blue regions
for the methods with better size properties (to a similar extent to that shown in
Figure 9). Sometimes this erosion was enough that signiÞcant features actually
disappeared, as in Figures 9c and d, but most often they did not. Spurious
features, such as the very small red region, near x = 1.4 in Figure 9a, were fairly
rare, perhaps because at most locations, these densities are not close to ßat (as
at the null distributions studied in Section 3.1), but instead have substantial
slope.

3.3 Real Data Examples

Another approach to studying the trade-off between size and power that is
made by these different versions of SiZer is through the analysis of real data.
Figure 10 shows the density estimation example of the 1975 British Family
Incomes data, that was carefully analyzed by Schmitz and Marron (1992), again
using the same 4 panels of Figures 8 and 9. The conventional SiZer analysis
shows two signiÞcant modes, which has been independently conÞrmed by a
parametric analysis as discussed in Schmitz and Marron (1992). The red region
between modes nearly disappears for the new row-wise SiZer shown in Figure
10b, although again, greater credence needs to be placed in this more precise
version. Unfortunately this red region completely disappears in both global
SiZer maps. This loss of power is particularly unfortunate, since the bimodality
is the important feature of this data set.
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Figure 10: Full range of SiZer analyses of the British Family Incomes data.
Figures 10a, b, c and d show conventional, row-wise, Bonferroni and

independent rows global SiZer versions, respectively.

While the global slope versions were unable to Þnd the important bimodal
characteristics of the British Family Incomes data in Figure 10, it is interesting
to note that the global curvature versions of SiZer do ßag this feature of the data
as statistically signiÞcant, as shown in Figure 11. The conventional curvature
version of SiZer was proposed by [blinded reference]. Here we similarly improved
the simultaneity, using the ideas from Section 2. The main difference is that
formula (12) replaces (11).
To clearly distinguish it from the slope version of SiZer, the curvature ver-

sion uses a different color scheme. Pixels with signiÞcant concavity (second
derivative strongly negative) are indicated by cyan (light blue). Those with
signiÞcant convexity are colored orange. Locations in scale space where there
is no signiÞcant curvature are colored green. Again gray is used in regions
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where the data are too sparse.

Figure 11
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Figure 11: Independent rows global curvature SiZer analyses of the British
Family Incomes data. This Þnds the bimodality that is known to be an

important feature of this data set.

The bimodality of this data set is shown to be strongly signiÞcant, by the
very small orange region near x = 0.6. While the region is very small, again
it is important to keep in mind that when using global versions of SiZer, any
signiÞcance at all should be regarded as strong evidence.
Figure 12 shows an example from ßow cytometry, where the presence and

percentage of ßorescence marked antibodies on cells are measured. The medical
goal is the determination of quantities such as the percentage of lymphocytes
among cells. The data come from the laboratory of Drs. S. Mentzer and
J. Rawn, Brigham and Women�s Hospital, Boston, Massachusetts, and we are
grateful to M. P. Wand for putting us in contact with them. In a single
experiment, many cells are run through a laser, and the intensity of ßorescence
of each cell is measured, and the data are stored as 256 bin counts, where bins
are called �channels�. These bin counts are traditionally viewed on the square
root scale. An important question is how many �bumps� there are in this square
root histogram. Here we treat this as a regression problem.
Figure 12 shows again the same 4 panels, comparing the different simultane-

ity methods. Figure 12a, conventional SiZer, shows two clear modes, and a
small Þne scale feature near x = 20. This small feature is already seen to be
spurious by the new row-wise SiZer map in Figure 12b. This time the effect of
the global is representative of many of the examples we have seen: the signiÞ-
cant red and blue regions are substantially eroded, but indicate essentially the
same lessons.
Figure 12c conÞrms one more point that was predicted in Section 2.5, the

Global Bonferroni method is more powerful than the Global Independent Rows
approach for larger scales. This appears as a larger blue region on the left side.
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Figure 12: Full range of SiZer analyses of a ßow cytometry data set.
Figures 11a, b, c and d show conventional, row-wise, Bonferroni and

independent rows global SiZer versions, respectively.

Based on this experience, and a number of other examples studied during
this research, we recommend that the default version of SiZer be the new row-
wise approach. This choice is made to give reasonable power, but it needs to be
kept in mind that the statistical inference is not completely valid in the classical
sense, which is often acceptable in exploratory data analysis situations. When
statistical rigor is essential (e.g. before making a large investment of research
effort in understanding �phenomena found�) it is recommended that the global
versions be used. Both global versions are useful, because they have different
sensitivities. The Bonferroni Global method is somewhat more powerful at
Þnding structure at coarser scales, while the Independent Row Global version
has more power at Þner scales.
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4 Future Work
While the methods developed in this paper are intended to enhance the applica-
bility of the SiZer method, there are a number of remaining open problems,
including:

1. Replace the independent rows global approximation, of Section 2.5, by an
approximation that takes the full random Þeld distribution of the SiZer
inference into account.

2. More careful boundary adjustment, as discussed in Section 3.1.

3. Improved incorporation of the t distribution, for regression settings, with
careful accounting of the correlation structure, as discussed in Section 3.1.
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