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Abstract

The SiZer method is extended to nonparametric hazard estimation and
also to censored density and hazard estimation. The new method allows
quick, visual statistical inference about the important issue of statistically
significant increases and decreases in the smooth curve estimate. Instead
of being straightforward, this extension has required the opening of a new
avenue of research on the interface between statistical inference and scale
space.

Footnote: Jiancheng Jiang was supported by Chinese NSF Grant 39930160.
J. S. Marron was supported by NSF Grant DMS-9971649.

1 Introduction
Nonparametric hazard rate estimation is a standard tool in survival analysis,
dating back at least to Watson and Leadbetter (1964a,b) and Rice and Rosen-
blatt (1976).

For practical use, a critical issue is understanding where the hazard rate
curve increases and where it decreases. A confounding issue is the bandwidth,
i.e. the window width or smoothing parameter. SiZer addresses both of these
problems, in the context of nonparametric density and regression estimation,
by combining a scale space approach to smoothing with a useful visualization
of simultaneous statistical inference.
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An illustrative example is given in Section 1.1. The extension of SiZer
developed in this paper is not straightforward, as shown in Section 1.2. The
obvious idea of simply plugging reweighted data into SiZer gives invalid statisti-
cal inference. Hence, a non-obvious statistical accounting for the reweighting is
developed. Some real data examples are shown in Section 1.3. Precise mathe-
matical development is given in Section 2. Important computational issues are
discussed in Section 3.
It is straightforward to simultaneously extend these ideas to both censored

density estimation, and also to censored hazard rate estimation. This is because
all three of these cases fit very simply into a general form of estimator, using an
elegant common notation, perhaps first published by Patil (1990, 1993). Hence
all three cases are treated simultaneously here. For reasons of presentation,
various aspects of this paper are usually illustrated by focusing on just one of
the three cases first.
Some other important related references include Tanner and Wong (1983),

Marron and Padgett (1987), Lo, Mack and Wang (1989), Sarda and Vieu (1991),
Müller andWang (1994), González-Manteiga, Marron, and Cao (1996), Kousassi
and Singh (1997), Stute (1999), Hess, Serachitopol and Brown (1999), and Jiang
and Doksum (2003).

1.1 An Illustrative Example

In this paper, the SiZer ideas are extended to censored density, to hazard rate,
and to censored hazard rate estimation. The SiZer method is illustrated in
the context of censored density estimation in Figure 1. Also shown there is
the importance of the correct use of censoring reweightings, when censoring is
present.
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Figure 1: Simulated censored density estimation, n = 500 data points
(uncensored values shown as jittered green dots, censored as yellow) from a
symmetric bimodal Gaussian mixture, with 50% censoring from the same
distribution. Figures 1a and b are family plots, Figures 1c and d are the

corresponding SiZer maps. In Figures 1a and c, only the uncensored data are
used, while Figures 1b and d properly use the information in the censored data,

showing that censored data can not be simply ignored.

The data in Figure 1 are a random sample of n = 500 simulated observa-
tions from the bimodal Gaussian mixture density with 50% of the data being
N
¡−1, 14¢ and the other 50% N

¡
1, 14

¢
. The data are censored by an indepen-

dently sampled data set from the same distribution. I.e. when each original
data point is smaller than the corresponding censoring point, it is kept. When
the censoring value is smaller it is kept instead. Full mathematical details of
censoring are given in Section 2.2. Figure 1a illustrates a naive approach to
censoring: ignore the censored data and use standard methods, in this case ker-
nel density estimation. The raw data are shown as jitter plots, i.e. a random
height is used to separate them for convenient visualization, with green for un-
censored observations, and yellow for censored values. In keeping with scale
space ideas, a family of kernel density estimates (indexed by the bandwidth, i.e.
level of smoothing) is shown as overlaid blue curves, based only on the uncen-
sored green data. The peak on the left is much higher than the peak on the
right, because there are more uncensored observations in that region.
The result of naively plugging these data in to the standard SiZer algorithm,

as developed in Chaudhuri and Marron (1999) is shown in Figure 1c. The SiZer
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map is indexed by location in the horizontal direction, and bandwidth (amount
of smoothing) in the vertical direction, thus covering the full “scale space”, i.e.
the family of smooths shown in blue in Figure 1a. At each point, the color blue
is used to indicate that the corresponding smooth is significantly increasing, and
red is used for significant decrease. When there is no statistically significant
change, the intermediate color of purple is used. For the smaller bandwidths,
i.e. finer levels of resolution, the blue curves in Figure 1a have many small peaks
and valleys. The SiZer map shows that these are spurious sampling artifacts,
because the color is either purple indicating that the features are not significant,
or gray indicating that there is not enough data in the smoothing window for
reliable statistical inference. For larger bandwidths, near the top of the map,
the first peak is flagged as statistically significant by the blue and red regions
on each side. However for the peak on the right, only the decrease is flagged
as statistically significant, but not the increase in the region x ∈ [0, 1]. That is
to say, this important feature of the underlying distribution has been obscured
by the censoring.
Figures 1a and 1c are an example of the gross bias that is usually present

if censoring effects are ignored. Effective adjustment for this bias is done via
reweighting of the data using the Kaplan Meier, i.e. product limit, weight
function. A precise definition of this weight function is given in Section 2.2.
The effect of this reweighting, for the same simulated data, is shown in Figure
1b. Note that the yellow censoring data points are now included among the
green uncensored data. Using the Kaplan Meier weights to upweight the green
points on the right side, the blue curves in Figure 1b now properly reflect the
symmetric bimodal Gaussian mixture density from which the data were drawn.
A careful look at the small bandwidth peaks on the right side shows that the
smooths have simply been “magnified” to achieve this effect. In particular,
the smallest scale bumps follow the same pattern in Figures 1a and 1b, because
their structure is driven by the same set of green dots.
While this vertical rescaling is well understood for estimation, its impact

on the statistical inference is much less obvious. Indeed our first attempt at
inference, which was to simply feed reweighted data into standard SiZer, failed
in the direction of flagging spurious sampling artifacts as being statistically
significant (sometimes on the basis of a single data point). The reason for this
failure is revealed in Section 1.2. These reasons are then used to develop a
statistically valid version of SiZer in the reweighting context in Section 2.

1.2 Reweighted SiZer

As made clear in Patil (1990, 1993), essentially the same “reweighting” technique
underlies standard estimators in each of the three cases of censored density,
hazard rate, and censored hazard estimation. While these are similar to each
other, none allows a straightforward extension of the usual SiZer ideas. In
particular, simply plugging reweighted data into standard SiZer fails as noted
in the last section. A central contribution of this paper is the development
of a correct adaptation of the statistical significance implicit in SiZer, in the
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presence of the “reweighting” that lies at the core of these estimation methods.
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Figure 2: Simulated density estimation, using n = 500 data points from a
symmetric bimodal Gaussian mixture, rounded to the nearest 0 .1 . This shows

how rounding creates fine scale significant features in the SiZe map.

The central problem underlying the statistical inference is illustrated in Fig-
ure 2, which again shows a simulated example based on n = 500 data points
from the same symmetric bimodal Gaussian mixture distribution used in Figure
1. However, this time there is no censoring, but the data have been rounded
to the first to the nearest 0.1, note the equal spacing of the green dots. The
family plot in Figure 2a shows that at coarse scales, i.e. large bandwidths,
the data rounding has no important effect, since it is negligible with respect
to the amount of smoothing being done. However, at finer scales, i.e. smaller
bandwidths, the rounding has a very strong effect creating many equally spaced
spikes in the undersmoothed density estimate.
The rounding affects the SiZer map in Figure 2b in a similar way. At the

largest scales, near the top, the SiZer map shows unimodality, which is the true
behavior at those levels of resolution. For medium scales, the resolution is
such that bimodality is present, and SiZer shows that structure is statistically
significant. For most of the finer scales, i.e. smaller bandwidths, the SiZer
map is purple, indicating no significant structure. But at the smallest scale,
SiZer flags many small peaks as significant, one for each rounded point. The
reason for this is that SiZer finds increasing and decreasing points in an assumed
continuous underlying density. At very small scale, the replications in the data
created by the rounding are viewed as “very tight clusters”, which are indeed
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statistically significant. This same phenomenon was illustrated in a real data
set that had heavy rounding in Figure 5 of Chaudhuri and Marron (1999).
While SiZer should flag this type of feature, at these small scales, in the

case of rounding, it should not flag them in the cases of censored density and
hazard estimation that are the focus of this paper. This is why simply plugging
weighted data into conventional SiZer gives invalid statistical inference: the
weighted points get treated as “tight clusters” at small scales. With enough
weight, even a single data point can create an apparently significant spike, even
at quite large scales. Thus for these settings, the statistical inference done by
SiZer needs to be appropriately adapted to the weighting scheme being used.
This is developed in Section 2. Figure 1d is one sensible application of our
corrected version of SiZer. More examples are shown in the next section.

1.3 More examples

Figure 3 shows a censored SiZer analysis of the Stanford Heart Transplant Data,
from Kalbfleisch and Prentice (1980). The data, originally from Crowley and Hu
(1977) are the survival times (in days) of potential heart transplant recipients
from their date of acceptance into the transplant program. There is censoring
since some patients were lost to follow up before they died and since some
patients were still alive on the closing date of the study.
Analysis from the point of view of density estimation is shown in Figures 3a

and 3c. This shows that are many deaths very soon after transplantation, and
a long decreasing tail. Because of the relatively poor way in which the kernel
density estimator handles boundaries, see e.g. Figure 2.16 of Wand and Jones
(1995), at larger scales the estimates first increase at the left edge. SiZer shows
that both the overall decrease (the large red region) is statistically significant,
and so are the boundary effects (the thin blue region right at the edge).
For these data there is more interest in analysis of the hazard rate, as done

in Figures 3b and 3d. The hazard rate is carefully defined in Section 2, but the
intuitive idea is the instantaneous rate at which patients die. The estimate is
a reweighting of the kernel density estimate, as can be seen from the fact that
the small scale spikes in Figure 3b are simply magnifications of those in Figure
3a, but the scale is more appropriate for survival considerations. A central
question is: when is the hazard rate increasing, and when is it decreasing? The
color scheme of SiZer is well suited to address this issue. Furthermore, this
question is much more directly answered by the SiZer approach, than by more
conventional confidence intervals. The red in the middle left of the SiZer map
in Figure 3d shows that the hazard rate significantly decreases during that time
period, i.e. as transplants “settle in”, chances of survival increase. The red
near the top on the right shows that there is also a longer term improvement of
the chances of survival after one has survived for a substantial period.
These findings are consistent with those of Jiang and Doksum (2003). An

inconsistency is the blue region at the left end. As noted above this is due to
poor boundary behavior of the kernel density estimator that underlies this infer-
ence. The local polynomial estimator developed by Jiang and Doksum (2003)
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avoids this problem, which is why their hazard estimate is mostly monotonically
decreasing. An interesting open problem is to adapt SiZer ideas to the Jiang
and Doksum local polynomial hazard estimator.
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Figure 3: Days to death after heart transplant. Jitter plot, and family of
censored density estimates in Figure 3a, with corresponding SiZer map in

Figure 3c. Family of censored hazard estimates in Figure 3b, with
corresponding SiZer map in Figure 3d.

Figure 4 shows a SiZer analysis of the device lifetime data of Aarset(1987).
These data are uncensored.
The density estimates in Figure 4a suggest a “U-shape” density. However

the SiZer map in Figure 4c flags only the right hand peak as statistically signif-
icant. This is likely due to the same inefficiency of the kernel density estimator
near the boundary.
Of more interest for these data is the hazard rate analysis shown in Figures

4b and 4d. The dominant color in the SiZer map is blue which shows that the
hazard rate generally increases over time, which is consistent with the expected
wearing over time of mechanical components. A disappointing feature of the
family of hazard estimates in Figure 4b, is that there is a spike only on the right
side, while other analyses, including Aarset(1987) and Mudholkar, Srivastava
and Kollia (1996) find a “bathtub” shape, that includes a spike on the left
as well. This again is because of the poor boundary behavior of the kernel
density estimator. This problem could also be addressed by a version of hazard
estimation SiZer that is based on the local polynomial method of Jiang and
Doksum (2003).
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Figure 4: Device lifetime data. Family of censored density estimates in
Figure 4a, with corresponding SiZer map in Figure 4c. Family of censored
hazard estimates in Figure 4b, with corresponding SiZer map in Figure 4d.

Both of these examples illustrate an important property of SiZer: it provides
a generally good big picture assessment for initial exploratory purposes. How-
ever, for addressing any specific problem, e.g. the boundary questions brought
up in Figures 3 and 4, it may not be as effective as a method that specifically
targets that issue (although we do not know of a currently implemented method
that gives better statistical inference of this type at the boundary). Hence we
propose SiZer as a broad based method for initially finding structure in data
(and for the perhaps more important task of quickly understanding what struc-
tures are mere sample artifacts). After one has an idea about what to look for,
then other methods can provide deeper insights. Often the next useful step
is modelling, e.g. as done by Mudholkar, Srivastava and Kollia (1996) for the
device lifetime data.

2 Mathematical Development
Our extension of SiZer is most transparently explained in the context of hazard
rate estimation. Hence this is developed in Section 2.1. Then the extension to
censored density and censored hazard estimation is done in Section 2.2.
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2.1 Hazard Rate Mathematics

For data X1, ...,Xn independent, identically distributed with cumulative dis-
tribution function F (x), and probability density f (x) = F 0 (x), the maximum
likelihood estimate of F is the empirical cumulative distribution function

Fn (x) = n
−1

nX
i=1

1(−∞,x] (Xi) ,

where

1(−∞,x] (u) =
½
1 if u ∈ (−∞, x]
0 if u /∈ (−∞, x] .

The kernel density estimate of f is

bfh (x) = n−1 nX
i=1

Kh (x−Xi) ,

where Kh (·) = 1
hK

¡ ·
h

¢
, for the kernel function K and the bandwidth h. For

f supported on (0,∞) the hazard rate is

λ (x) =
f (x)

1− F (x) ,

and its cumulative is

Λ (x) =

Z x

0

λ (u) du.

Watson and Leadbetter (1964a) showed, but see for example Proposition 1 of
Shorack and Wellner (1986) for a much different way to arrive at the same
conclusion, that a natural estimate of the hazard rate is

bλh (x) = n−1
nX
i=1

Kh (x−Xi)
1− Fn (Xi) (1)

= n−1
nX
i=1

Kh

¡
x−X(i)

¢
1− Fn

¡
X(i)

¢
= n−1

nX
i=1

Kh

¡
x−X(i)

¢
1− i/n

=
nX
i=1

Kh
¡
x−X(i)

¢
n− i ,

where the X(i) are the order statistics, with X(1) ≤ · · · ≤ X(n).
Derivatives are estimated by differentiation. The density derivative, f 0 (x),

is estimated by bf 0h (x) = n−1 nX
i=1

K0
h (x−Xi) , (2)
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and the hazard rate derivative, λ0 (x), is estimated by

bλ0h (x) = n−1 nX
i=1

K0
h (x−Xi)
1− Fn (Xi) =

nX
i=1

K0
h

¡
x−X(i)

¢
n− i ,

where

K0
h (x) =

∂

∂x
Kh (x) =

1

h2
K0
³x
h

´
.

The variance of the density derivative estimate is:

var
³ bf 0h (x)´ = var

Ã
n−1

nX
i=1

K0
h (x−Xi)

!
= n−1var (K0

h (x−Xi)) ,

the variance factor of which is estimated by the sample variance

s2
¡
K0
0,1, ...,K

0
0,n

¢
= n−1

nX
i=1

¡
K0
0,i

¢2 −Ãn−1 nX
i=1

K0
0,i

!2
(3)

= n−1
nX
i=1

¡
K0
0,i

¢2 − ³ bf 0h (x)´2 (4)

where
K0
0,i = K

0
h (x−Xi) .

Using the approximation

Fn (x) ≈ F (x) , (5)

the variance of the derivative hazard rate is approximated by

var
³bλ0h (x)´ = var

Ã
n−1

nX
i=1

K0
h (x−Xi)
1− Fn (Xi)

!

≈ var

Ã
n−1

nX
i=1

K0
h (x−Xi)
1− F (Xi)

!

= n−1var
µ
K0
h (x−Xi)
1− F (Xi)

¶
.

Except for the fact that F is unknown the variance factor here could be esti-
mated by the sample variance

s2
¡
K0
F,1, ...,K

0
F,n

¢
,

where for any cumulative distribution function H (x), dependence on x and h
is suppressed in the notation

K0
H,i =

K0
h (x−Xi)
1−H (Xi) . (6)
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Another application of (5) gives the approximation

s2
¡
K0
Fn,1, ...,K

0
Fn,n

¢
. (7)

This is an important point where there is a critical difference between this
development, and simply using the reweighted data in ordinary SiZer. In
particular, the variance factor (7), now appropriately uses the weights. Thus,
an isolated point with a heavy weight is no longer flagged as significant, because
the variance estimate also increases when the weights are heavier.
SiZer gets its “simultaneous inference” properties (i.e. it addresses the mul-

tiple comparison problem) using a “number of independent blocks” calculation
done in Section 3 of Chaudhuri and Marron (1999). The basis of this is the
Effective Sample Size:

ESSh (x) =

Pn
i=1Kh (x−Xi)
Kh (0)

, (8)

which measures the “number of points in each kernel window” (this is exactly
true if K is the uniform density window). Correct adaptation to the hazard
context requires yet another careful twist. Naive reweighting would suggest
that denominators of 1 − F (Xi) should be inserted. But the independent
blocks calculation is based on the number of independent pieces of information,
so instead the formula (8) should be retained in the same form.
Thus a hazard rate version of SiZer comes from modifying the density esti-

mation version, replacing the terms

K0
h (x−Xi)

in (2) by
K0
h (x−Xi)
1− Fn (Xi) ,

and replacing the variables
K0
0,i

in (3) by
K0
Fn,i.

2.2 Censored Estimation Mathematics

The basic structure of a censored observation starts with an unobserved survival
time Ti, and an unobserved censoring variable Ci. The observed information
only includes the value of the one that happens first, together with an indicator
of whether that is the survival time, or the censoring time. In particular,
censored data comes in the form (X1, δ1) , ..., (Xn, δn), where Xi = min (Ti, Ci)
and δi = 1 (Ti ≤ Ci), where

1 (Ti ≤ Ci) =
½
1 if Ti ≤ Ci
0 if Ti > Ci

.
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The standard “random sample” assumption is that T1, ..., Tn are independent,
identically distributed with cumulative distribution function F (x) and that
C1, ..., Cn are independent (and independent of the Ti), identically distributed
with cumulative distribution function G(x). Note that the cumulative distri-
bution function of Xi, is L (x), where the corresponding cumulative survival
function is L(x) = F (x)G (x), using the notation H (x) = 1 − H (x), for any
cumulative distribution function H (x).
The goal is estimation of the survival probability density f (x) = F 0 (x) and

the corresponding hazard rate

λ (x) =
f (x)

F (x)
,

with cumulative

Λ (x) =

Z x

0

λ (u) du.

The cumulative distribution functions F and G can be estimated by the Ka-
plan Meier (1958), i.e. Product Limit, estimators (also the maximum likelihood
estimators) given by

Fn =

 1− Q
X(i)≤x

³
n−i
n−i+1

´δ(i)
, if x ≤ X(n)

0, if x > X(n).
,

Gn =

 1− Q
X(i)≤x

³
n−i
n−i+1

´1−δ(i)
, if x ≤ X(n)

0, if x > X(n).
,

where the
¡
X(i), δ(i)

¢
are the order statistics version of the data with X(1) ≤

· · · ≤ X(n).
A natural kernel density estimate of f is

bfh (x) = n−1 nX
i=1

δiKh (x−Xi)
Gn (Xi)

.
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For f supported on (0,∞) the corresponding estimate of the hazard rate is

bλh (x) = n−1
nX
i=1

δiKh (x−Xi)
Gn (Xi)Fn (Xi)

= n−1
nX
i=1

δiKh (x−Xi)
Ln (Xi)

= n−1
nX
i=1

δ(i)Kh
¡
x−X(i)

¢
Ln
¡
X(i)

¢
= n−1

nX
i=1

δ(i)Kh
¡
x−X(i)

¢
1− i/n

=
nX
i=1

δ(i)Kh

¡
x−X(i)

¢
n− i .

Note that these have a structure very similar to the hazard rate estimator (1),
which is why it is straight forward to extend SiZer to these cases as well.
Derivatives are again estimated by differentiation. The density derivative,

f 0 (x), is estimated by

bf 0h (x) = n−1 nX
i=1

δiK
0
h (x−Xi)
Gn (Xi)

. (9)

The hazard rate derivative, λ0 (x), is estimated by

bλ0h (x) = n−1 nX
i=1

δiK
0
h (x−Xi)
Ln (Xi)

.

The variance of the density derivative estimate is:

var
³ bf 0h (x)´ = var

Ã
n−1

nX
i=1

δiK
0
h (x−Xi)
Gn (Xi)

!
= n−1var

µ
δiK

0
h (x−Xi)
Gn (Xi)

¶
,

and for the hazard rate

var
³bλ0h (x)´ = var

Ã
n−1

nX
i=1

δiK
0
h (x−Xi)
Ln (Xi)

!
= n−1var

µ
δiK

0
h (x−Xi)
Ln (Xi)

¶
.

Using the approximation methods leading to (7), these variance factors are
estimated by

s2
¡
K0
Gn,1, ...,K

0
Gn,n

¢
,

using again the notation (6), and by

s2
¡
K0
Ln,1, ...,K

0
Ln,n

¢
13



respectively.
The Effective Sample Size follows in a similar spirit. Again the basis is the

number of independent pieces of uncensored data, resulting in the formula

ESSh (x) =

Pn
i=1 δiKh (x−Xi)

Kh (0)
.

Thus the censored density and censored hazard rate version of SiZer come
from modifying the density estimation version, replacing the terms

K0
h (x−Xi)

in (2) by
δiK

0
h (x−Xi)
Gn (Xi)

and
δiK

0
h (x−Xi)
Ln (Xi)

respectively, and by replacing the variables K0
0,i in (3) by K

0
Gn,i

and K0
Ln,i

respectively.

3 Fast Computation
Because SiZer relies on a large number of smooths, it is important to use a fast
computational method. Several such are discussed by Fan and Marron (1994).
The binned approach is especially well suited to SiZer.
Details of the binned implementation of bf 0h(x) are similar to those given

in Chaudhuri and Marron (1998), which are based on those of Fan and Mar-
ron (1994), except that the kernels are now divided by appropriate cumulative
distribution functions. In particular, for the equally spaced grid of points
{xj : j = 1, ..., g}, let the corresponding bin counts (computed by some method,
we have always used the “linear binning” described in Fan and Marron (1994))
be {c0,j : j = 1, ..., g}. Then for density SiZerbf 0h(xj) ≈ n−1S00(xj),
where

S
0
0(xj) =

gX
j0=1

κ0j−j0c0,j0

and
κ0j−j0 = K

0
h(xj − xj0).

The approximated standard deviation of bf 0h(xj), is
bsd(xj) = n−1/2

vuuutn−1 gX
j0=1

³
κ0j−j0

´2
c0,j0 −

n−1 gX
j0=1

κ0j−j0c0,j0

2

.
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The censored and hazard versions of SiZer require reconsideration of the
linear binning algorithm. When a data point Xi is between grid points xj and
xj+1, linear binning assigns weight

wi,j =
Xi − xj
xj+1 − xj

to the bin centered at xj , and weight

wi,j+1 =
xj+1 −Xi
xj+1 − xj

to the bin centered at xj+1, and weight 0 to all other bins. These result in bin
counts

c0,j =
nX
i=1

wi,j.

For a generic estimated cumulative distribution function Hn, these bin counts
are replaced by

cHn,j =
nX
i=1

wi,jδi

Hn (Xi)
.

This results in the binned approximation to the generic estimator:

n−1
nX
i=1

δiK
0
h (x−Xi)
Hn (Xi)

≈ n−1S0Hn
(xj),

where

S
0
Hn
(xj) =

gX
j0=1

κ0j−j0cHn,j0 ,

To similarly approximate bsd, use
bsd(xj) = n−1/2

vuuutn−1 gX
j0=1

³
κ0j−j0

´2
cHn,j0

µ
cHn,j0ec0,j0

¶
−
n−1 gX

j0=1

κ0j−j0cHn,j0

2

,

where the factor of
³
cHn,j0
c0,j0

´
in the second moment term gives the second factor

of 1
Hn

that appears in the second moment. Finally, the binned version of the
Effective Sample Size needs to be based on the unadjusted bin counts of the
uncensored data

ESS =

Pg
j0=1 κj−j0ec0,j0
Kh (0)

,

where ec0,j = nX
i=1

wi,jδi

and
κj−j0 = Kh(xj − xj0).
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