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Abstract

This paper develops a methodology for …nding which features in a
noisy image are strong enough to be distinguished from background
noise. It is based on scale space, i.e. a family of smooths of the
image. Pixel locations having statistically signi…cant gradient and/or
curvature are highlighted by colored symbols. The gradient version is
enhanced by displaying regions of signi…cance with streamlines. The
usefulness of the new methodology is illustrated by the analysis of
simulated and real images.

1 Introduction
Scale-space provides a rich and useful framework for image analysis. See
Lindeberg (1994) for an introduction and review of earlier work. Koenderink
and van Doorn (1999) and van Ginneken and ter Haar Romeny (1999) and
ter Haar Romeny (2001) provide a good overview of current trends in this
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large and active research area, including a promising new locally disorderly
representation of images using local probability distributions.

This paper provides useful tools for practical image denoising. This has
been an important application area of scale-space ideas. A very powerful
denoising approach has been anisotropic di¤usion, see for example Perona
and Malik (1987,1990) and Gerig et al. (1992). For discussion of the im-
portant boundary limited case, see ter Haar Romeny (1994). See Weickert
(1997) for discussion of more recent work. See for example Jain (1989) and
Winkler (1995) for a broad overview of image denoising.

An important question in the analysis of noisy images is: which fea-
tures that appear after denoising are important underlying structure, and
which are spurious noise artifacts? This paper provides a novel solution
to this problem, which combines scale-space ideas with statistical inference,
and some new visualizations. In particular, we construct graphical devices
which provide direct viewing of statistical signi…cance of features in denoised
images, through scale-space.

Our approach is di¤erent from many of those taken to denoising, in that
instead of trying to …nd an “optimal denoising”, i.e. optimal scale, we focus
directly on the more important question of “which features visible in the
image represent important underlying structure, and which cannot be distin-
guished from background noise?”. In particular, an optimal choice of scale
is not needed because our statistical inference is done over a very wide range
of scales.

In this …rst version of combining statistical inference with scale-space,
only the standard isotropic scale-space is considered. An interesting direction
for future work is the extension to anisotropic di¤usion.

The combined scale-space, statistical inference and visualization method-
ology developed in this paper is called “S3”, for “Signi…cance in Scale-Space”.
The precursor of S3 is a one-dimensional version, called SiZer, developed by
Chaudhuri and Marron (1999). The main challenge to extending the SiZer
methodology to S3 is the visualization. One part of this is visualization of
the scale-space itself. In one dimension the scale-space is simply viewed as
an overlay of curves. In image analysis (two dimensions), overlays are no
longer possible, so we use a movie through scales instead. The more chal-
lenging part of the extension of SiZer comes with the statistical inference.
The inference of SiZer is based upon where curves statistically signi…cantly
increase and decrease (the derivatives of the curve). But in two dimensions,
“slope” is now replaced by partial derivatives, so new ideas are developed in

2



this paper.
An example that provides a careful derivation of the ideas behind several

S3 approaches to image analysis is given in Section 2, starting with a noisy
gamma camera image. Development of the main mathematical and statisti-
cal structure of S3 is done in Section 3. A number of variations are discussed
in Section 4. Various statistical aspects of S3 are analyzed via some simu-
lated examples in Section 5. Derivations of technical formulas are done in
the Appendix, Section 7. More real data examples are given in Section 6. In
addition to the gamma camera image treated in the next section, additional
real images analyzed in this paper include optical images of electrical activ-
ity, perfusion MRI, and confocal microscopy. We believe these methods will
prove to be widely applicable to many other types of images.

2 An illustrative example
An example of a noisy image is given in Figure 1. This is a Gamma Camera
image of a phantom designed to re‡ect structure expected from cancerous
bones. In this image, gray levels show gamma radiation counts, emitted by a
radioactive isotope, collected by a rectangular bank of photon counters. See
Green (1990) for good discussion of the analysis of gamma camera images.
This radioactive isotope collects in regions with bone cancer, so the bright
spots on the “ribs” indicate cancerous regions. Note that the image is quite
noisy, and it is not clear which “hot spots” are really there, and which are
noise artifacts. To get better gray level contrast, we will investigate this
question in the context of the sub-image, shown in the yellow box.

In some image situations, noise can be reduced by improved imaging
technology. However, in many others, noise is endemic and must be dealt
with statistically. For the gamma camera example, there is a trade-o¤
between image noise and the amount of radioactive isotope being introduced
to the body (more isotope gives a sharper image, but is more harmful). In
MRI, a similar trade-o¤ occurs in terms of slice thickness: thick slices have
less noise, but the resulting image is unduly in‡uenced by surrounding tissue.
In functional MRI, where movies are made, there is an additional dilemma:
frames made in a shorter time give better time resolution, but are more noisy.
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Figure 1: Raw Gamma Camera Image, 120 £ 140 , with 80 £ 80
subimage analyzed below highlighted.

The scale-space for the image in Figure 1 is a family of Gaussian win-
dow smooths, indexed by the window width. Successively coarser level of
resolution in the scale-space (i.e. larger window widths) reduce the noise,
and thus better highlight the bright cancer indicators, as shown in Figure
2. These are convolutions of the yellow subimage, with spherical Gaus-
sian window functions, having standard deviations h = 1; 2; 4; 8. These
four images can be viewed as slices of the scale-space for the image of
Figure 1. For a better impression of the scale-space, view the MPEG
movie (these images, together with a denser grid of h values made into
frames of a movie) in the …le sss1fig2.mpg available at the web address:
http://www.unc.edu/depts/statistics/postscript/papers/marron/SSS_paper/.
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h = 1 h = 2

h = 4 h = 8

Figure 2: Gaussian window smooths of data from subimage of Figure 1.
These highlight bright spots on ribs.

Note that at h = 2 and 4 bright spots are visible in the upper left, the
middle right and below the center. There is a questionable bright spot
quite close to center of the image. At h = 1, the bright spots are less
visible, because there is substantial noise which degrades the image. At
h = 8, the image is oversmoothed, so that even the ribbed structures are not
visible. These aspects are typical in scale-space. At the …ner scales, there
is usually a large amount of noise, at very coarse scales interesting structures
are smoothed away.

Once again, a fundamental idea of this paper is that instead of trying to
choose a “best” scale, we use the full scale-space (i.e. all levels of resolution of
the image). We couple the scale-space with a statistical inference approach
to the problem of which features represent important underlying structure,
and which are spurious noise artifacts.
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How can the notion of “feature” in an image be made precise? This
depends on the context of the image analysis being done. In this paper
we present only a few preliminary ideas that we have found useful. An
interesting, and very large problem for future research is other choices in this
direction.

A simple and direct method of highlighting features, used by S3, comes
from studying the gradient (i.e. the “local slope”) at each pixel. Statistically
signi…cant gradients are indicated by green arrows pointing in the gradient
direction, overlaid on the scale-space gray level image. Using this device, a
“statistically signi…cant peak” is surrounded by at least a ring of signi…cant
gradients pointing towards the peak. An implementation of this visualization
is shown in Figure 3, using the gamma camera data from Figures 1 and 2.
Because di¤erent features can appear as signi…cant at di¤erent scales, i.e. at
di¤erent levels of resolution of image denoising, it is very important to look
simultaneously at several scales, i.e. slices of the scale-space. So again four
levels of smoothing are shown in Figure 3, and a denser family of smooths can
be seen in the MPEG movie version, in the …le sss1fig3.mpg at the above
web address. Viewing this movie is strongly recommended, as it allows a
much better impression of the full scale space than is possible from these 4
slices.
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h = 1 h = 2

h = 4 h = 8

Figure 3: Gradient based S3 overlayed on family of smooths in Figure 2.
Arrows show gradient at locations where it is statistically signi…cant.

The h = 1 smooth in Figure 2 still has a substantial noise component.
The individual pixel gradients of that image are very unstable, because of this
noise. Due to this instability, only a very few of them contain statistically
signi…cant information. Hence rather few green arrows appear in the h = 1
part of Figure 3. There are a few locations at rib boundaries, where the
gradient is steep enough to be seen through the noise. The three clear
bright spots, appear as signi…cant even at this very …ne scale, with nearly
complete rings of arrows pointing towards them. The unclear bright spot,
just to the right of the center is highlighted by more arrows than other rib
locations, but its statistical signi…cance is clearly not as strong. At the h = 2
level of resolution, all the ribs are now very clearly de…ned by the arrows.
The bright spots have arrows on the ridges of the ribs pointing towards them.
Again the less bright spot just to the right of the center is highlighted in the
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same way, but is less marked. At the smoothing level h = 4, the valleys
between ribs are less visually apparent, and the ridges are now strong enough
for arrows to run parallel to their crest. The bright spots are now at peaks
of these ridge arrows. The h = 8 level of resolution shows lots of signi…cant
structure, but this is not particularly useful, since the features of interest are
no longer visible at this scale.

Details and variations on the gradient version of S3 shown in Figure 3
are given in Section 3.4 As noted for example in Helman and Hesselink
(1989), Delmarcelle and Hesselink (1995) and Loser et al. (1998), matrices
of arrows (as shown in Figure 3) are not particularly e¤ective ways of visually
presenting vector …elds (i.e. …elds of directionality). In addition to being
generally di¢cult to comprehend, there is also a “raster e¤ect”, i.e. vertical
and horizontal arrows give a di¤erent impression and texture than arrows at
other angles. A standard approach to this problem is “streamlines”, which
are essentially curves indicating the gradient direction. These indicate the
structure of a surface, via their physical interpretation of the path that a
drop of water would take in ‡owing downhill. In Figure 4a, this idea is
adapted to the S3 context, by drawing the lines only over pixels, where the
gradient is signi…cant, i.e. there is a green arrow in Figure 3. These are
formally de…ned in Section 3.4.

Note that Figure 4a conveys the signi…cant slope information much more
cleanly and easily than does the h = 4 part of Figure 3. In particular,
signi…cant ridges show up as streamlines running together. The important
bright spots have such ridges on either side. The less clear bright spot, just to
the right of the center has just a small suggestion of this “running together”.
Nevertheless, this is enough to show that this bump is signi…cant underlying
structure, and not a background noise artifact.

It is interesting to view the streamline version of S3 at other scales, al-
though these are not shown here to save space. See the MPEG version
of the whole family of smooths, available at the above location in the …le
sss2fig4a.mpg.

Another S3 method of highlighting statistically signi…cant features in im-
ages is based on local curvature. Figure 4b shows an example of this, for
the same data as above. Curvature can be statistically signi…cant in several
ways, which are indicated by di¤erent colored dots overlaid on the image.
While the entire family of di¤erent scales should again be considered, only
one is shown here to save space. An MPEG version of the whole family of
smooths is available at the above location in the …le sss2fig4b.mpg.
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h = 4 h = 4

Figure 4: Streamline (a) and Curvature (b) based S3 overlayed on a
single smooth of the same subimage of the Gamma Camera Data.

Streamlines in (a) gradient direction where signi…cant. Dot colors in (b)
indicate type of statistically signi…cant curvature.

The di¤erent types of signi…cance of curvature are best understood through
the eigenvalues of the Hessian matrix. At locations where one eigenvalue is
signi…cantly negative, and the other is not signi…cantly di¤erent from 0, a
purple dot is used, many of which are on the crests of the ridges formed by
the ribs in Figure 4. When both eigenvalues are signi…cantly negative, a dark
blue dot is used, which appears only near the bright spots at the upper left.
When only one eigenvalue is signi…cantly positive, an orange dot is used, as
seen in the long valleys between the ribs. At “saddle points”, one eigenvalue
is signi…cantly positive, and the other is signi…cantly negative, and a red dot
is used. Most ridge points appear as purple, but the bright parts of interest
are highlighted as dark blue. Again S3 shows that the bright spots indicated
above are all “really there”. Even the doubtful bright spot just to the right
of the image center shows up well in this way. Details and variations on the
curvature version of S3 are given in Section 3.5.

Both the gradient and curvature versions of S3 are useful. One reason is
that some data analysts may feel they have better intuition about one notion
of “feature”, than about the other one. Another reason is that sometimes one
method shows particular features better than the other. The two methods
are combined into one visualization scheme in Section 4.2.
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3 Mathematical Development
The statistical model underlying S3 is

Yi;j = s(i; j) + ²i;j ;

where i = 1; :::; n and j = 1; :::;m index pixel locations, where s represents
the underlying signal (thought of as a smooth underlying function evaluated
at a rectangular grid), and where the ²i;j are the noise, assumed to be in-
dependent random variables. The gray level scale-space slices shown above
are simply Gaussian smooths, i.e. discrete 2-dimensional convolutions of a
spherically symmetric Gaussian density, with the data, denoted

bsh(i; j) =
nX

i0=1

mX

j0=1

Yi0;j0Kh (i¡ i0; j ¡ j0) ; (1)

or in obvious matrix notation

bsh = Kh ¤ Y

where

Kh(i; j) = Kh (i)Kh (j) ;

for i = (1 ¡ n); :::; (n¡ 1) and j = (1 ¡m); :::; (m¡ 1), where

Kh(i) =
exp (¡(i=h)2=2)Pn¡1

i0=1¡n exp (¡(i0=h)2=2)
: (2)

3.1 Boundary E¤ects
It is well known that a drawback to smoothing methods of the type (1), is
that they can su¤er severe boundary e¤ects. In this section we make clear
which of many possible boundary adjustments we are using.

A way to understand the boundary problem of (1) is to think of the data
as being “in…nitely continued by zero padding”. I.e. extended to an in…nite
matrix, with the additional entries all having the value 0. When the Yi;j
values near a boundary are far from 0, the smoothing process will average
them with 0, which can seriously distort the image.
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This problem is demonstrated in Figure 5, which shows an optical image
that re‡ects electrical activity in an animal’s brain. The upper left plot
is the raw data, and it is apparent that the noise level is quite high. The
upper right shows the h = 4 smooth of these data, bsh, using the formula
(1). Note that at the edges, the color becomes quite dark. The reason
is that zeros outside the image are averaged in. The problem gets worse
for larger bandwidths, which can be seen in the movie version of this, in
the …le sss1fig5a.mpg at the above web address. There are many ways
to address this boundary problem, but for simplicity (especially in the later
development involving derivatives) in our examples, we subtract the mean of
the Yi;j before smoothing, i.e. our estimate becomes

bsh = A (Y ) +Kh ¤ (Y ¡ A (Y )) ;

where A is the matrix operator which returns the constant matrix whose
common entries are the average of the entries of its matrix argument, i.e.
each

A (Y )i;j =
1
nm

nX

i0=1

mX

j0=1

Yi0;j0: (3)

The e¤ect of this is shown in the lower right panel of Figure 5. The clearly
important features, such as the dark areas in the upper left and lower right
corners, show up more clearly with the boundary adjustment. The movie
version of this family of smooths can be seen in the …le sss1fig5b.mpg.
Unlike the unadjusted movie, it is seen that the important bright and dark
regions remain in the image even for bandwidths up to h = 8.

There are many more sophisticated boundary adjustment methods. These
include the boundary re‡ection approach, where “mirror images” of the data
are created at each boundary, the Nadaraya-Watson approach, where one
divides by the sum of the kernel weights, and also various local polynomial
approaches. These are not pursued here, because they become quite complex
when estimating derivatives, as needed for S3.
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Raw Data Unadjusted, h = 4

Unscaled, h = 4 Adjusted, h = 4

Figure 5: Image showing elecrical activity. This illustrates boundary
e¤ects, and scaling issues.

Another important graphical device used in all other examples in this
paper is to “stretch each image to use the full gray scale”. The lower left
part of Figure 5 shows why this is important. It is the same h = 4 boundary
adjusted smooth as in the lower right, but the color scale is the same as for
the raw data in the upper left. Note the contrast is much poorer, because
much of the gray scale is unused.

These adjustments were used in all other examples in this paper. More
sophisticated boundary adjustments may be needed in some situations, and
are an interesting topic for future work.
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3.2 E¤ective Sample Size
An important component of the statistical inference part of S3 is the number
of points inside each kernel window, called the “E¤ective Sample Size”,

ESS = (Kh ¤ 1) =(Kh(0; 0));

where 1 is the n by m matrix having a one in each entry, and where the
denominator is the rescaling that assigns value one to the pixel in the center,
and appropriately downweighted values to the other pixels. When h is large,
ESS(i; j) is large, and vice versa for small h. In boundary regions, the above
boundary e¤ect works to give an appropriately small value of ESS(i; j).

One use of the E¤ective Sample Size is to highlight regions where the
data are too sparse for S3. Using the standard Binomial rule of thumb “the
normal approximation works when np ¸ 5”, regions where there are less than
5 points in each kernel window, i.e. where ESS(i; j) < 5, are highlighted
with a green circle. Such points only occur at the boundary, for bandwidths
h as small as 1. This is shown in Figure 11b below.

Following the development in Section 3 of Chaudhuri and Marron (1999),
ESS can also be used to make the inferences of S3 simultaneous across
location. The basis is the average E¤ective Sample Size

ESS =

Ã
nX

i=1

mX

j=1

ESS(i; j)

!
=(nm):

Since there are nm independent data points, the smoothing process can be
viewed as “averaging in groups of size ESS”. Thus the number of indepen-
dent averages is approximately

` =
nm¡
ESS

¢

As noted in Section 3 of Chaudhuri and Marron (1999), ESS has a strong
relationship to the “e¤ective degrees of freedom” of Hastie and Tibshirani
(1990).

3.3 Variance Estimation
Another integral part of S3 is an estimate of the noise level, i.e. of the
variance of the ²i;j. How this should be done, depends on the particular
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application. In some situations, such as MRI, this noise level is quite well
known as discussed in Godtliebsen (1991), so that value should be used. In
other cases, the variance is unknown, but it is reasonable to assume that it is
a constant value, ¾2. In still other cases, the variance may be quite di¤erent
at di¤erent locations, i.e. one should consider ¾2i;j, but it is assumed that the
local variance varies smoothly with location.

In the heteroscedastic case, ¾2i;j can be estimated by smoothing the squared
residuals. Again boundary issues are important, so it is recommended to
…rst subtract the mean of the squared residuals. To make the estimated vari-
ance unbiased, we also make the classical “ 1

n” to “ 1
n¡1” type of adjustment.

This results in

b¾2h = ESSQ ¢ fA (CS (Y ¡ bsh)) +Kh ¤ [CS (Y ¡ bsh) ¡A (CS (Y ¡ bsh))]g ;
(4)

where ESSQ is the matrix with

ESS(i; j)
ESS(i; j) ¡ 1

in entry (i; j), where ¢ denotes element by element matrix multiplication,
where CS is the matrix operator which squares all entries of its matrix ar-
gument, and where, as in (3), A is the matrix operator which returns the
constant matrix whose common entries are the average of the entries of its
matrix argument.

In the homoscedastic case, these estimates are pooled to estimate the
common ¾2. Since interior points have a more stable b¾2h(i; j), an ESS
weighted average is used,

b¾2h =
Ã
nX

i=1

mX

j=1

ESS(i; j)b¾2h(i; j)
!
=

Ã
nX

i=1

mX

j

ESS(i; j)

!
: (5)

This pooled variance estimate is used for the examples shown in this paper.

3.4 Signi…cant Gradient
The derivation of the underlying gradient hypothesis test given in this section
is parallel to that of Section 3.3 of Godtliebsen, Marron and Chaudhuri
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(2001). But full details are included here to make the underpinnings of
S3 clear.

At a given pixel location, indexed by (i; j) (which will be suppressed for
simplicity of notation), the gradient of the underlying signal s is

G(s) =
£
(s1)

2 + (s2)
2¤1=2 ;

where s1 is the partial derivative in the vertical direction (indexed by i) and
s2 is the partial derivative in the horizontal direction (indexed by j). The
corresponding estimate of the gradient is

bGh(s) =
£
(bsh;1)2 + (bsh;2)2

¤1=2
;

where the partial derivatives are estimated by

bsh;1 = Kh;1 ¤ Y ;
bsh;2 = Kh;2 ¤ Y ;

where

Kh;1(i; j) = K 0
h (i)Kh (j) ;

Kh;2(i; j) = Kh (i)K 0
h (j) ;

using the notation (2).
The gradient version of S3 ‡ags pixels as signi…cant when bGh(s) is “higher

than the noise level”, in the sense that it rejects a hypothesis of the form

H0 : G(s) = 0: (6)

The null distribution of this test is based on the bivariate Gaussian distribu-
tion

µ
bsh;1
bsh;2

¶
» N

µµ
0
0

¶
;
µ
¾21 ¾212
¾212 ¾22

¶¶
; (7)

which is exact if the noise terms ²i;j have a Gaussian distribution, or follows
by an appropriate Central Limit Theorem otherwise. Approximate values
for ¾21, ¾212 and ¾22 are derived in Section 7.1, where it is also seen that ¾212 ¼ 0.
Thus

bs2h;1
¾21

+
bs2h;2
¾22

» Â22;
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so the null hypothesis (6) is rejected for those pixels where

bs2h;1
b¾21

+
bs2h;2
b¾22
> qÂ22(®

0);

the appropriate quantile of the Â22 distribution, using the estimates b¾21 and
b¾21 as de…ned in (10) in the Appendix.

The probability ®0 is chosen to make the inference simultaneous across
pixel values. This could be done with the Bonferroni inequality, but a
better approximation is based on the “number of independent blocks” , `, as
developed in Section 3.2. To achieve the nominal level of ® (® = 0.05 is used
in most examples shown in this paper) simultaneously over ` independent
hypothesis tests, we need

® = P [not Rk; for some k = 1; :::; `] =
= 1 ¡ P [Rk; for all k = 1; :::; `] =
= 1 ¡ P [R1]` = 1 ¡ (1 ¡ ®0)` ;

where Rk is the event that the k-th hypothesis is accepted. Thus ®0 =
1 ¡ (1 ¡ ®)1=`. Since the Â22 distribution is the exp(1=2) distribution, with
c.d.f. F (x) = 1 ¡ exp(¡x=2), it follows that

qÂ22(®
0) = ¡2 log

³
1 ¡ (1 ¡ ®)1=`

´
:

For pixels where the hypothesis (6) is rejected, an arrow is drawn in the

gradient direction, i.e. using the direction vector based on
µ

bsh;1
bsh;2

¶
. Some

experimentation, in the context of 64 £ 64 pixel images printed four on a
page, with the length of the vector, suggested that this should be 1.2 times
the pixel size. For images around the size of 64 £ 64, the arrows are a little
short to provide a good indication of direction. One solution is to go to
larger images, putting one on each printed page. Another is to “combine
gradient information on 2 £ 2 blocks”. The image is partitioned into such
blocks, and all 4 hypothesis tests are run. The direction vector representing
the block is based on the component-wise average of the 4 partial derivative
vectors. The length of the arrow is scaled according to how many of the four
hypotheses are rejected. This summarization was used in the 80 £ 80 S3
analysis shown in Figure 3. Using both the single page approach, and 2£ 2
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pixel blocks, we were able to consider images up to size 256£256, which was
quite slow. For larger images, we recommend applying S3 to sub images (to
smaller regions of interest, as done in Figure 1), although it is possible to
extend the combination idea to larger blocks.

3.5 Signi…cant Curvature
The signi…cant curvature version of S3 follows a parallel development. De-
tails are given in Sections 3.3 and 5.2 of Godtliebsen, Marron and Chaudhuri
(2001). The main idea is to ‡ag pixels as signi…cant when there is “some
signi…cant curvature”, in the sense that at least one of the eigenvalues of the
Hessian matrix, ¸+ and ¸¡, “emerges from the noise level”. This can be
quanti…ed through the parameter T = max fj¸+j ; j¸¡jg, and thus is formu-
lated as the null hypothesis

H0 : T = 0: (8)

The natural statistic for the test of (8) is bT = max
n¯̄

¯b̧+

¯̄
¯ ;

¯̄
¯b̧¡

¯̄
¯
o

using the
eigenvalues of the estimated Hessian matrix.

For pixels where the hypothesis (8) is rejected, a colored dot is used,
where color codes the type of signi…cant curvature as:

color feature characterization
yellow hole b̧+; b̧¡ > bq bT
orange long valley b̧

+ > bqbT ;
¯̄
¯b̧¡

¯̄
¯ < bq bT

red saddle point b̧+ > bqbT ; b̧¡ < ¡bq bT
purple long ridge

¯̄
¯b̧+

¯̄
¯ < bq bT ; b̧¡ < ¡bqbT

dark blue peak b̧
+; b̧¡ < ¡bqbT

: (9)

These regions are easily understood by an x - y plot, where the axes are ¸+
and ¸¡. The boundaries of the regions are the vertical and horizontal lines
at §bq bT .

The same problem with small pixel size that appeared in Section 3.4
happens here also for larger images. The problem again can be addressed by
“combining curvature information on 2£2 blocks”, although the combination
is more complicated, because of the di¤erent colors involved. Details are
given in Section 5.4 of Godtliebsen, Marron and Chaudhuri (2001).
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4 Variations

4.1 Streamlines
The main idea behind the construction of the streamlines shown in Figure 4a
is to start at a random point where the gradient is signi…cant, and then take
small steps in both (uphill and downhill) gradient directions, ending when
either a region of nonsigni…cance or a peak/valley or a boundary is reached.
The greatest challenge in the implementation is the “random” selection of the
starting point. A uniform distribution is clearly inappropriate, because the
random “clumping” that occurs gives an unpleasant and distracting visual
e¤ect. This problem is an ongoing research area in computer graphics.

On the basis of some experimentation, we recommend the following for
use in S3. The algorithm is a series of steps, where each step consists of
the drawing of one streamline. The starting point for each streamline is
a pixel with signi…cant gradient chosen to make the next streamline “far”
from the others. This choice is based on how many times each pixel with
signi…cant gradient has been touched by a streamline. If there is a signi…cant
gradient pixel that has had the minimum number of touches, that is chosen.
When there is tie for the minimum number of touches, then all signi…cant
pixels are considered, and a nonuniform random choice is made. A random
choice that worked well was for each signi…cant pixel, to use a probability
proportional to 100¡nt where nt is the number of “neighborhood streamline
touches”. The neighborhood is the 3 £ 3 block centered at the given pixel,
so nt is the sum over the 9 nearest (inclusive) neighbors of the streamline
touches for the given pixel. Note that this distribution puts much heavier
weight on pixels in regions with relatively few streamline touches, which thus
gives good “spread” of streamlines.

In growing each streamline in the two gradient directions, an important
tuning parameter is the step size. After some experimentation, we found that
a factor of 0:5 times the pixel width worked well. For ending each streamline,
we use the …rst to occur among three possible conditions. Ending Condition 1
is that the next step in the streamline construction lands in a region where the
gradient is no longer signi…cant. In that case, the streamline is extended in
that direction, but only to the edge of the pixel boundary. Ending Condition
2 is that the next step in the streamline construction extends outside the
image. Here again the streamline is continued in that direction up to the
edge. Ending Condition 3 is that the streamline passes a peak or valley. It is
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important to end the streamline when this happens, or else, the construction
will continue to oscillate around the extremum, in a visually uninsightful
way. A simple check for a crossing of an extremum is the angle between the
present step and the previous one. If this angle is greater than 90¦, then
streamline construction is stopped, and that step of the streamline is not
shown. This results in streamlines not quite coming together at extrema,
which we view as preferable to slight overlaps in such regions.

For ending the process, we chose to study the average, over signi…cant
gradient pixels, of the number of streamline touches. More experimentation
resulted in a good visual impression when this average was 2, for 16 £ 16
images. For larger images, this number should be proportional to the image
size, so we recommend stopping when this average becomes 32=min (n;m) :

This version of streamlines should be viewed as only a workable …rst
attempt. There are many ways in which this construction can be …ne-
tuned, and probably major improvements are also available. For example,
the line integral convolution methods of Cabral and Leedom (1993) are very
promising. We suggest this as an interesting area for future research.

4.2 Combining Gradient and Curvature
The above visualizations for signi…cant gradient and curvature can be com-
bined into a single image as follows. At each pixel location, when the
gradient is signi…cant, draw an arrow, as in Section 3.4. If the curvature
is not signi…cant, color the arrow green, otherwise color it according to the
type of signi…cant curvature as developed in Section 3.5. If the gradient is
not signi…cant, but the curvature is, then use a colored dot.

Figure 6a shows the results of this for the Gamma Camera Data, from
Figure 2. Other S3 versions were shown in Figures 3 and 4, and this is essen-
tially a combination of those. Because of the strong features in these images,
most locations have a colored symbol. But the bright spots are somewhat
more accentuated, because of the combination of the arrow directions, and
the curvature colors. Note that the yellow dots at the bottom, just to the
left of center, clearly highlight a local minimum there. Also the long valley
running up the right side is quite visible as a series of orange dots.

A drawback to this visualization in S3 is that there is a great deal of
information present, and it takes some practice and experience to absorb it
all. We suggest that …rst time users start with just gradient arrows, or just
curvature dots.
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h = 4

Figure 6: For the Gamma Camera Data, the combined gradient and
curvature version of S3.

A movie version of Figure 6 is available at the above web address. An-
other interesting direction for future work is in combining curvature infor-
mation with streamlines.

4.3 Movies and Sliders
A weakness of the …gures shown in this paper, is that they only show S3
at one or a few scales, i.e. a few levels of smoothing. There is much more
information available about the data from studying other scales, which is
easily obtainable by watching movies, where time is indexing the scale. The
use of time as an analog for scale is also the basis of the heat di¤usion model
for smoothing, as discussed in Lindeberg (1994), and shown in Figure 3 of
Chaudhuri and Marron (2000). As noted above, MPEG movies of many
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of these …gures are web available, and we view these as an important data
analytic device.

While it is fun to watch movies, for serious data analysis, the most impor-
tant application of these MPEG movies, comes from the capability of most
MPEG players to allow the user to choose any frame for viewing. By ma-
nipulation of the slider in the MPEG viewer, the analyst controls the scale,
and can carefully study what features appear at each level of resolution.

Our current implementation of the movie version of the streamline vari-
ation of S3, is only a clumsy …rst attempt, because we have not yet invested
the e¤ort required to avoid the streamlines randomly changing from frame
to frame. This is another area for future work.

5 Simulated Examples
We have tried the various versions and variations of S3, for a number of
di¤erent simulated examples. In this section, the more important lessons
and conclusions are summarized.

The relative performance of the variance estimates from Section 3.3 was
considered by simulation. In particular, we tried S3 using the true known
variance ¾2, using the local variance estimate b¾2h(i; j) from (4), and using the
pooled variance estimate b¾2h from (5). Examples are not shown here because
they all look quite similar, and thus didn’t seem worth the space. The
very slight di¤erences were in predictable directions. The pooled estimate
b¾2h showed a very few more signi…cant pixels than the true variance ¾2, since
there is slight underestimation at the boundaries. The local estimate b¾2h(i; j)
was on average comparable to the pooled estimate b¾2h, but there was some
systematic variation, with the local version …nding slightly fewer features
in regions of higher curvature in the underlying signal s (since bias in‡ates
the estimate in such regions), but slightly more features in regions of less
curvature. The pooled estimate was used in all examples shown in this
paper.

A parameter of interest is the signi…cance level ®. This has less e¤ect
on the resulting picture than one might guess at …rst, as shown in Figure
7. The underlying signal s is a linear combination of Gaussian densities,
with a large circular peak in the upper left, two elongated peaks in the lower
right, and three smaller valleys, called “Peaks and Valleys”. An image
plot of this underlying target, together with several other images which were
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omitted here to save space, can be found in the …le sss1talk.ps at the above
web directory. The image size is 64 £ 64, the height is normalized so the
range of s is [0; 1], and Gaussian noise with standard deviation ¾ = 0:16 is
added. Figure 7a clearly shows that all of the peaks and valleys are “really
there”. In particular, each of the valleys has some yellow regions, and each
peak has some dark blue regions. Because the signi…cance level ® is much
larger, it is not surprising that Figure 7b suggests that more features are
signi…cant. But it is perhaps surprising that so few additional regions are
seen to be signi…cant. This occurred for a number of examples, for a broad
range of bandwidths, and for ® over the rather broad range of [0:001; 0:5].
This shows that S3 is rather insensitive to choice of signi…cance level a. The
level ® = 0:05 was used in all other examples shown in this paper. MPEG
versions of Figures 7a and 7b, showing the full range of scale, are available
at the above web address, in the …les sss1fig7a.mpg and sss1fig7b.mpg.

α = 0.01, h = 4 α = 0.2, h = 4

Figure 7: Gradient and Curvature version of S3, for simulated “Peaks
and Valleys” example, using (a) ® = 0 :01 (b) ® = 0 :2 .

The Peaks and Valleys signal s from Figure 7 also shows the good char-
acteristics of S3 in high noise situations, as seen in Figure 8. Here the image
size is again 64 £ 64, but now Gaussian noise with ¾ = 0:4 has been added,
which makes it quite hard to discern all of the features, see Figure 8a. The
peaks can be seen as lighter regions, although it is not obvious that they
are “really there” in the presence of such high noise. The three valleys are
even harder to …nd. In particular, they are not easily distinguished from
random dark regions, where there is no valley. Some exploration with the
slider version of S3 showed that the scale h = 6 found all of the features
that are present, as shown in Figure 8b. In particular, all three peaks have
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some dark blue regions, with more dark blue for the rounder peak. Only
the deeper valley has some yellow regions, and the other two only show up as
orange (i.e. there was signi…cance only in one curvature direction, not both).
For the valley at the upper right, this is not surprising, since its shape is long
and thin. The valley below the big peak shows no yellow, since it is not
deep enough. The large number of orange dots near the center are artifacts
of smoothing the peaks on either side by the relatively large bandwidth of
h = 6. It is also interesting to look at the full range of scales, as shown in
the MPEG version sss1fig8b.mpg at the above web address.

h = 6

Figure 8: For simulated Peaks and Valleys example, with high noise
¾ = 0 :4 , (a) Raw data, (b) Gradient and Curvature version of S3.

A simulation example showing how the streamline approach e¢ciently
conveys information is shown in Figure 9. The underlying signal s here is a
“Gaussian doughnut”, i.e. the volume of revolution of the Gaussian density
with nonzero mean, that has an o¤-centered cylinder removed. Thus the
ridge on the left is smooth, and higher than the sharp ridge on the right. An
image plot of this signal is also available in sss1talk.ps. Gaussian noise
with ¾ = 0:064 is added to a 64 £ 64 pixel image. Figure 9a shows the
h = 4 smooth, together with the gradient and curvature version of S3. Here
and in Figure 9b, the boundary adjustment discussed in Section 3.1 was not
used, since it introduced distracting valleys in the corners of the image. In
the dark regions near the corners, there are orange arrows pointing upwards
because the surface is convex in those regions. In the center of the image,
the arrows are colored yellow, since the surface is convex in both directions
here. The color purple is most prevalent in between, because the light ring
is generally a ridge. The directions of the purple arrows are interesting, since
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at the top and bottom of the ridge, they show that it goes uphill towards
the left, but not on the right and the left part of the ring. A movie version
of Figure 9a, showing the full range of scales is available at the web address
above, in the …le sss1fig9a.mpg.

h = 4 h = 4

Figure 9: For simulated Volcano example, (a) Gradient and Curvature
version of S3, (b) Streamline version of S3.

While these lessons are visible in Figure 9a, they are more accessible in
Figure 9b. The circular part of the structure is immediately visible from
the way that the streamlines run mostly in a radial direction. The slope in
the ridge is apparent from the way that the streamlines join at the top and
the bottom, but not at the left and right. Note also that the “raster e¤ect”
problem with matrices of arrows, as discussed in Section 4.1, is more visible
in Figure 9a than it was in Figure 6a, while it disappears for the streamline
version.

6 Real Data Examples
In this section, we study S3 in action with some real data images.

First we revisit the brain activity data, from Figure 5. Figure 10a shows
a streamline analysis of that data, using the scale h = 5. This shows that
the light peak in the bottom right corner, and the dark valleys (just above
and in the upper left corner) are signi…cant features. The less prominent
peak near the center is less signi…cant, but most of it is present. Figure 10b
shows an h = 5 streamline analysis of another subimage of the same data
set. Here the feature found by S3 is the light colored ridge, which is known
to be a blood vessel.
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h = 5 h = 5

Figure 10: Streamline version of S3, (a) for “hot spot” part of Brain
Activity data, (b) for “blood vessel” part of Brain Activity data.

A very di¤erent real data example is shown in Figure 11. Here the raw
image is derived from a time series of perfusion MR images, as described in
Section 4 of the rejoinder of Chu, et. al. (1998), and shown in Figure 11a.
The interesting structure is the light regions to the left of center. The gradi-
ent and curvature S3 analysis shown in Figure 11b now uses the quite small
scale of h = 1, because larger scales eliminate the features of interest. Note
that there are actually several di¤erent signi…cant peaks, so the structures
observed at this small scale are “really there”. Versions of Figure 11b, for
the full range of scales, can be seen as a movie in sss1fig11b.mpg, at the
above web address.

h = 1

Figure 11: For the MRI perfusion data, (a) Raw data, (b) Gradient and
curvature version of S3.

w The single bright pixel on the lower right side of Figure 11a, is known
to be a (non-Gaussian) sampling artifact. This is ‡agged as signi…cant by S3
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since this assumes Gaussian noise. The fact that a single pixel can generate
signi…cance in S3 is an important di¤erence between this method, and its
one dimensional precursor, SiZer (as developed in Chaudhuri and Marron
(1999)), as was shown by Kim and Marron (1999). The small circles at the
edges of Figure 11b indicate that there are less than 5 points in each kernel
window there, as discussed in Section 3.2.

Another real data example which pushes S3 to its limits is shown in
Figure 12. The raw data are from confocal microscopy, courtesy of Håvard
Rue. While the noise level is much lower than many of the above examples,
the question of which image features can be distinguished from background
noise still arises. For example, near the bottom on the left side of Figure
12a, there is perhaps a dim elliptical object, which is not easy to distinguish
from nearby gray areas, that may be just noise. The streamline S3 analysis
in Figure 12b shows that in fact this is a statistically signi…cant feature. The
scale h = 3 is quite important here (and was chosen by some trial and error).
This feature can also be seen via the gradient and curvature versions of S3.
This is not shown here to save space, but the movie version is available in
the …le sss1fig12c.mpg, at the above web address. This movie shows that
streamlines are not uniformly better than the gradient and curvature version
of S3. In particular, streamlines do a poor job of separating the largest
lightest elliptical feature near the top from its dim neighbor on the left, since
at scales where the dim neighbor is signi…cant, the lines just run over the
top. However, when curvature coloring is applied, the neighbor is more
clearly visible as a “lower step”.

h = 3

Figure 12: For the confocal data, (a) raw image, can structure on lower
left be distinguished from back ground noise? (b) Streamline S3, shows

structure on lower left is statistically signi…cant.
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We have also applied S3 to satellite images. These are not shown here
to save space, and because they do not illustrate the essential ideas as well
as those shown here.

7 Appendix: Details of formulas

7.1 Gradient
In this section estimates are derived for the variance parameters of the gra-
dient normal distribution (7). Again, the derivation is parallel to that of
Section 5.1 of Godtliebsen, Marron and Chaudhuri (2001), but full details
are included here to reveal the underpinnings of S3.

From (1), using the derivative notation from Section 3.4, and the inde-
pendence of the Yi;j,

var (bsh;1(i; j))

= cov

Ã
nX

i0=1

mX

j0=1

Yi0;j0Kh;1 (i¡ i0; j ¡ j0) ;
nX

i00=1

mX

j00=1

Yi00;j00Kh;1 (i¡ i00; j ¡ j00)
!

=
nX

i0=1

mX

j0=1

nX

i00=1

mX

j00=1

Kh;1 (i¡ i0; j ¡ j0)Kh;1 (i¡ i00; j ¡ j00) cov (Yi0;j0; Yi00;j00)

=
nX

i0=1

mX

j0=1

Kh;1 (i¡ i0; j ¡ j0)2 ¾2i;j

where in the homoscedastic case ¾2i;j = ¾2. This is the basis for the proposed
estimates

b¾21 =
¡
Kh;1 ¢Kh;1

¢
¤ b¾2; (10)

b¾22 =
¡
Kh;2 ¢Kh;2

¢
¤ b¾2;

where ¢ denotes element by element matrix multiplication as in (4), and where
b¾2 is the matrix whose entries are either the local variance estimates from
(4), or is the constant matrix, each of whose entries is either the given known
variance, or the pooled estimated variance from (5).

To check that the covariance ¾212 is negligible, …rst by a similar calculation
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to the above

cov (bsh;1(i; j); bsh;2(i; j)) =
nX

i0=1

mX

j 0=1

Kh;1 (i¡ i0; j ¡ j0)Kh;2 (i¡ i0; j ¡ j0)¾2i;j:

For notational simplicity, explicit details are given only for the homoscedastic
case ¾2i;j = ¾2. By Riemann summation (with step length 1), approximating

¾21 ¼ ¾2
ZZ
Kh;1 (x; y)

2 dxdy = ¾2
Z
K 0
h (x)

2 dx
Z
Kh (y)

2 dy;

¾212 ¼ ¾2
ZZ
Kh;1 (x; y)Kh;2 (x; y) dxdy

= ¾2
Z
K 0
h (x)Kh (x) dx

Z
K 0
h (y)Kh (y) dy = 0;

where the integral symbols are understood to mean de…nite integration over
the range (¡1;1). But using Corollary 4.5 of Aldershof, et. al. (1995),
for the Gaussian kernel,

Z
Kh (x)2 dx =

1
2¼1=2h

;
Z
K 0
h (x)Kh (x) dx = 0; (11)
Z
K 0
h (x)

2 dx =
1

4¼1=2h3
:

from which it follows that

¾21 ¼ ¾2 1
8¼h4

;

and that ¾212 ¼ 0.
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