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Abstract

An important problem in the use of density estimation for data analysis
is whether or not observed features, such as bumps are “really there”, as
opposed to being artifacts of the natural sampling variability. Here we
propose a solution to this problem, in the challenging two dimensional
case, using the graphical technique of Signi…cance in Scale Space. Color
and dynamic graphics form an important part of the visualization method.

1 Introduction
Kernel density estimation is a smoothing method which shows structure in data
that can be hard to …nd by other methods. See, for example, Scott (1992),
Wand and Jones (1995) and Bowman and Azzalini (1997) for many interesting
examples. While the method is good at …nding structure, it can also miss im-
portant structure via oversmoothing, or else …nd unimportant spurious structure
via undersmoothing.

One approach to this problem is via data based bandwidth selection, sur-
veyed in Jones, Marron and Sheather (1996). While good methods have been
successful at …nding bandwidths which result in “good estimates”, they are
tuned for something di¤erent than understanding which features are signi…cant.
Furthermore, the best methods currently available seem to be inherently one-
dimensional.
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Scale space ideas were used to motivate a much di¤erent approach, called
SiZer, to …nding signi…cant structure in Chaudhuri and Marron (1999). See Mar-
ron and Chaudhuri (1998a,b) and Kim and Marron (1999) for further examples
and discussion. Scale space is a concept from computer vision, see Lindeberg
(1994). While scale space is simply a family of Gaussian kernel smooths in-
dexed by the bandwidth, it comes with two viewpoints that are not common
in the statistical literature. The …rst view is that one should not try to focus
on a single bandwidth, because there is usually important information available
at several amounts of smoothing, i.e. at several di¤erent levels of resolution of
the data. The second is that the focus of statistical inference should be shifted
from the “true underlying function”, to “the true underlying function viewed at
the given level of resolution”, i.e. to the underlying function convolved with the
kernel. The last idea is very important, because it avoids the di¢cult problem
of handling bias. See Section 6.2 of Chaudhuri and Marron (1999) for further
discussion.

SiZer combines scale space ideas with a new type of visualization, to give a
useful tool for …nding structure in univariate data sets. The method works for
both univariate regression and univariate density estimation. However, SiZer
is inherently one dimensional for two reasons. One is the type of visualization
used. The other is that it is based on whether the derivative is increasing or
decreasing, which is not a useful concept in more than one dimension.

These problems were solved in the two dimensional setting of image analysis,
by Godtliebsen, Marron and Chaudhuri (1999), where the “Signi…cance in Scale
Space” method was developed. In this paper we do a parallel development of the
Signi…cance in Scale Space concept in the di¤erent setting of bivariate density
estimation.

The …rst challenge is to visualize the family of smooths. In one dimension,
this can be done by simply overlaying the di¤erent smooths, see Marron and
Chung (1997) for suggestions about this. In two dimensions we give the same
insight about the family of smooths, i.e. the scale space, by considering a
movie of smooths (with time indexing the log of the bandwidth). The second
challenge is the display of which features are important. This is addressed via
added visual cues which indicate statistical signi…cance, of the local gradient,
and/or of the local curvature.

As an illustrative example, we consider the Melbourne temperature data
analyzed by Hyndman, Bashtannyk and Grunwald (1996). This is a study of how
well yesterday’s maximum temperature predicts today’s maximum temperature.
Figure 1 shows the standard lagged scatterplot, of N = 3649 observations, and
a carefully chosen kernel smooth, where the height of the density estimation
surface is represented by gray levels. There is a large white blob representing
highest contours of the smooth. This blob tends to lie on the line y = x (i.e.
along the 45 degree line, but be careful to not confuse angular degrees here with
temperature in the following), and also has a thinner extension into the higher
temperatures, which is consistent with the idea that the best predictor of today’s
max is yesterday’s max. An interesting feature which was the focus of the
Analysis of Hyndman, Bashtannyk and Grunwald (1996) is the thin horizontal
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arm projecting out at a constant today’s max of around 20 degrees (Celsius), i.e.
along the line y = 20. They presented graphics which highlight this feature, and
also explained it in terms of local meteorological knowledge, which suggested
that times of high temperatures are frequently followed by a 20 degree max.

The rotationally symmetric Gaussian kernel function is used in all density
estimates in this paper. The right side of Figure 1 shows only a single bandwidth
h = 5. But it is quite useful to look at the full scale space, i.e. a broad range of
bandwidths. Such …gures are not shown in this paper to save space. However,
it is conveniently and insightfully done by viewing a movie, that can be found
in the …le ssskde1fig1b.mpg, at the WWW address:

http : ==www:unc:edu=depts=statistics=postscript=papers=marron=SSS_kde=:

These movies can be very easily played on a PC e.g. by downloading, and
then clicking on them. Gray level images are shown in most …gures in this
paper (and their accompanying movies). Most of them have the gray scale
adjusted for maximal contrast, meaning the color black (white) is used for the
minimum (maximum respectively) of the surface being represented (and this is
done frame by frame in the movies). The right side of Figure 1 (and its movie
version) is the only exception. Because of sparsity in gray scales, and the very
high density of data in the lower left, the features of interest are invisible using
the conventional full contrast gray scale. To see these features, the gray scale
is modi…ed to include only the lower 20% of the density, i.e. the color white is
used for all regions where the density is higher than 20% of its maximum.
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h = 5

Figure 1: Scatterplot (left) and h = 5 kernel density estimate
(right) for Melbourne temperature data. The x axis is yesterday’s
maximum temperature (Celsius), and the y axis is today’s maximum
temperature (Celsius).
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Signi…cance in Scale Space (S3) methodology is useful for the part of this
type of analysis where the statistician wonders if observed features, such as the
arms along the lines y = x and y = 20 on the right in Figure 1, are “really there”.
If so, they are worth a deeper search for causes, of the type that was done by
Hyndman, Bashtannyk and Grunwald (1996). But if not, such e¤ort could be
wasted. Careful development is done in Section 2, but …rst the usefulness of
S3 is demonstrated.

Figure 2 shows two versions of S3 applied to the Melbourne temperature
data, at the scale h = 5, as considered on the right in Figure 1. The left hand
plot considers an estimate of the gradient at a rectangular grid of locations.
If the gradient is signi…cantly di¤erent from 0, then an arrow is drawn in the
gradient direction. Locations with no arrow, have “more noise than signal”
(being in regions with very low data density, as seen in the scatterplot on the
left in Figure 1), and are thus not highlighted. The texture of the arrows
clearly reveals the dominant ridge along the line y = x. It also shows that
the horizontal ridge, along the line y = 20 (where today’s max temperature is
about 20) is also “statistically signi…cant”. This would justify the search for
explanations that was done by Hyndman, Bashtannyk and Grunwald (1996).
Another interesting feature is some suggestion of a vertical ridge along the line
x = 20 (where yesterday’s maximum temperatures were about 20 degrees). This
was not reported by Hyndman, Bashtannyk and Grunwald (1996), because their
investigation was conditional on y given x, versus the full bivariate analysis done
by S3. As with the raw smooths, as shown in the right of Figure 1, it is useful
to look at the full scale space, i.e. at many di¤erent smooths. Again a movie
version of this can be found at the above web site, in the …le ssskde1fig2a.mpg.

Another version of S3 replaces the notion of “signi…cant gradient”, by “sig-
ni…cant curvature”. Now second partial derivatives are considered, and sum-
marized by eigenvalues of the Hessian matrix, which give a rotation invariant
notion of curvature. Colored dots represent statistical signi…cance of the eigen-
values in various ways. Details are given in Section 2. Dark blue dots are used
where both eigenvalues are signi…cantly negative, e.g. near local maxima of the
density estimation surface, shown here as the bright white region. There are two
clusters of dark blue dots, which may represent di¤erent seasons. Light purple
is used for one signi…cantly negative eigenvalue, with the other not signi…cant,
as along a thin ridge. This coloring appears along the line y = x for higher
temperatures, as expected. It also appears along the ridge found by Hyndman,
Bashtannyk and Grunwald (1996), along the line y = 20, which is another way
of seeing that this feature of the data is “really there”, and worth careful inves-
tigation. The color red is used where one eigenvalue is signi…cantly positive,
and the other is signi…cantly negative, as at a saddle point. This appears along
the line y = x between the two purple regions, because the density estimation
surface bends upwards to get to the bright peak At these points, the negative
eigenvalue shows the downwards curve of the ridge in one direction, while the
positive eigenvalue re‡ects the general upwards curve of the ridge towards the
bright peak. There is a similar red region for the ridge along the line x = 20,
again suggesting there may be a vertical ridge. Orange dots are used where
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one eigenvalue is signi…cantly positive, and the other is not signi…cant, as in a
long valley. These appear where the density estimation surface curves up from
the horizontal. Again the full scale space is informative, and we strongly rec-
ommend viewing the movie version, in the …le ssskde1fig2b.mpg at the above
web address.

h = 5 h = 5

Figure 2: Signi…cant gradient (left) and curvature (right) versions
of Signi…cance in Scale Space for the h = 5 kernel density estimate,
for the lagged Melbourne maximum temperature data.

Figure 2 shows that the gradient and curvature versions of S3 …nd di¤erent
types of features. This has motivated the development of a hybrid version,
which combines the two visual paradigms. This approach …rst …nds signi…cant
arrows, as on the left of Figure 2. Then where curvature is also signi…cant, the
arrow is recolored with the curvature color (left green where curvature is not
signi…cant). And where curvature is signi…cant, but gradient is not, a colored
dot is used. Such an S3 plot is shown in the left part of Figure 3. This is not
easy to look at the …rst time, as there may be considerable problems with in-
formation overload. But after building some experience, we …nd this preferable
to either approach taken separately. In particular this combines into a single
plot the lessons about the features noted above. For the above reasons a movie
version is available at the above web address in the …le ssskde1fig3a.mpg.

A weakness of these versions of S3 is that they are not rotation invariant.
In particular, the arrows and dots are arranged along rectangular grid points.
This results in certain “raster e¤ects”, e.g. the ridge along the line y = x has
a di¤erent texture in the left part of Figure 2, than the ridges along the lines
y = 20 and x = 20. This problem is well understood in the area of visualization
of vector …elds in computer graphics, see Helman and Hesselink (1989) for an
access to this literature. The right side of Figure 3 shows an adaptation of the
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“streamline” idea to the context of S3. Each line starts at a randomly chosen
pixel with a signi…cant gradient (i.e. a green arrow as in the left of Figure 2).
The line is step-wise extended in both gradient directions, until the gradient is
no longer signi…cant. Intuitively this corresponds to moving in the directions
of steepest ascent and descent. Note that this visualization clearly highlights
ridges, since the streamlines …rst march up the slope of the ridge, in a direction
that is quite di¤erent from the ridge direction. Then when they get to the crest,
they turn and follow the ridge direction. The previously discussed ridges along
the lines y = x and y = 20 are clearly shown in this way. Also the suggestion
of a ridge along the line x = 20 is perhaps most marked with this version of S3.
Again it is well worth studying the movie version with more scales, in the …le
ssskde1fig3b.mpg at the above location.

h = 5 h = 5

Figure 3: Combined gradient and curvature (left) and streamline
(right) versions of Signi…cance in Scale Space for the h = 5 kernel
density estimate, for the lagged Melbourne maximum temperature
data.

Readers who have been actually viewing the movies as suggested above,
have probably noticed why it is useful to study more than one scale. This
is that the vertical auxiliary ridge, i.e. along the line x = 20, which was not
mentioned by Hyndman, Bashtannyk and Grunwald (1996), shows up as being
clearly statistically signi…cant at scales closer to h = 3:3, as shown in Figure 4.
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h = 3.3 h = 3.3

Figure 4: Combined gradient and curvature (left) and streamline
(right) versions of Signi…cance in Scale Space for the h = 3:3 kernel
density estimate, for the lagged Melbourne maximum temperature
data.

The scale, i.e. bandwidth, in Figure 4 has been carefully chosen from the full
scale space, because it now highlights the statistical signi…cance of the vertical
ridge in the data along the line x = 20. This appears in the left part as the
light purple vertical ridge. It appears in the right part as the con‡uence of
streamlines. Hence, this feature is also worth deeper investigation. L. E.
Chambers, from the Australian Bureau of Meteorology Research Centre, has
con…rmed that frequent occurrence of a maximum temperature of 20 degrees,
followed by a higher temperature can be explained as temperatures driven by
sea breezes on one day, followed by Northerly winds bringing high temperatures
the next day.

Section 2 gives the details of the development of S3 for density estimation.
Section 3 gives more applications to real data sets.

2 Development of the methods
As seen in the right panel of Figure 1, the structure in a bivariate data set
f(Xk ; Yk ) : k = 1; :::; Ng may be understood from a kernel density estimate.
This is de…ned as

bfh (x; y) = N¡1
NX

k=1

Kh (x ¡ Xk ; y ¡ Yk) ;
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where K is the kernel function, and h is the bandwidth, i.e. window width. See,
for example Scott (1992), Wand and Jones (1995) and Bowman and Azzalini
(1997), for discussion of many properties and variations of this estimator. In
this paper, K is taken to be a spherically symmetric Gaussian density, and h is
the common marginal standard deviation, for reasons given in Lindeberg (1994),
Chaudhuri and Marron (1997) and Chaudhuri and Marron (1999). Thus the
kernel has the product form

Kh (x ¡ Xk; y ¡ Yk ) = 'h (x ¡ Xk ) ¢ 'h (y ¡ Yk) ;

where 'h denotes the rescaling

'h (¢) =
1
h

'
³ ¢

h

´
:

Rapid calculation of bfh (x;y), and also its derivatives as needed for S3, can
be done by …rst binning the data to an equally spaced grid. Details of binning
are given in Section 2.1. This allows fast computation by simple convolution,
as described in Section 2.2. The distribution theory needed for the statistical
inference of S3 is described in Section 2.3.

Matlab software for both the image and density estimation version of S3 is
available at the web site:

http : ==www:unc:edu=depts=statistics=postscript=papers=marron=SSS_software=:

The whole collection of …les should be downloaded, e.g. to a single directory,
because many of them call each other. The Matlab subroutine conv2.m, in
the Signal Processing toolbox is required. The main call is to the subroutine
sss1.m. The Matlab command “» help sss1” gives information about how
to use the various versions of S3. A di¤erence between the image and density
estimation versions of S3 is that a “typically reasonable” range of bandwidths for
the “full scale space” for images is h 2 [1; 8], while h 2 [2;16] is generally more
appropriate for density estimation (since more smoothing is often required before
signi…cant features appear). These bandwidth ranges are thus the defaults in
our software.

2.1 Binning
There are several methods for binning data to an equally spaced rectangular
grid, of the form

f(xi ; yj ) : xi = Lx + i¢x ; yj = Ly + j¢y ; i = 0; :::; n; j = 0; :::; mg ;

i.e. a rectangular lattice, where the xi are equally spaced over [Lx; Lx + n¢x ]
and the yj are equally spaced over [Ly; Ly + m¢y ]. Here we describe “simple
binning” and “linear binning”. See Appendix D of Wand and Jones (1995) for
much more discussion about binning, and access to the literature.
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Simple binning, also called “nearest neighbor binning”, is best viewed as
moving each data point to the grid point that is its nearest neighbor. For an
equally spaced grid, this can be done rapidly by replacing the obvious iterated
minimization approach by a rounding approach. In particular, a generic data
point (X;Y ), in the interior of the grid, should be mapped to the bin center
indexed by i; j where the data are …rst mapped to an integer lattice, and then
appropriately rounded,

i = ceil((X ¡ Lx) =¢x);
j = ceil((Y ¡ Ly) =¢y);

where ceil is the function which rounds its argument up to the next integer.
Then the mapped points are counted to give a matrix C of bin counts, whose
i; j-th entry is

ci;j = # (data points assigned to bin i; j) :

The idea behind linear binning is to split the unit mass of each data point,
among the grid points that are its four nearest neighbors. This is done in a
way that properly re‡ects distance to each grid point. In particular, …rst …nd
the location of the nearest bin center,

i = round((X ¡ Lx) =¢x);
j = round((Y ¡ Ly )=¢y);

where round is the function which rounds each observation to the nearest inte-
ger. The unit mass is split according to the weights

±x = (X ¡ Lx) =¢x ¡ (i ¡ :5);
±y = (Y ¡ Ly )=¢y ¡ (j ¡ :5);

and then assigned as

bin mass
i; j (1 ¡ ±x) (1 ¡ ±y )

i + 1; j ±x (1 ¡ ±y)
i; j + 1 (1 ¡ ±x) ±y

i + 1; j + 1 ±x±y

Good visual insight into these weights comes from Figure D.3 of Wand and
Jones (1995).

Some account needs to be made for data which lie outside the bivariate
interval [Lx ;Lx + n¢x]£[Ly ;Ly + m¢y]. Two approaches may be appropriate,
depending on the context. One is to simply ignore points that are outside, i.e.
not count them in the binning process. The other is to move them so that they
lie at the nearest boundary point, and then proceed with binning.
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2.2 Estimation
In addition to computational speed, another advantage of binning is that then
density estimation can be done with nearly the same algorithms as for non-
parametric regression (with an “equally spaced design”). This happens via
replacement of the matrix of regression data values, with the matrix of bin
counts, denoted as C above. In particular, the density is estimated by the
matrix

efh = N¡1
³
C ¤ eKh

´
;

where ¤ denotes bivariate discrete convolution, and where eKh is a matrix of
evaluations of the kernel function Kh. This should be viewed as an approxima-
tion of bfh. Estimates of partial derivatives have a similar simple convolution
form,

D efh = N¡1
h
C ¤

³
D eKh

´i
; (1)

where D denotes various partial derivative operators, including @
@ x , @

@y , @2

@x2 ,
@ 2

@x@y and @ 2

@y2 .
This formulation allows nearly direct application of some aspects of the im-

age analysis version of S3, as developed in Godtliebsen, Marron, and Chaudhuri
(1999). A very important di¤erence is that estimation of the local variance of
the partial derivative estimates is di¤erent (because the cij are counts). The
basis for our variance estimate is the fact that bfh (x; y) is a simple average of
i.i.d. random variables. Thus a sensible estimate is the usual sample variance,

dvar
h
D bfh (x; y)

i
= dvar

"
N¡1

NX

k=1

DKh (x ¡ Xk ; y ¡ Yk)

#
= (2)

= N¡1s2 fDKh (x ¡ Xk ; y ¡ Yk) : k = 1; :::; Ng =

= N¡1

(
1

N ¡ 1

"
NX

k=1

(DKh (x ¡ Xk ;y ¡ Yk ))2 ¡ N
³
D bfh (x; y)

´2
#)

=

=
1

N ¡ 1

(
N¡1

NX

k=1

(DKh (x ¡ Xk ; y ¡ Yk))
2 ¡

³
D bfh (x; y)

´2
)

:

The argument of the square of the second term inside the braces is approximated
by D efh as at (1) above. The …rst term inside the braces needs the new binned
approximation

N¡1
½

C ¤
·³

D eKh

´2
¸¾

:

The resulting approximated version of the variance estimate (2) is then used
directly as the local variance in the formulas for the image analysis version of
S3.
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Another important di¤erence between density estimation and image analysis
is that the former often has large regions with no data, e.g the upper left and
the lower right of the scatterplot shown in Figure 1. Hence data sparsity issues
need much more attention. The approach taken is the same as in Chaudhuri
and Marron (1999) via the concept of “E¤ective Sample Size”. The idea is to
take a “kernel weighted count” of the number of points in each window. This
motivates the de…nition

ESSi;j =
PN

k=1 Kh (xi ¡ Xk; yj ¡ Yk )
Kh(0; 0)

¼ C ¤ eKh

Kh(0; 0)
:

Using the standard Binomial rule of thumb, we say that the Gaussian approx-
imation on which S3 is based is inadequate when “np < 5”. Thus in the
present case, we call the data “too sparse for inference” at the location i;j
when ESSi;j < 5. In the imaging version of S3 such points were marked with
green circles. This was visually e¤ective, because there were either no such
locations, or else there were some only in strips near the boundary, or else the
data was sparse everywhere. But this approach was not e¤ective for density es-
timation, because the much larger regions of data sparsity yielded distractingly
large regions of green circles. A better approach was to plot no symbols (i.e.
no arrows and no circles of the type in Figure 2) in regions of data sparsity, as
this gave less distraction.

2.3 Distributions and Signi…cance
The statistical inference of S3 is based on the fact that derivatives of smooths
satisfy central limit theorems, i.e. have limiting Gaussian distributions. An im-
portant issue is multiple comparisons, since there are essentially a large number
of simultaneous tests being performed. This is addressed via the “number of
independent blocks” approach developed in Section 2.4 of Godtliebsen, Marron
and Chaudhuri (1999).

The statistical underpinning of the arrows shown in the left part of Figure
2 is a hypothesis test about the statistical signi…cance of the magnitude of
the gradient. The square of the magnitude has a limiting Â2 distribution so
such testing is straightforward. See Section 2.4 of Godtliebsen, Marron and
Chaudhuri (1999) for details. Depending on the size of the desired binning
grid (we have found 64 £ 64 to be generally reasonable as a trade o¤ between
resolution and computation time), the arrows drawn by S3 may be too short
for good visual impression. To address this, we allow “pooling across pixels”
by combining them into 2 £ 2 blocks. On each block, the 4 hypothesis tests
are performed, and an arrow representing the coordinate-wise average direction,
whose length is proportional to the number of signi…cant results, is drawn.

The statistical underpinning of the dots shown in the right part of Figure 2
are based on a hypothesis test about the eigenvalues of the Hessian matrix. The
distribution theory here is more complicated, but can be expressed in terms of a
single distribution that has been tabulated by simulation. See Sections 2.5 and
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6.3 of Godtliebsen, Marron and Chaudhuri (1999) for details. Di¤erent colors
are used to represent di¤erent types of signi…cant curvature according to the
following scheme. Denote the eigenvalues of the Hessian matrix as ¸¡ · ¸+ ,
and assign colors to dots as:

Idea Color ¸¡ ¸+
hole Yellow sig. > 0 sig. > 0

long valley Orange not sig. sig. > 0
saddle point Red sig. < 0 sig. > 0
long ridge Purple sig. < 0 not sig.

peak Blue sig. < 0 sig. < 0

We have found that beginners to the S3 method …nd that combined arrows
and dots present too much information at once. While this e¤ect appears to
mitigate with experience (we personally prefer seeing the added information),
it seems important to …rst start with the simpler versions. Hence our Matlab
software uses a default of arrows only, as shown in the right of Figure 2. Other
versions are easily employed through changing parameters.

The streamline version of S3 uses signi…cant pixels as calculated for the
arrow approach (but no combining into 2 £ 2 blocks). Details are given in
Section 3.2 of Godtliebsen, Marron and Chaudhuri (1999). An unfortunate
feature of the movie version is that the streamlines are computed frame by
frame. This means that di¤erent random locations are used in di¤erent frames,
which results in substantial “jitter” in the movies. The development of a version
of S3 that computes streamlines properly through the whole scale space (i.e. the
same streamline is used at all scales for which it appears) is an interesting open
problem.

3 More Examples
Additional real data examples are presented in this section, which show addi-
tional aspects of S3.

Figure 5 shows S3 applied to the Old Faithful Geyser data, from Table B6
of Scott (1992), who references Weisberg (1985). The y coordinate is the time
of duration of one eruption of the geyser, and the x coordinate is the duration
of the previous eruption. The bright spots suggest three modes in this bivariate
distribution. The gradient & curvature version of S3, in Figure 5a, shows that
all three modes are statistically signi…cant. In particular, each mode has at least
some light purple dots on the top, and there are dark blue dots on the largest
mode (upper right). Dark blue dots also show up for the upper left mode at
some di¤erent scales, see the movie version in the …le ssskde1fig5a.mpg at the
above location. Perhaps more conclusive evidence in favor of the three modes
is the occurrence of red saddle points at the ridges connecting the modes.
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h = 8 h = 8

Figure 5: Combined gradient and curvature (left) and streamline
(right) versions of Signi…cance in Scale Space for the h = 8 kernel
density estimate, for the Old Faithful Geyser data.

The streamline version of S3 in Figure 5b, is less conclusive about the modal-
ity, since it does not clearly separate the modes from ridges. This is because
the streamlines only use gradient information, while the important locations in
Figure 5a had colored dots, indicating that the curvature, but not the gradi-
ent, was signi…cant. Of course it is well worth studying other scales. The
movie version, in the …le ssskde1fig5b.mpg at the above location, shows at
somewhat smaller bandwidths, that the upper left mode can be distinguished
by streamlines alone, but not the lower right mode. The situation where the
gradient - curvature version of S3 found “vague structure” more often than the
streamline version was fairly typical of our experience with other examples in
density estimation (but there are exceptions, as shown in Figures 3 and 4). This
contrasts with our experience for images, as reported in Godtliebsen, Marron
and Chaudhuri (1999).

It is now known that the three modes in the Geyser data correspond to two
either “long” or “short” eruptions (with little in between), and a short eruption
never follows a short eruption, and there is a physical explanation of this.

Figure 6 shows the performance of S3 on the aircraft data discussed in
Section 1.3 of Bowman and Azzalini (1997). The original data are 6 variables
re‡ecting features of aircraft, that were summarized by principal component
analysis. The x axis is the …rst principal component, which turned out to
represent those variables re‡ecting “size”. The y axis is the second principal
component, which represents “speed, adjusted for size”. The bright spot at the
lower left shows that most aircraft are neither large nor fast. There is a high
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density “arm” extending in the direction of small but fast aircraft, and also in
the direction of very large, and somewhat faster aircraft. Bowman and Azzalini
(1997) suggest that the data are trimodal (with the arms as modes), but S3 does
not quite …nd the three modes. This could well be because S3 is an “omnibus”
type of hypothesis test, which attempts to be “powerful in all directions”, which
entails some trade-o¤ in power in speci…c directions. Methods which might
provide stronger evidence of the trimodality would be based on formal “mode
tests”, although the literature for that mostly focuses on the one dimensional
case.

h = 7 h = 7

Figure 6: Combined gradient and curvature versions of Signi…cance
in Scale Space for the h = 7 kernel density estimate, at the level of
signi…cance ® = 0:01 (left) and ® = 0:2 (right), for the aircraft data.

The scale in both parts of Figure 6 is h = 7, chosen by studying the movie
version (available in the …les ssskde1fig6a.mpg and ssskde1fig6b.mpg at the
above location) and trying to maximize the impression of trimodality. Figure
6a shows S3 using the low signi…cance level of ® = 0:01, while Figure 6b shows
the much higher level of ® = 0:20. As expected, the less stringent hypothesis
tests underlying Figure 6b result in more features being ‡agged as signi…cant,
although still not enough to conclude trimodality.

An aspect of Figure 6 that is not representative of our experience with
varying ® is that there are quite a few more signi…cant features in Figure 6b. For
other data sets, there tends to be less di¤erence, even for such a large range of ®
values. The reason this happens here, is because for many locations, the features
just happen to be near the boundary between signi…cant and insigni…cant.
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