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1 Introduction
An intuitive, visual approach to …nding clusters in low dimensions is through
the study of smoothed histograms, e.g. kernel density estimates. Scale-
space provides a useful framework for understanding data smoothing. See
Lindeberg (1994) and ter Haar Romeny (2001) for excellent overview of the
very large scale-space literature.
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The scale-space approach has allowed practical resolution of several long-
standing problems in the statistical smoothing literature. See Chaudhuri
and Marron (1999, 2000) for detailed discussion. For example, the classical
problem of choice of the level of smoothing (bandwidth) can be viewed in an
entirely new way using scale-space ideas. In particular, instead of choosing
one level of smoothing, one should consider the full range of smooths (the
whole scale-space). This corresponds to viewing the data at a number of
di¤erent levels of resolution, each of which may contain useful information.

For clustering purposes, this simultaneous viewing of several di¤erent
levels of smoothing incurs an added cost of interpretation. In particular,
it becomes more challenging to decide which of the many clusters that are
found at di¤erent levels represent important underlying structure, and which
are insigni…cant sampling artifacts. An overview of some solutions to this
problem is given in Section 2. These solutions involve scale-space views of
the data (i.e. a family of smooths), which are enhanced by visual devices
that re‡ect the statistical signi…cance of the clusters that are present.

In keeping with the visual nature of these new methods, only one and two
dimensional cases are presented. Certainly higher dimensional clustering is
of keen interest, but visual implementation in higher dimensions represents
a very signi…cant hurdle. For now, dimension reduction methods need to be
applied …rst, before these approaches can be used in higher dimensions.

In Section 3 we propose a new enhancement of the two dimensional ver-
sion, based on the natural idea of contour lines.

Finally there is some discussion of interesting future research directions
in Section 4.

2 Overview
There are a number of di¤erent approaches to assessing the statistical signi…-
cance of clusters in one and two dimensions. This problem was called “bump
hunting” by Good and Gaskins (1980). A wide range of approaches to this
topic may be found in the papers Silverman (1981), Hartigan and Hartigan
(1985), Donoho (1988), Izenman and Sommer (1988), Müller and Sawitzki
(1991), Hartigan and Mohanty (1992), Minnotte and Scott (1993), Fisher et
al (1994), Cheng and Hall (1997), Minnotte (1997) and Fisher and Marron
(2001). Many of these approaches are only concerned with the number of
signi…cant clusters.

2



In this paper we discuss more visual approaches to signi…cant clusters,
that make more explicit use of scale-space ideas. An advantage of the visual
approach is that one also learns where clusters are located. Viewing through
scale-space reveals the levels of resolution at which each cluster appears.

Statistical inference for clustering in one dimension was developed by
Chaudhuri and Marron (1999). Their method is called SiZer, for “SIgnif-
icance of ZERo crossings”. SiZer …nds clusters through the study of the
slope of the smooth histogram. A cluster is signi…cant when the slope of the
curve is signi…cantly positive on the left, and signi…cantly negative on the
right. In particular, when there is a statistically signi…cant zero crossing of
the derivative. An example is given in Figure 1.
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Figure 1: SiZer analysis of the ‡ow cytometry data. Original square root
bin counts in the top panel. Family of smooths in the middle panel. SiZer

analysis, showing two signi…cant clusters in the bottom panel.

Flow cytometry studies the presence and percentage of ‡uorescence marked
antibodies on cells. The ‡uorescence of individual cells is measured, and the
results are binned, into bins called “channels”. The top of Figure 1 shows
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a bar graph of square root bincounts, from a single experiment. The bar
graph suggests that there are two clusters in the data. Are the clusters
statistically signi…cant? Or could they be mere artifacts of the sampling
process? The issue is not 100% clear, because the peaks contain some bars
that dip below the taller bars located in the valley between. SiZer aims to
address this issue.

The heights of the bars in the top panel of Figure 1 are shown as dots in
the middle panel, which also shows the scale-space as the family of curves.
If the raw ‡uorescence levels were available, the scale-space curves would
be kernel density estimates. However SiZer also works in terms of counts,
using local linear smoothing to obtain the scale-space, which is done here.
The inference done by SiZer is shown in the map in the bottom panel of
Figure 1. The horizontal (x) axis of this map is the same as the x-axis of
both of the panels above, i.e. “location”. The vertical (y) axis of the map is
“scale”, i.e. bandwidth of the smooth, on the log scale. Thus each row of the
SiZer map corresponds to one of the curves in the middle panel. The SiZer
statistical inference is based on a con…dence interval, for slope (derivative)
of the smooth at each location, and at each scale. When the con…dence
interval is completely above 0, the smooth is signi…cantly increasing, and
the color blue (shown here as a dark shade of gray to minimize the need for
color printing) is used. When the con…dence interval is entirely below 0,
the smooth signi…cantly decreases, and this location in the map is colored
red (shown here as a light shade of gray). In the indeterminate case, when
the con…dence interval contains 0, the intermediate color of purple (shown
here as a the lighter intermediate shade of gray) is used. The fourth SiZer
color is gray (the darker intermediate shade here), which is used at locations
and scales where there is not enough data in each kernel window for reliable
statistical inference. This SiZer map shows that both clusters are statistically
signi…cant. In particular the left hand cluster around channel 110 is seen to
be ”really there” because of the large blue (dark) patch to the left, and the
smaller red (light) patch on the right (‡agging signi…cant increase, followed
by decrease). The same holds for the larger cluster around channel 160.

The SiZer visualization is very useful in one dimension, but does not ex-
tend easily to the two dimensional case. One reason is that an overlay view
of the family of curves (the scale-space) is no longer possible. A more seri-
ous reason is that the SiZer foundation of “signi…cantly sloping up or down”
no longer makes sense in two dimensions. Proposals for some completely
new visualizations of statistically signi…cant features, called S3 for “signi…-
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cance in scale-space”, were made in the case of two dimensional images by
Godtliebsen et al (1999). Some closely related proposals for two dimensional
smooth histograms, and thus for …nding signi…cant clusters, were made by
Godtliebsen et al (2001). The problem of lack of availability of overlays
in two dimensions is addressed by the construction of movies where time is
the scale (i.e. level of smoothing). The problem of statistical inference is
addressed by adding visual enhancements to the movie. Some of these are
illustrated in Figure 2.

Figure 2 provides a visual clustering of the Earthquake data from Section
4.2 in Wand and Jones (1995), shown as a scatterplot in the top panel. These
data record the locations of epicenters, in longitude (the x coordinate, with
122 subtracted for numerical convenience) and latitude (the y coordinate,
with 46 subtracted) of earthquakes in the Mount St. Helens area of the
United States.

The lower left hand panel of Figure 2 demonstrates the streamline version
of S3. The green “streamlines” are the visual cues indicating statistically sig-
ni…cant structure. These are based on the gradient of the gray level surface,
which is the direction of maximal change. These green curves essentially
show the direction that a drop of water would follow as it moves down the
surface. However, lines are only drawn in regions where the gradient is
statistically signi…cantly di¤erent from 0, i.e. where there is a signi…cant
slope.

The gray level plot, together with the streamlines suggest three clusters,
as does the scatterplot on the top. The streamlines show that there is strong
evidence only for the right cluster being statistically signi…cant, as indicated
by the ring of streamlines pointing towards the peak, that are completely
around this cluster. The middle cluster has streamlines pointing towards
the peak most of the way around, which are a suggestion of a cluster, but
not conclusive statistical evidence. The left cluster is much less convincing
(in the sense of statistical signi…cance), because there are few streamlines
pointing towards its peak. Of course it must be kept in mind that statistical
signi…cance is necessarily one sided. Streamlines give strong evidence of
presence of a feature, but lack of streamlines only indicates the evidence is
not strong enough to be sure, and does not prove absence of a cluster.

To save space, only one scale, i.e. bandwidth is shown in Figure 2. This
is h = 4, which was chosen for presentation purposes, after viewing the full
scale-space. For data analytic purposes, this viewing of the full scale-space is
essential, and we suggest doing this as a movie. We recommend viewing the
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movie version of the left side of Figure 2, in the …le SSScntr1Fig2a.avi in the
web directory http://www.unc.edu/depts/statistics/postscript/papers/marron/SSS_cntr/.
The movie format is AVI, which is easily viewable on most computers without
the need of downloading an extra viewer.

Figure 2a: The raw Earthquake data (shown as a scatterplot). An S3
analysis appears in Figure 2b (which has been separated, since color pictures

have been combined).

Figure 2b: S3analysis of the Earthquake data (shown as a scatterplot in
Figure 2a), using gradient streamlines (left panel) and curvature dots (right

panel). The right cluster is clearly statistically signi…cant, the middle
cluster is not quite conclusive, the left cluster is less well de…ned.

The lower right panel of Figure 2 shows an alternate version of S3. This
time the statistical inference is based on curvature. Curvature is conveniently
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described in two dimensions using the eigenvalues of the Hessian matrix. At a
grid of image locations, statistical signi…cance of these eigenvalues is assessed.
Colored dots, overlaid on top of the gray level image, provide quick visual
access to this information. The following table indicates colors that are used
for the various curvature cases, depending on the largest eigenvalue b̧+, the
smallest eigenvalue b̧¡, and the appropriate quantile bq bT . See Godtliebsen
et al (1999) for details of the derivation, including the choice of bqbT. The
latter requires substantial e¤ort, even when the data are exactly Gaussian,
because the joint distribution of the eigenvalues b̧+ and b̧¡ is non-standard.
Appropriate rescaling and tabulation of this distribution using simulation
methods is done in Godtliebsen et al (1999).

color feature characterization
yellow hole b̧

+; b̧¡ > bqbT
orange long valley b̧

+ > bq bT ;
¯̄
¯b̧¡

¯̄
¯ < bq bT

red saddle point b̧
+ > bq bT ; b̧¡ < ¡bq bT

purple long ridge
¯̄
¯b̧+

¯̄
¯ < bq bT ; b̧¡ < ¡bq bT

dark blue peak b̧+; b̧¡ < ¡bq bT

:

Most of these colors appear in the right side of Figure 2. Again only a single
scale has been selected, h = 5:19, after viewing the full scale-space. This
scale is larger than that chosen for the streamline analysis in the left panel,
because curvature estimates feel noise more strongly than slope estimates, so
more smoothing is needed for similar inference. Viewing the full scale-space
is again recommended, using the movie …le SSScntr1Fig2b.avi in the above
web directory. As in the above analysis, the right cluster in the data comes
through very strongly. In particular there are a number of dark blue dots.
The center cluster is less clear, showing all purple dots, which only show
existence of a ridge, not a cluster. Some suggestion that the middle cluster
is separate is provided by the red saddle point dots between the clusters, but
this is not conclusive, because these also appear on a ridge that then slopes
upwards. The potential third cluster on the side shows up less strongly
here than in the streamline analysis, because at this coarser scale (needed
for adequate noise reduction) it is nearly smoothed away. The orange dots
highlight locations where “clusters emerge from regions of no data”.

A disappointing aspect of the analysis of Figure 2 is that only the right
hand cluster is statistically signi…cant in this sense. A possible approach to
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investigating the signi…cance of the other clusters is to adjust the statistical
inference, via the level of signi…cance, ®. In Figure 2, and all other examples
in this paper, the standard ® = 0:05 is used. Results for the less stringent
case of ® = 0:2 are viewable in the movie …les SSScntr1Fig2c.avi and
SSScntr1Fig2d.avi. These are not shown here to save space. The most
interesting result was that at the scale h = 6:17, at least one dark blue dot
appeared at the top of each of the three clusters, providing evidence that all
3 clusters were signi…cant (at this lower level).

All smoothing methods used in the paper are kernel based methods. For
more background information on these, see for example Scott (1992), Wand
and Jones (1995) and Fan and Gijbels (1996). The Gaussian kernel function
is used everywhere in this paper, as this has the most appealing scale-space
properties, see Lindeberg (1994).

An important technical component of these methods is correct simultane-
ous statistical inference. In particular, many inferences are performed here
at one time. In such situations, naive implementations of hypothesis tests
will result in a number of false positives. Care has been taken to avoid this
problem in the construction of SiZer and S3. See Chaudhuri and Marron
(1999) and Godtliebsen et al (1999, 2001) for details.

3 New Method
The streamline approach to S3, shown in the left panel of Figure 2, high-
lights “statistically signi…cant gradient directions” in two dimensions quite
well. However, gradients alone are not a particularly intuitive vehicle for
understanding “surface shape”. This is shown in the left hand panel of Fig-
ure 3, which is based on a simulated data set, composed of a surface with
additive i.i.d. Gaussian noise. The underlying surface is an “asymmetric
volcano”, that is formed from the volume of revolution of a Gaussian prob-
ability density, with mean between the center and edge, with an o¤-center
(towards the right) cylinder lowered to height 0 near the middle. One frame
of the scale-space is shown, and it is recommended that others be viewed in
the movie SSScntr1Fig3a.avi from the above web directory.

After careful contemplation, using visual clues from the underlying gray-
level image, it becomes clear that the central streamlines start in the low
black region near the center and climb the inner cone in a radial fashion.
When they reach the circular crest, they then follow the gradient of the
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crest towards the left. Finally at the top of the crest (on the left side)
the gradient is no longer signi…cant, and the streamlines stop. Streamlines
coming from the outer edge climb the outer cone in a radial way, and join
the inner streamlines at the crest.

Figure 3: S3 analysis of the assymetric volcano simulated example.
Streamline only (left panel) and streamline and contour (right panel)

versions. This shows that the addition of contours enhances the
interpretability.

While the streamlines describe the statistically signi…cant aspects of the
shape of the surface, substantial thought is required for complete under-
standing. The goal of this section is to provide additional visual clues,
which assist this process, in particular by the addition of contour lines to the
S3 graphics. The result of this is shown in the right hand panel of Figure
3. Note that the contour lines, shown in purple, are orthogonal to the green
gradient lines. Statistical signi…cance of the feature being illustrated (e.g. a
cluster), is shown by only drawing contours in regions where the gradient is
statistically signi…cant. This notion of statistical signi…cance is particularly
well suited to …nding clusters. In particular a signi…cant cluster will be a
hill of high density (i.e. light gray), that is highlighted by a purple circle
surrounding it. The interpretation of the circle is that everywhere around,
the slope is signi…cant, which is a useful notion of “cluster”.

The contour lines in the right part of Figure 3 provide quicker intuitive
understanding of the shape of the surface. The central circular contours
clearly show the inner cone of the volcano. The banana shaped higher level
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contours immediately reveal the shape of the light colored curved ridge on
the left side.

These new signi…cant contours are constructed using the same statistical
inference methods as for the streamline version of S3. In particular, each
pixel location is ‡agged as having either a signi…cant, or an insigni…cant
gradient. Streamlines are drawn by using a step-wise procedure, following
gradient directions, with some random starting values. This methodology
could be used for the contours, by simply stepping orthogonally to the gra-
dient. However, contours are not easy to draw in this way, because they
generally form closed curves, which are not simple to construct using step-
wise procedures involving accumulating numerical errors. But contours have
the advantage that many ready made functions to draw them are available.
We use the generic contour subroutine in Matlab, with deletion of parts of
the contours in regions where the gradient is not signi…cant.

Figure 4 shows some S3 analyses of the Melbourne temperature data.
The raw data here is a lag one scatterplot of daily maximal temperatures
in Melbourne Australia, over a 10 year span. The x axis shows yesterday’s
maximum, and the y axis shows today’s maximum. A simple weather pre-
diction idea is to use yesterday’s maximum to predict today’s maximum. If
that were exactly correct, all the data points would lie on the diagonal 45±
line. Using a conditional density estimation analysis, Hyndman et al (1996)
showed visually that there is a “horizontal ridge of high density”, i.e. a ridge
where today’s maximum is 20 degrees (Celsius). Veri…cation of the statisti-
cal signi…cance of this ridge (and evidence for a related vertical ridge) were
provided by Godtliebsen et al (2001), using an analysis similar to that shown
in the left panel of Figure 4. Both the horizontal and vertical ridges have a
physical explanation, discussed in Godtliebsen et al (2001).

The left hand panel shows the streamline only analysis at the scale h =
4:36. Again all scales should be viewed, and are available in the movie …le
SSScntr1Fig4a.avi at that above web address. The horizontal ridge is
visible as a coalescence of streamlines. The diagonal ridge does not show
up well because near 30 degrees the gradient along the ridge is no longer
signi…cant. The vertical ridge does not appear at this scale, but does show
up for smaller scales.
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Figure 4: Shows streamline and contour analysis is more e¤ective than
streamlines only, for the Melbourne temperature data.

The right panel of Figure 4 shows that adding contours again enhances the
analysis, for the same scale (see also the full scale-space movie in SSScntr1Fig4b.avi),
h = 4:36. Curves in the contours provide a stronger visual impression of
“ridges” than is available from the streamlines. Even a hint at the verti-
cal ridge is available in this way. The contour plot provides much more
immediate visual insight about the diagonal and horizontal ridges.

An issue in the construction of contours is their spacing. Most of the
examples in this paper use equal height spacing. However, this is sometimes
inappropriate. This is demonstrated in a simulated example in Figure 5.
Here the underlying surface is two elongated peaks, as can be seen from the
gray level plot. The left panel of Figure 5 shows equal height spacing of the
contours. Here the scale is h = 4, but other scales revealed similar e¤ects, see
the movie version in the …le SSScntr1Fig5a.avi in the same web directory.
Note that in the large ‡at areas on the upper left and the lower right, the
contours are somewhat de…cient, in the sense that no contour appears for
long stretches of the signi…cant green streamlines.
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Figure 5: Simulated example showing the di¤erence between equal height
and modi…ed quantile contour spacing.

A simple solution to this problem is to add more contours. However,
this is not satisfactory, because the contours then become too dense in other
regions. A better solution is to use di¤erent types of contour spacing. An
alternate approach to contour spacings is explained using the gray level his-
togram shown in Figure 6. The gray bars in Figure 6 appearing in the top
half of the plot show how equally spaced height contours relate to the popu-
lation of gray levels in the image. Note that a quite large number of pixels
near the left edge of the population (nearly black) are represented by only a
few contour lines. This explains the poor contour performance in the dark
areas of the left panel of Figure 5.
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Figure 6: Gray level histogram for image shown in Figure 5. This
contrasts equal height contour spacing (represented as gray bars in the top

half ), with modi…ed quantile spacing (represented as gray bars in the bottom
half).

Figure 6 suggests that this problem can be solved by taking the con-
tour heights according to quantiles of the gray level population, as indicated
by the gray bars in the lower half. An initial experiment (see the movie
SSScntr1Fig5c.avi in the same web directory) with equally spaced quan-
tiles suggested it was worth including more contours at each end. Some
experimentation lead us to suggest including 0.1 and 0.4 times the quantile
spacing at the lower end, and making a symmetrical inclusion at the up-
per end. This is done for the gray bars on the bottom of Figure 6, and
for the contours in the right panel of Figure 5, see the movie version in
SSScntr1Fig5b.avi in the same web directory. The equally spaced quan-
tile version is quite similar the right panel of Figure 5, except that the two
contours nearest the peak are missing. An advantage of quantile spacing is
an additional interpretation. When 9 equally spaced quantiles are used, the
region between two consecutive contours encloses ten percent of the pixels.

The Melbourne Temperature data, shown in Figure 4 is a case where equal
spacing does not work, so the modi…ed quantile spacing was used there. In
general, we suggest choosing between height spacing and modi…ed quantile
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spacing, by starting with height spacing, and switching when that is unsat-
isfactory (which is visually apparent).

In Figure 7, the Earthquake data from Figure 2 are analyzed by adding
contours to the streamline analysis from the left side of Figure 2 (at the
same scale h = 4). The full scale-space movie is available in the …le
SSScntr1Fig7a.avi in the same web directory.

Figure 7: Contour and streamline analysis of the Earthquake data.

The main lessons about statistical signi…cance of clusters is the same as
above, but again the contours make the information more easily accessible.

4 Future Directions
While the contour version of S3 provide an improvement to earlier versions,
there are many other possible improvements, and interesting directions for
further research.

One such area is to combine the information present in the dot version
of S3 with signi…cant contours. A straightforward approach is to color the
contours using the same dot colors. This could provide more immediate in-
terpretation of some of the contours, as well as incorporating additional useful
information. Figure 8 shows the curvature information available for the Mel-
bourne Temperature data. Note that this provides a di¤erent compelling
evidence for the statistical signi…cance of the ridges. The full scale-space
movie version is available in SSScntr1Fig8.avi in the same web directory.
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Figure 8: Curvature dots analysis of the Melbourne Temperature data.

A more complicated, but perhaps more useful extension is to visually
represent the statistical signi…cance of the curvature of the contour lines
themselves. For example with the contour analysis of the Melbourne Tem-
perature data shown in Figure 4, it appears that a number of the contours
are not convex. Is this concavity statistically signi…cant?

Perhaps the most challenging extension of S3 is from two dimensions to
three. As with the extension from SiZer (dimension 1) to S3 (dimension 2),
the main challenge is the visualization. For example, the scale-space is easily
presented as an overlay in one dimension, and a movie in two dimensions,
but it is less clear how to present a three dimensional scale-space. After this
problem is solved, then careful attention needs to be given to which quan-
tities (e.g. gradient and curvature) should have their statistical signi…cance
displayed, and how they should be visualized.
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