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Abstract

High Dimension Low Sample Size statistical analysis is becoming in-
creasingly important in a wide range of applied contexts. In such situ-
ations, it is seen that the popular Support Vector Machine suffers from
“data piling” at the margin, which can diminish generalizability. This
leads naturally to the development of Distance Weighted Discrimination,
which is based on Second Order Cone Programming, a modern computa-
tionally intensive optimization method.

1 Introduction
An area of emerging importance in statistics is the analysis of High Dimension
Low Sample Size (HDLSS) data. This area can be viewed as a subset of mul-
tivariate analysis, where the dimension d of the data vectors is larger (often
much larger) than the sample size n (the number of data vectors available).
There is a strong need for HDLSS methods in the areas of genetic micro-array
analysis (usually a very few cases, where many gene expression levels have been
measured, see for example Perou et al. (1999)), chemometrics (typically a small
population of high dimensional spectra, see for example Marron, Wendelberger
and Kober (2004)) and medical image analysis (a small population of 3-d shapes
represented by vectors of many parameters, see for example Yushkevich, Pizer,
Joshi and Marron (2001) and Koch, Marron and Chen (2004)), and text classi-
fication (here there are typically many more cases, and also far more features,
see for example Zhang and Oles (2001) and Peng and McCallum (2004)). Clas-
sical multivariate analysis is useless (i.e. fails completely to give a meaningful
analysis) in HDLSS contexts, because the first step in the traditional approach
is to sphere the data, by multiplying by the root inverse of the covariance ma-
trix, which does not exist (because the covariance is not of full rank). Thus
HDLSS settings are a large fertile ground for the re-invention of almost all types
of statistical inference.
In this paper, the focus is on two class discrimination, with class labels +1

and −1. A clever and powerful discrimination method is the Support Vector
Machine (SVM), proposed by Vapnik (1982, 1995). The SVM is introduced
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graphically in Figure 1 below. See Burges (1998) for an easily accessible intro-
duction. It is useful to understand the SVM from a number of other additional
viewpoints as well, see Cristianini and Shawe-Taylor (2000), Hastie, Tibshirani
and Friedman (2001) and Schölkopf and Smola (2002). See Howse, Hush and
Scovel (2002) for a recent overview of related mathematical results, including
performance bounds. The first contribution of the present paper is a novel
view of the performance of the SVM, in HDLSS settings, via projecting the
data onto the normal vector of the separating hyperplane. This view reveals
substantial data piling, which means that many of these projections (onto the
normal direction vector) are the same, i. e. the projection coefficients are iden-
tical. For the SVM, data piling is common in HDLSS contexts because the
support vectors (which tend to be very numerous in higher dimensions) all pile
up at the boundaries of the margin when projected in this direction (as seen
below in Figure 3). The extreme example of data piling appears in Figure 2.
The discussion around Figures 2 and 3 below suggests that data piling may

adversely affect the generalization performance (how well new data from the
same distributions can be discriminated) of the SVM in at least some HDLSS sit-
uations. The major contribution of this paper is a new discrimination method,
called “Distance Weighted Discrimination” (DWD), which avoids the data pil-
ing problem, and is seen in the simulations in Section 3 to give the anticipated
improved generalizability. Like the SVM, the computation of the DWD is
based on computationally intensive optimization, but while the SVM uses well-
known quadratic programming algorithms, the DWD uses recently developed
interior-point methods for so-called Second-Order Cone Programming (SOCP)
problems, see Alizadeh and Goldfarb (2003), discussed in detail in Section 2.2.
The improvement available in HDLSS settings from the DWD comes from solv-
ing an optimization problem which yields improved data piling properties, as
shown in Figure 4 below.
The two-class discrimination problem begins with two sets (classes) of d-

dimensional training data vectors. A toy example, with d = 2 for easy viewing
of the data vectors via a scatterplot, is given in Figure 1. The first class, called
“Class +1,” has n+ = 15 data vectors shown as red plus signs, and the second
class, called “Class −1,” has n− = 15 data vectors shown as blue circles. The
goal of discrimination is to find a rule for assigning the labels of +1 or −1 to
new data vectors, depending on whether the vectors are “more like Class +1” or
are “more like Class −1.” In this paper, it is assumed that the Class +1 vectors
are independent and identically distributed random vectors from an unknown
multivariate distribution (and similarly, but from a different distribution, for
the Class −1 vectors).
For simplicity only linear discrimination methods are considered here. Note

that “linear” is not meant in the common statistical sense of “linear function of
the training data” (in fact most methods considered here are quite nonlinear as
functions of the training data). Instead this means that the discrimination rule
is a simple linear function of the new (testing) data vector to be classified. In
particular, there is a direction vector w, and a threshold β, so that the new data
vector x is assigned to the Class +1 exactly when x0w+β ≥ 0. This corresponds
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to separation of the d-dimensional data space into two regions by a hyperplane,
with normal vector w, whose position is determined by β. In Figure 1, one
such normal vector w is shown as the thick purple line, and the corresponding
separating hyperplane (in this case having dimension d = 2 − 1 = 1) is shown
as the thick green dashed line. Extensions to the nonlinear case are discussed
at various points below.

Class +1

Class -1

Normal Vector

Separating Hyperplane

Residuals, r
i

Support Vectors

Figure 1: Toy Example illustrating the Support Vector Machine. Class +1
data shown as red plus signs, and Class −1 data shown as blue circles. The
separating hyperplane is shown as the thick dashed line, with the corresponding
normal vector shown as the thick solid line. The residuals, ri, are the thin

lines, and the support vectors are highlighted with black boxes.

The separating hyperplane shown in Figure 1 does an intuitively appealing
job of separating the two data types. This is the SVM hyperplane, and the
remaining graphics illustrate how it was constructed. The key idea behind the
SVM is to find w and β to keep the data in the same class all on the same side
of, and also as far as possible from, the separating hyperplane (in an appropriate
sense). This is quantified using a maximin optimization formulation, focussing
on only the data points that are closest to the separating hyperplane, called
support vectors, highlighted in Figure 1 with black boxes. The hyperplanes
parallel to the separating hyperplane that intersect the support vectors are
shown as thin black dashed lines. The distance between these hyperplanes is
called the margin. The SVM finds the separating hyperplane that maximizes
the margin, with the solution for these data being shown in Figure 1. An
alternative view is that we find two closest points, one in the convex hull of
the Class +1 points and one in the convex hull of the Class −1 points. The
SVM separating hyperplane will then be the perpendicular bisector of the line
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segment joining two such points, i.e., this line segment is parallel to the normal
vector shown in Figure 1. Note that the convex combinations defining these
closest points only involve the support vectors of each class.
Figure 1 also shows how the SVM can be subject to data piling, in the

direction of the normal vector. As defined above, given a direction vector, data
piling occurs when many data points have identical projections in that direction,
i.e. the data pile up on top of each other. A simple extreme example of data
piling direction vector is one that is orthogonal to the subspace generated by
the data (such directions are always available in HDLSS settings), because the
projections are identically 0. Another complete data piling direction is any
normal vector to the hyperplane generated by the data, where data all project
on a single value that is typically non-zero. Of more relevance for our purposes
is a somewhat different type of data piling, that is relevant to discrimination,
where (for some given direction vectors) at least some of the data points for each
class pile at two different common points, one for each class. Figure 1 shows that
the SVM has this potential, in the case where there are many support vectors
(i.e., points lying on the boundary planes shown as dashed black lines in Figure
1). In particular, when the data are projected onto the normal vector, because
the boundary planes are orthogonal, the support vectors will all be projected
to one of two common points whose distance to the Separating Plane is the
margin. While the number of support vectors is small in the 2 dimensional
example shown in Figure 1, it can be quite large in HDLSS settings, as shown
in Figure 3 below.
The toy example in Figure 1 is different from the HDLSS focus of this paper

because the sample sizes n+ and n− are larger than the dimension d = 2. Some
perhaps surprising effects occur in HDLSS contexts. This point is illustrated
in Figure 2. The data in Figure 2 have dimension d = 39, with n+ = 20
data vectors from Class +1 represented as red plus signs, and n− = 20 data
vectors from Class −1 represented as blue circles. The data were drawn from
2 distributions that are nearly standard normal (i.e., Gaussian with zero mean
vector and identity covariance), except that the mean in the first dimension
only is shifted to +2.2 (-2.2 resp.) for Class +1 (−1 resp.). The data are not
simple to visualize because of the high dimension, but some important lower
dimensional projections are shown in the various panels of Figure 2.
The thick, dashed purple line in Figure 2 shows the first dimension. Because

the true difference in the Gaussian means lies only in this direction, this is
the normal vector of the theoretical Bayes risk optimal separating hyperplane.
Discrimination methods whose normal vector lies close to this direction should
have good generalization properties, i.e., new data will be discriminated as well
as possible. The thick purple line is the maximal data piling direction. It is
seen in Ahn and Marron (2004) that for general HDLSS discrimination problems,
there are a number of direction vectors which have the property that both classes
pile completely onto just two points, one for each class (i.e., all projections on
that data vector are identical to one value for each class). Out of all of these,
there is a unique direction, which maximizes the separation of the two piling
points, called the maximal data piling direction. This direction is computed
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as w = bΣ−1(x+ − x−), where x+ (x− resp.) is the mean vector of Class +1
(−1 resp.), and bΣ represents the covariance matrix of the full data set, with the
superscript −1 indicating the generalized inverse. The generalized inverse is
needed in HDLSS situations, because the covariance matrix is not of full rank.
The direction w is nearly that of Fisher Linear Discrimination, except that it
uses the full data covariance matrix, instead of the within class version. As
noted by a referee, the true Fisher Linear Discrimination direction (based on
the pooled within class covariance matrix) does not give data piling, see Figure
15.3 in Schölkopf and Smola (2002). In Ahn and Marron (2004) it is seen
that the two methods are identical in non-HDLSS situations. However Bickel
and Levina (2004) have demonstrated very poor HDLSS properties of the true
FLD, which is consistent with the corresponding version of Figure 2 showing
an even worse angle with the optimal vector (not shown here to save space).
The first dimension, together with the vector w, determine a two-dimensional
subspace, and the top panel of Figure 2 shows the projection of the data onto
that two-dimensional plane. Another way to think of the top panel is that the
full d = 39-dimensional space is rotated around the axis determined by the first
dimension, until the two dimensional plane contains the vector w. Note that
the data within each class appear to be collinear.
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Figure 2: Toy Example, illustrating potential for “data piling” problem in
HDLSS settings. Dashed purple line is the Bayes optimal direction, solid is
the Maximal Data Piling direction. Top panel is two-dimensional projection
(x-axis is in the optimal direction, plane is determined by the MDP vector),
bottom panels are one-dimensional projections (x-axis shows projections, y-axis

is density).

Other useful views of the data include one-dimensional projections, shown
in the bottom panels. The bottom left is the projection onto the true optimal
discrimination direction, shown as the dashed line in the top panel. The bottom
right shows the projection onto the direction w, which is the solid line in the
top panel. In both cases, the data are represented as a “jitter plot,” with the
horizontal coordinate representing the projection, and with a random vertical
coordinate used for visual separation of the points. Also included in the bottom
panel are kernel density estimates, which give another indication of the structure
of these univariate populations. As expected, the left panel reveals two Gaussian
populations, with respective means ±2.2. The bottom right panel shows that
indeed the data essentially line up in a direction orthogonal to the solid purple
line, resulting in data piling.
Data piling is usually not a useful property for a discrimination rule, because

the corresponding direction vector is driven only by very particular aspects
of the realization of the training data at hand. In HDLSS settings with a
reasonable amount of noise, a different realization of the data will have its own
quite different quirks, which are typically expected to bear no relation to these,
and thus will result in a completely different maximal data piling direction. In
this sense, the maximal data piling direction will typically not be generalizable,

6



because it is driven by noise artifacts of just the data at hand. Another way of
understanding this comes from study of the solid direction vector w in the top
panel. The poor generalization properties are shown by the fact that it is not
far from orthogonal to the optimal direction vector shown as the dashed line.
Projection of a new data vector onto w cannot be expected to provide effective
discrimination, because of the arbitrariness of the direction w.
It is of interest to view how Figure 2 changes as the dimension changes.

This can be done by viewing the movie in the file DWD1figMDP.avi available
in the web directory Marron (2004). This shows the same view for selected
dimensions d = 1, ..., 1000. For small d, the solid line is not far from the dashed
line, but data piling begins as d approaches n+ + n− − 1 = 39. Past that
threshold the points pile up perfectly, and then the two piles slowly separate,
since for higher d, there are more “degrees of freedom of data piling.” The
worst performance is for d ≈ n+ + n−, and performance is seen to actually
improve as d grows beyond that level. This is consistent with the HDLSS
asymptotics of Hall, Marron, and Neeman (2004), where it is seen that under
standard assumptions multivariate data tend (in the limit as d → ∞, with n+
and n− fixed) to have a rigid underlying geometric structure, while all of the
randomness appears in random rotations of that structure. Those asymptotics
are also used for a mathematical statistical analysis of SVM and DWD in that
paper. It is also shown that in this HDLSS limit, all discrimination rules tend to
give similar performance to the first order (this is observed in our simulations in
Section 3), so that the maximal data piling discrimination rule gives reasonable
performance in this limit.
The data piling properties of the SVM are studied in Figure 3. Both the

data, and also the graphical representation, are the same as in Figure 2. The
only difference is that now the direction w is determined by the SVM. The
top panel shows that the direction vector w (the solid line) is already much
closer to the optimal direction (the dashed line) than for Figure 1. This reflects
the reasonable generalizability properties of the SVM in HDLSS settings. The
SVM is far superior to the maximal data piling modification shown in Figure 2,
because the normal vector, shown as the thick purple line, is much closer to the
Bayes optimal direction (recall these were nearly orthogonal in Figure 2), shown
as the dashed purple line. However the bottom right panel suggests that there
is room for improvement. In particular, there is a clear piling up of data at the
margin. As in Figure 2 above, this shows that the SVM is affected by spurious
properties of this particular realization of the training data. This is inevitable
in HDLSS situations, because in higher dimensions there will be more support
vectors (i.e., data points right on the margin). Again, a richer visualization of
this phenomenon can be seen in the movie version in the file DWD1figSVM.avi
in Marron (2004). The improved generalizability of the SVM is seen over a
wide range of dimensions.
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Figure 3: Same toy example illustrating partial “data piling” present in
HDLSS situations, for discrimination using the Support Vector Machine.

Format is same as Figure 2.

Room for improvement of the generalizability of the SVM, in HDLSS situ-
ations, comes from allowing more of the data points (beyond just those on the
margin) to have a direct impact on the direction vector w. In Section 2.2 we
propose the new Distance Weighted Discrimination method. Like the SVM,
this is the solution of an optimization problem. However, the new optimiza-
tion replaces the maximin “margin based” criterion of the SVM, by a different
function of the distances, ri, from the data to the separating hyperplane, shown
as thin purple lines in Figure 1. A simple way of allowing these distances to
influence the direction w is to optimize the sum of the inverse distances. This
gives high significance to those points that are close to the hyperplane, with lit-
tle impact from points that are farther away. Additional insight comes from an
alternative (dual) view. The normal to the separating hyperplane is again the
difference between a convex combination of the Class +1 points and a convex
combination of the Class −1 points, but now the combinations are chosen to
minimize the distance between the points divided by the square of the sum of
the square roots of the weights used in the convex combination. In this way,
all points receive a positive weight.
The difference between the two solutions can be seen in a very small example.

Suppose there is just one Class +1 point, (3; 0), and four Class −1 points,
(−3; 3), (−3; 1), (−3;−1), and (−3;−3). (We use Matlab-style notation, so that
(a; b) denotes the vector with vectors or scalars a and b concatenated into a single
column vector, etc.) The SVM maximizes the margin and gives (1, 0)x = 0 as
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the separating hyperplane. The DWD has four points on the left “pushing” on
the hyperplane and only one on the right (we are using the mechanical analogy
explained more in Section 2), and the result is that the separating hyperplane
is translated to (1, 0)x− 1 = 0. Note that the “class boundary” is at the mid-
point value of 0 for the SVM, while it is at the more appropriately weighted
value of 1 for the DWD. The SVM class boundary would be more appealing if
the unequal sample numbers are properly taken into account, but adding three
Class +1 points around (100; 0) equalizes the class sizes and leaves the result
almost unchanged (because the new points are so far from the hyperplane).
Let us now return to the example shown in Figures 2 and 3. The DWD

version of the normal vector is shown as the solid line in Figure 4. Note that
this is much closer to the Bayes optimal direction (shown as the dashed line),
than for either the maximal data piling direction shown in Figure 2, or the SVM
shown in Figure 3. The lower right hand plot shows no “data piling,” which is
the result of each data point playing a role in finding this direction in the data.
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Figure 4: Same Toy Example, illustrating no “data piling” for Distance
Weighted Discrimination. Format is same as Figure 2.

Once again, the corresponding view in a wide array of dimensions is available
in the movie version in file DWD1figDWD.avi in the web directory Marron
(2004). This shows that the DWD gives excellent performance in this example
over a wide array of dimensions.
An additional advantage of the approximately Gaussian sub-population shapes

shown in the lower right of Figure 4, compared to the data piled, approximately
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triangular, shapes shown in the lower right of Figure 3, is that DWD then pro-
vides immediate and natural application to micro-array bias adjustment (where
the two sub-populations are moved along this vector until they overlap to remove
data biases), as done in Benito et al. (2004).
Note that all of these examples show “separable data,” where there exists

a hyperplane which completely separates the data. This is typical in HDLSS
settings, but is not true for general data sets, see e.g. Cover (1965). Both SVM
and DWD approach this issue (and also potential gains in generalizability) via
an extended optimization problem, which incorporates penalties for “violation”
(i.e., a data point being on the wrong side of the separating hyperplane). Some
price is incurred by this approach, because it requires selection of a tuning
parameter.
Precise formulations of the optimization methods that drive SVM and DWD

are given in Section 2. This includes discussion of computational complexity
issues in Section 2.3, and tuning parameter choice in Section 2.4. Simulation
results, showing the desirable generalization properties of DWD, and contrasting
it with some important competitors, are given in Section 3. The main lesson
is that every discrimination rule has some setting where it is best. The main
strength of DWD is that its performance is close to that of the SVM when
it is superior, and also close to that of the simple mean difference method in
settings where it is best. Similar overall performance of DWD is also shown on
micro-array and breast cancer data sets in Section 4. Some open problems and
future directions are discussed in Section 5, and Section 6 is an appendix giving
further details on the optimization problems.
A side issue is that from a purely algorithmic viewpoint, one might wonder:

why do HDLSS settings require unusual treatment? For example, even when
d À n, the data still lie in an n dimensional subspace, so why not simply
work in that subspace? The first answer is that new data are expected to
fall outside of this subspace, so that restriction to this subspace will not allow
proper consideration of generalizability, which is an intrinsically d-dimensional
notion. The second answer, is that in the very important HDLSS context of
micro-arrays for gene expression, there is typically interest in some subsets of
specific genes. This focus on subsets is much harder to do when only a few
linear combinations (i.e. any basis of the subspace generated by the data) of
the genes are considered.

2 Formulation of Optimization Problems
This section gives details of the optimization problems underlying the origi-
nal Support Vector Machine, and the Distance Weighted Discrimination ideas
proposed here.
Let us first set the notation to be used. The training data consists of n

d-vectors xi together with corresponding class indicators yi ∈ {+1,−1}. We let
X denote the d×n matrix whose columns are the xi’s, and y the n-vector of the
yi’s. The two classes of Section 1 are both contained inX, and are distinguished
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using y. Thus, the quantities n+ and n− from Section 1 can be written as:
n+ =

Pn
i=1 1{yi=+1} and n+ =

Pn
i=1 1{yi=−1}, and we have n = n+ + n−. It

is convenient to use Y for the n × n diagonal matrix with the components of
y on its diagonal. Then, if we choose w ∈ <d as the normal vector (the thick
solid purple line in Figure 1) for our hyperplane (the thick dashed green line in
Figure 1) and β ∈ < to determine its position, the residual of the ith data point
(shown as a thin solid purple line in Figure 1) is

r̄i = yi(x
0
iw + β),

or in matrix-vector notation

r̄ = Y (X 0w + βe) = Y X 0w + βy,

where e ∈ <n denotes the vector of ones. We would like to choose w and β so
that all r̄i are positive and “reasonably large.” Of course, the r̄i’s can be made
as large as we wish by scaling w and β, so w is scaled to have unit norm so that
the residuals measure the signed distances of the points from the hyperplane.
However, it may not be possible to separate the positive and negative data

points linearly, so we allow a vector ξ ∈ <n+ of errors, to be suitably penalized,
and define the perturbed residuals to be

r = Y X 0w + βy + ξ. (1)

When the data vector xi lies on the proper side of the separating hyperplane
and the penalization is not too small, ξi = 0, and thus r̄i = ri. Hence the
notation in Figure 1 is consistent (i.e., there is no need to replace the label ri
by r̄i).
The SVM chooses w and β to maximize the minimum ri in some sense

(details are given in Section 2.1), while our Distance Weighted Discrimination
approach instead minimizes the sum of reciprocals of the ri’s augmented by a
penalty term (as described in Section 2.2). Both methods involve a tuning pa-
rameter that controls the penalization of ξ, whose choice is discussed in Section
2.4.
While the discussion here is mostly on “linear discrimination methods” (i.e.,

those that attempt to separate the classes with a hyperplane), it is important
to note that this actually entails a much larger class of discriminators, through
“polynomial embedding” and “kernel embedding” ideas. This idea goes back
at least to Aizerman, Braverman and Rozoner (1964) and involves either en-
hancing (or perhaps replacing) the data values with additional functions of the
data. Such functions could involve powers of the data, in the case of polynomial
embedding, or radial or sigmoidal kernel functions of the data. An important
point is that most methods that are sensible for the simple linear problem de-
scribed here are also viable in polynomial or kernel embedded contexts as well,
including not only the SVM and DWD, but also perhaps more naive methods
such as Fisher Linear Discrimination.
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2.1 Support Vector Machine Optimization

For general references, see Cristianini and Shawe-Taylor (2000), Hastie, Tibshi-
rani and Friedman (2001) and Schölkopf and Smola (2002).
Suppose first that the data are strictly linearly separable and that no per-

turbations are used. Then maximizing the minimum residual can be achieved
by introducing a new variable δ and maximizing δ subject to r̄ ≥ δe. As noted
above, r̄ scales with w and β, so instead of restricting the norm of w to 1 and
maximizing δ (which can be made positive), we can instead restrict δ to 1 and
minimize the norm of w, or equivalently half the norm of w squared, to get a
convex quadratic function. Now we allow nonnegative perturbations ξ, and
add a penalty on the 1-norm of ξ to the objective function of this minimization
problem. The result is the (soft-margin) SVM problem

(PSVM ) min
w,β,ξ

(1/2)w0w + Ce0ξ, Y X 0w + βy + ξ ≥ e, ξ ≥ 0.

where C = CSVM > 0 is a penalty parameter.
This convex quadratic programming problem has a dual, which turns out to

be

(DSVM ) max
α

−(1/2)α0Y X 0XY α+ e0α, y0α = 0, 0 ≤ α ≤ Ce,

and both problems have optimal solutions. Under suitable conditions (which
hold here), the two problems have equal optimal values, and solving one allows
you to find the optimal solution to the other.
Section 6.1 in the appendix describes the necessary and sufficient optimality

conditions for these problems, how the dual problem can be viewed as mini-
mizing the distance between points in the convex hulls of the Class +1 points
and of the Class −1 points, and how the SVM can be extended to the nonlin-
ear case using a kernel function (Burges (1998), Section 4, or Cristianini and
Shawe-Taylor (2000), Chapter 3).
From the optimality conditions we can see that, if all xi’s are scaled by a

factor γ, then the optimal w is scaled by γ−1 and the optimal α by γ−2. It
follows that the penalty parameter C should also be scaled by γ−2. Similarly,
if each training point is replicated p times, then w remains the same while α is
scaled by p−1. Hence a reasonable value for C is some large constant divided by
n times a typical distance between xi’s squared. The choice of C is discussed
further in Section 2.4.

2.2 Distance Weighted Discrimination Optimization

We now describe how the optimization problem for our new approach is defined.
We choose as our new criterion that the sum of the reciprocals of the residuals,
perturbed by a penalized vector ξ, be minimized: thus we have

min
r,w,β,ξ

X
i

(1/ri) +Ce
0ξ, r = Y X 0w+ βy + ξ, (1/2)w0w ≤ 1/2, r ≥ 0, ξ ≥ 0,
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where again C = CDWD > 0 is a penalty parameter. (We have relaxed the
condition that the norm of w be equal to 1 to a requirement that it be at most 1.
This makes the problem convex, and if the data are strictly linearly separable,
the optimal solution will have the norm equal to 1.)
In Section 6.2 in the appendix, we show how, using additional variables

and constraints, this problem can be reformulated as a second-order cone pro-
gramming (SOCP) problem. This is a problem with a linear objective, linear
constraints, and the requirement that various subvectors of the decision vector
must lie in second-order cones of the form

Sm+1 := {(ζ;u) ∈ <m+1 : ζ ≥ kuk}.

For m = 0, 1, and 2, this cone is the nonnegative real line, a (rotated) quadrant,
and the right cone with axis (1; 0; 0) respectively. After some manipulations,
we arrive at

minψ,w,β,ξ,ρ,σ,τ Ce0ξ + e0ρ + e0σ
Y X 0w + βy + ξ − ρ + σ = 0,

ψ = 1,
(PDWD) τ = e,

(ψ;w) ∈ Sd+1, ξ ≥ 0, (ρi;σi; τ i) ∈ S3, i = 1, 2, . . . , n.
SOCP problems have nice duals, and again after some algebra, we obtain a

simplified form of the dual as

(DDWD) max
α

−kXY αk+ 2e0
√
α, y0α = 0, 0 ≤ α ≤ Ce.

(Here
√
α denotes the vector whose components are the square roots of those of

α.) Compare with (DSVM ) above, which is identical except for having objective
function −(1/2)kXY αk2 + e0α. Again, both problems have optimal solutions.
Section 6.2 in the appendix describes the necessary and sufficient optimality

conditions for these problems, how the dual problem can be viewed as minimiz-
ing the distance between points in the convex hulls of the Class +1 points and
of the Class −1 points, but now divided by the square of the sum of the square
roots of the convex weights, and how the DWD can again be extended to the
nonlinear case using a kernel function.
Problem (PDWD) has 2n + 1 equations and 3n + d + 2 variables, and so

solving it can be expensive in the large-scale HDLSS case. This is discussed
further in the next subsection. The appendix also shows how a preprocessing
step can be performed to reduce d to n.
From the optimality conditions, or from the interpretation of C in the appen-

dix, we can see that, if all xi’s are scaled by a factor γ, the penalty parameter C
should be scaled by γ−2, while if each training point is replicated p times, then
C remains the same. Hence a reasonable value for C is some large constant
divided by a typical distance between xi’s squared.
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2.3 Computational Complexity

Problems (PSVM ) and (DSVM ) are standard convex quadratic programming
problems, for which many efficient algorithms exist. Primal-dual interior-point
methods can be used, for example, which guarantee to obtain ²-optimal so-
lutions to both problems starting with suitable initial points in O(

√
n ln(1/²))

iterations, where each iteration requires the solution of a square linear system of
dimension n; in practice, these methods obtain a solution to within machine pre-
cision within 10 — 50 iterations; see, for example, Wright (1997). We can view
each iteration as a Newton-like step to solve barrier problems associated with
the primal and dual problems, or alternatively to solve perturbed versions of the
optimality conditions for these problems. However, there are also other meth-
ods, such as active-set methods and iterative gradient-based methods, which
lack such guarantees but typically solve such problems very efficiently, particu-
larly when applied to (DSVM ) when the number of positive αi’s may be small.
See, e.g., Cristianini and Shawe-Taylor (2000), Chapter 7.
For the SOCP problems (PDWD) and (PDWD), there are again efficient

primal-dual interior-point methods (see, e.g., Tütüncü, Toh, and Todd (2003)),
but active-set methods are still under development and untested. Thus in
the large-scale case, the computational cost seems rather greater than in the
SVM case. Once again, a small number of iterations is required (theoretically
O(
√
n ln(1/²)), but usually much fewer), but each requires the formation of

an n × n linear system at a cost of O(n2max{n, d}) operations, and then the
solution of the system at a cost of O(n3) operations. Again, each iteration
can be viewed as a Newton-like step for related barrier problems or perturbed
optimality conditions. In the HDLSS case, with dÀ n, by using the dimension-
reduction procedure described in Section 6.2 in the appendix, we can do an
initial preprocessing of the data at a cost of O(n2d) operations, and then each
iteration requires O(n3) operations. Note that, because each αi is positive in
the optimal solution, techniques like chunking and decomposition (see Chapter
7 in Cristianini and Shawe-Taylor (2000)) are not useful.

2.4 Choice of tuning parameter

A simple recommendation for the choice of the tuning parameter C is made
here. It is important to note that this recommendation is intended for use in
HDLSS settings, and even in that case there may be benefits to careful tuning
of C. For non-HDLSS situations, or if careful tuning is desired, we recommend
the cross-validation type ideas of Wahba, Lin, Lee and Zhang (2001) and Lin,
Wahba, Zhang, and Lee (2002). We believe this is important because in non-
HDLSS situations, it may be too much to hope that the data are separable, so
one will be compelled to deal with violators (points on the wrong side of the
separating hyperplane).
For both SVM and DWD, the above simple considerations suggest that C

should scale with the inverse square of the distance between training points, and
in the SVM case, inversely with the number of training points. This will result
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in a choice that is essentially “scale invariant,” i.e., if the data are all multiplied
by a constant, or replicated a fixed number of times, the discrimination rule will
stay the same.
As a notion of typical distance, we suggest the median of the pairwise Euclid-

ean distances between classes,

dt = median {kxi − xi0k : yi = +1, yi0 = −1} .

Other notions of typical distance are possible as well.
Then we recommend using “a large constant” divided by the typical distance

squared, possibly divided by the number of data points in the SVM case. In
most examples in this paper, we use C = 100/d2t , for DWD and we use Gunn’s
recommendation of C = 1000 for SVM. We view such simple use of defaults
as important, because this is how most users will actually implement these
methods. However, more careful tuning is also an important issue, so we have
employed cross-validated tuning in the real data example of Section 4.1, and
have studied a range of tuning parameters in Section 4.2. More careful choice
of C for DWD, in HDLSS situations, will be explored in an upcoming paper.

3 Simulations
In this section, simulation methods are used to compare the performance of
DWD with the SVM. Also of interest is to compare both of these methods with
the very simple “Mean Difference” (MD) method, defined in Section 3.1, and
with the Regularized Logistic Regression method of le Cessie and van Houwelin-
gen (1992), defined in Section 3.2.
These methods have been chosen because they are all do discrimination

by finding a single separating hyperplane. Beyond the scope of our study is
comparison with other methods, including those based on Nearest Neighbors
and Neural Nets, and other approaches such as CART and MARS, see Duda,
Hart and Stork (2000) for summarization of these.

3.1 The Mean Difference Discrimination Rule

The MD, also called the nearest centroid method (see for example Chapter 1
of Schölkopf and Smola (2002)) is a simple precursor to the shrunken nearest
centroid method of Tibshirani et al (2002). It is based on the class sample
mean vectors:

x+ =
1

n+

nX
i=1

xi1{yi=+1},

x− =
1

n−

nX
i=1

xi1{yi=−1},

and a new data vector is assigned to Class +1 (−1 resp.), when it is closer to
x+ (x− resp.). This discrimination method can also be viewed as attempting
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to find a separating hyperplane (as done by the SVM and DWD) between the
two classes. This is the hyperplane with normal vector x+ − x−, which bisects
the line segment between the class means. Note that this compares nicely with
the interpretations of the dual problems (DSVM ) and (DDWD), where again the
normal vector is the difference between two convex combinations of the Class
+1 and Class −1 points. The MD is the maximum likelihood estimate of the
(theoretical) Bayes Risk optimal rule for discrimination if the two class distrib-
utions are spherical Gaussian distributions (e.g. both have identity covariance
matrices), and in a very limited class of other situations.
Fisher Linear Discrimination can be motivated by adjusting this idea to the

case where the class covariances are the same, but of more complicated type.
In classical multivariate settings (i.e., n À d), FLD is always preferable to
MD, because even when MD is optimal, FLD will be quite close, and there
are situations (e.g. when the covariance structure is far from spherical) where
the FLD is greatly improved. However, this picture changes completely in
HDLSS settings. The reason is that FLD requires an estimate of the covariance
matrix, based on a completely inadequate amount of data. This is the root
of the “data piling” problem illustrated in Figure 2. In HDLSS situations the
stability of MD gives it far better (even though it may be far from optimal)
generalization properties than FLD. Bickel and Levina (2004) have pointed out
that an important method that lies between FLD and MD (by taking scaling
into account along individual coordinate axes) is commonly called “the naive
Bayes method” in the machine learning literature.
MD is taken as the “classical statistical representative” in this simulation

study. Its performance for the toy example considered in Section 1, can be seen
in the movie DWD1figMD.avi, which is available in the web directory Marron
(2004).

3.2 Regularized Logistic Regression

Classical logistic regression (for an overview, see Hastie, Tibshirani and Fried-
man (2001)) is a popular linear classification method and can be improved by
adding a penalty term, controlled by a regularization parameter (le Cessie and
van Houwelingen (1992)). In HDLSS cases, this regularization must be done to
avoid ill-conditioning problems and to ensure better generalizability. It is called
Regularized Logistic Regression (RLR) or penalized Logistic Regression. See
Schimek (2003) for a recent application to gene expression analysis.
To simplify the formulation, it is convenient to change the possible values of

yi from {−1, 1} as done elsewhere in this paper, to {0, 1}. If we define p(x) to
be the probability of y = 1 given x, then the Bernoulli likelihood of {y1, ..., yn}
given p(x1), ..., p (xn) is

L =
nY
i=1

£
p(xi)

yi(1− p(xi))1−yi
¤
.
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Using the logit link g(x) = log p(x)
1−p(x) , the negative log-likelihood is

l := − logL =
nX
i=1

h
−yig(xi) + log(1 + eg(xi))

i
.

Linear RLR finds the separating hyperplane g(x) = x0w+β which minimizes

nX
i=1

h
−yig(xi) + log(1 + eg(xi))

i
+ C

dX
j=1

w2j ,

where wj is the jth element of the vector w.
The first term is the negative log-likelihood and the second term is an L2

penalty, which works in a fashion similar to ridge regression, where C is the
regularization parameter.
Some experimentation with the choice of C suggested it did not have a large

impact for the examples that we considered. In our simulation study, we used
the SVM choice of C = 1000. We checked that the results of our simulation
study (shown below) did not change over several values of C ranging from 0.01
to 10, 000. In Section 4.1 careful choice of C via cross-validation is considered,
and explicit consideration of a range of choices is done in Section 4.2.
The RLR optimization problem can be solved by a Newton-Raphson iter-

ative algorithm. In this paper, we used the “lrm” function in the S library
“Design.” Details about the program can be found at:
http://lib.stat.cmu.edu/S/Harrell/help/Design/html/00Index.html

3.3 Simulation Results

In the simulation study presented here, for each example, training data sets
of size n+ = n− = 25 and testing data sets of size 200, of dimensions d =
10, 40, 100, 400, 1600 were generated. The dimensions are intended to cover a
wide array of HDLSS settings (from not HDLSS to extremely HDLSS). Each
experiment was replicated 100 times. The graphics summarize the mean (over
the 100 replications) of the proportion (out of the 200 members of each test
data set) of incorrect classifications. To give an impression of the Monte Carlo
variation, simple 95% confidence intervals for the mean value are also included
as error bars.
The first distribution, studied in Figure 5, is essentially that of the examples

shown in Figures 2-4. Both class distributions have unit covariance matrix, and
the means are 0, except in the first coordinate direction, where the means are
+2.2 (−2.2 resp.) for Class +1 (−1 resp.). Thus the (theoretical) Bayes Rule
for this discrimination problem is to separate the classes with the hyperplane
normal to the first coordinate axis. If it is known that one should look in the
direction of the first coordinate axis, then the two classes are easy to separate,
as shown in the bottom left panels of Figures 2-4. However, in high dimensions,
it can be quite challenging to find that direction.
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Figure 5: Summary of simulation results for spherical Gaussian
distributions. As expected, MD is the best, but not significantly better than

DWD.

The red curve in Figure 5 shows the generalizability performance of MD
for this example. The classification error goes from about 2% for d = 10, to
about 22% for d = 1600. For this example, the MD direction is the maximum
likelihood estimate (based on the difference of the sample means) of the Bayes
Risk optimal direction (based on the difference of the underlying population
means), so the other methods are expected to have a worse error rate. RLR gives
very similar performance, indeed being slightly better at n = 100, although the
confidence intervals suggest the difference is not statistically significant. Note
that the SVM, represented by the blue curve, has substantially worse error (the
confidence intervals are generally far from overlapping), due to the data piling
effect illustrated in Figure 3. However the purple curve, representing DWD, is
much closer to optimal (the confidence intervals overlap). This demonstrates
the gains that are available from DWD, relative to SVM, by explicitly using all
of the data in choosing the separating hyperplane in HDLSS situations.
While the MD is the maximum likelihood estimate of the Bayes Risk optimal

for spherical Gaussian distributions, it can be far from optimal in other cases.
An example of this type, called the outlier mixture distribution, is a mixture
distribution where 80% of the data are from the distribution studied in Figure
5, and the remaining 20% are Gaussian with mean +100 (−100 resp.) in the
first coordinate, +500 (−500 resp.) in the second coordinate, and 0 in the other
coordinates. Excellent discrimination for this distribution is again provided
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by the hyperplane whose normal vector is the first coordinate axis direction,
because that separates the first 80% of the data well, and the remaining 20%
are far away from the hyperplane (and on the correct side). Since the new 20%
of the data will never be support vectors, SVM is expected to be similar to that
in Figure 5. However, the new 20% of the data will create grave difficulties
for the MD, because outlying observations have a strong effect on the sample
mean, which will skew the normal vector towards the outliers, resulting in a
poorly performing hyperplane. This effect is shown in Figure 6.
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Figure 6: Simulation comparison, for the outlier mixture distribution. SVM
is the best method, but not significantly better than DWD.

Note that in Figure 6, the SVM is best (as expected), because the outlying
data are never near the margin. The MD has very poor error rate (recall that
50% error is expected from the classification rule which ignores the data, and
instead uses a coin toss!), because the sample means are dramatically impacted
by the 20% outliers in the data. RLR is similarly strongly affected by the
outliers, while it is less sensitive than MD, it is clearly not as robust as SVM or
DWD. DWD nearly shares the good properties of the SVM because the outliers
receive a very small weight. While the DWD error rate is consistently above
that for the SVM, lack of statistical significance of the difference is suggested
by the overlapping error bars.
Figure 7 shows an example where the DWD is actually the best of these

four methods. Here the data are from the wobble distribution, which is again
a mixture, where again 80% of the distribution are from the shifted spherical
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Gaussian as in Figure 5, and the remaining 20% are chosen so that the first
coordinate is replaced by +0.1 (-0.1 resp.), and just one randomly chosen coor-
dinate is replaced by +100 (-100, resp.), for an observation from Class +1 (−1,
resp.). That is, a few pairs of observations are chosen to violate the ideal mar-
gin, in ways that push directly on the support vectors. Once again outliers are
introduced, but this time, instead of being well away from the natural margin
(as in the data that underlie the summary shown in Figure 6), they appear in
ways that directly impact it.
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Figure 7: Simulation comparison, for the wobble distribution. This is a case
where DWD gives superior performance to MD and SVM.

As in Figure 6, the few outliers have a serious and drastic effect on MD and
RLR, giving them far inferior generalization performance. This time the per-
formance of RLR is actually generally worse than MD. Note that the confidence
intervals for MD are much wider, suggesting much less consistent behavior than
for the other methods. Because the outliers directly impact the margin, SVM
is somewhat inferior to DWD, whose “weighted influence of all observations”
allows better adaptation (here the difference is generally statistically significant,
in the sense that 3 of the 5 pairs of confidence intervals don’t overlap).
Figure 8 compares performance of these methods for the nested spheres data.

This example is intended to study the relative performance of these methods for
highly non-Gaussian distributions, as opposed to the relatively minor departure
from Gaussianity that drove the above examples. This time, the important
method of “polynomial embedding,” based on the ideas of Aizerman, Braver-
man and Rozoner (1964), is considered. Here the first d/2 dimensions are
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chosen so that Class −1 data are standard Gaussian, and Class +1 data are∙
1+2.2

√
2/d

1−2.2
√
2/d

¸1/2
times Standard Gaussian. This scale factor is chosen to make

the “amount of separation” comparable to that in Figure 5, except that in-
stead of “separation of the means,” it is “separation in a radial direction.” In
particular the first d/2 coordinates of the data are nested Gaussian spheres.
This part of the data represent the perhaps canonical example of data that are
very hard to separate by hyperplanes (a simplifying assumption of this paper).
Polynomial embedding provides a simple, yet elegant, solution to the problem
of transforming the data so that separating hyperplanes become useful. In the
present case, this is done by taking the remaining d/2 entries of each data vector
to be the squares of the first d/2. This provides a path to very powerful dis-
crimination, because linear combinations of the entries includes the sum of the
squares of the first d/2 coordinates, which has excellent discriminatory power.
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Figure 8: Simulation comparison, for the nested spheres distribution. This
case shows a fair overall summary, because each method is best for some d,

and DWD tends to be near whichever method is best.

Because all of MD, RLR, SVM and DWD can find the sum of squares (i.e.,
realize that the discriminatory power lies in the second half of the data), it is
not surprising that all give quite acceptable performance, although RLR lags
somewhat for large d. This, as well as performance in some of the above
examples suggests that RLR may have inferior HDLSS properties, although
careful tuning (we just used simple defaults) may be able to resolve this problem.
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However, because MD was motivated by Gaussian considerations (where the
mean is a very important representative of the population), and the embedded
data are highly non-Gaussian in nature (lying in at most a d/2 dimensional
parabolic manifold), one might expect that MD would be somewhat inferior.
However, MD is surprisingly the best of the 3 for higher dimensions d (we don’t
know why, but believe it is related to this special geometric structure). Also
unclear is why SVM is best only for dimension 10. Perhaps less surprising is that
DWD is “in between” in the sense of being best for intermediate dimensions.
The key to understanding these phenomena may lie in understanding how “data
piling” works in polynomial embedded situations.
Note that in all the examples, most methods (except RLR) tend to come

together at the right edge of each summary plot. This effect is explained by
the HDLSS asymptotics of Hall, Marron and Neeman (2004).
We have also studied other examples. These are not shown to save space,

and because the lessons learned in the other examples are fairly similar. Figure
8 is a good summary: each method is best in some situations, and the special
strength of DWD comes from its ability to frequently mimic the performance of
either MD or the SVM, in situations where it is best.

4 Real Data Examples
In this section we compare DWD with other methods for some real data sets.
An HDLSS data set from micro-array analysis is studied in Section 4.1. A
non-HDLSS data set on breast cancer diagnosis is analyzed in Section 4.2.

4.1 Micro-array data analysis

This section shows the effectiveness of DWD in the real data analysis of gene
expression micro-array data. The data are from Perou et al. (1999). The
data are vectors representing relative expression of d = 456 genes (chosen from
a larger set as discussed in Perou et al. (1999)), from breast cancer patients.
Because there are only n = 136 total cases available, this is a HDLSS setting.
HDLSS problems are very common for micro-array data because d, the number
of genes, can be as high as tens of thousands, and n, the number of cases, is
usually less than 100 (often much less) because of the high cost of gathering
each data point.
There are two data sets available from two studies. One is used to train

the discrimination methods, and the second is used to test performance (i.e.,
generalizability). There are 5 classes of interest, but these are grouped into
pairs because DWD is currently only implemented for 2 class discrimination.
Here we consider 4 groups of pairwise problems, chosen for biological interest:
MD has no tuning parameter, and the other three methods were tuned by

leave-one-out cross-validation on the training data.

Group 1 Luminal cancer vs. other cancer types and normals: A first rough classi-
fication suggested by clustering of the data in Perou et al. (1999). Tested
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using n+ = 47 and n− = 38 training cases, and 51 test cases.

Group 2 Luminal A vs. Luminal B&C: an important distinction that was linked
to survival rate in Perou et al. (1999). Tested using n+ = 35 and n− = 15
training cases, and 21 test cases.

Group 3 Normal vs. Erb & Basal cancer types. Tested using n+ = 13 and n− = 25
training cases, and 30 test cases.

Group 4 Erb vs. Basal cancer types. Tested using n+ = 11 and n− = 14 training
cases, and 21 test cases.

The overall performance of the four classification methods considered in
detail in this paper, over the three groups of problems, is summarized in the
graphical display of Figure 9. The color of the bars indicate the classification
method, and the heights show the proportion of test cases that were incorrectly
classified.
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Figure 9: Graphical summary of classification error rates for gene
expression data.

All four classification methods give overall reasonable performance. For
groups 1 and 4, all methods give very similar good performance. Differences
appear for the other groups, DWD and RLR being clearly superior for Group 2,
but DWD is the worst of the four methods (although not by much) for Group
3.
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The overall lessons here are representative of our experience with other data
analyses. Each method seems to have situations where it works well, and others
where it is inferior. The promise of the DWD method comes from its very often
being competitive with the best of the others, and sometimes being better.

4.2 Breast Cancer Data

This section studies a much different data set, which is no longer HDLSS, the
Wisconsin Diagnostic Breast Cancer data. These data were first analyzed
by Street, Wolberg and Mangasarian (1993). The goal of the study was to
classify n = 569 tumors as benign or malignant, based on d = 30 features that
summarized available tumor information.
The same four methods as above were applied to these data. This time we

study tuning parameter choice from a different viewpoint. Instead of trying to
choose among the candidate tuning parameters, we study a wide range of them.
This is an analog of the scale space approach to smoothing, see Chaudhuri and
Marron (2000), which led to the SiZer exploratory data analysis tool proposed
in Chaudhuri and Marron (1999). We suggest this approach to tuning as an
interesting area for future research.
Figure 10 shows the 10-fold cross-validation scores for each method, over a

wide range of tuning parameters. The SVM curve is not complete, because of
computational instabilities for small values of C. The MD curve is constant,
because this method has no tuning parameter.
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Figure 10: Comparison of a range discrimination methods over a range of
tuning parameters for the Wisconsin Breast Cancer data.

As expected in this non-HDLSS setting, tuning is quite important, with each
method behaving very well for some values, and quite poorly for others. Each of
the tunable methods has a local minimum, which is expected for this non-HDLSS
data set. DWD has the smallest minimum, but not substantially smaller than
the others, so not much stock should be placed in this. A proper comparison
of the values of these minima, would be via double cross-validation, where one
does a cross-validated retuning of each method for each CV sub-sample, but our
purpose here is just a simple scale space comparison.
The main lesson is consistent with the above: each of these methods (except

perhaps MD) has the potential to be quite effective, and their relative differences
are not large. Although DWD specifically targets HDLSS settings, it is good
to see effective performance in other settings as well.

5 Open Problems
There are a number of open problems that follow from the ideas of this paper,
and the DWD method.
First there are several ways in which the DWD can be fine tuned, and per-

haps improved. As with the SVM, an obvious candidate for careful study is the
penalty factor C. In many cases with separable data, the choice (if sufficiently
large) will be immaterial. In a tricky case, several values of C can be chosen
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to compare the resulting discrimination rules, but our choice provides what we
believe to be a reasonable starting point. More thought could also be devoted
to the choice of “typical distance” suggested in the choice of scale factor in
Section 2.4. Some other movies at the web site Marron (2004) give additional
insights into the effect of varying C. These compare DWD and SVM to the
MD method, in the same toy data settings as considered in Section 1. This
time data are generated in d = 100 and 200 dimensions, and the view is similar
to the top panels of Figures 2, 3 and 4 (showing the data projected onto the
plane generated by the MD direction, and either the DWD or the SVM direc-
tion). In these movies, time corresponds to changing values of C. There is a
general tendency towards most change to happen in a relatively narrow range
of C values. At the upper end, this effect can be quantified by showing that
both DWD and SVM are constant above a certain value of C. We conjecture
that both methods converge to the MD in the limit as C → 0. However, we
encountered numerical instabilities for small values of C, which has limited our
exploration to date in this direction. These issues will be more deeply explored
in an upcoming paper. The movies in the files TwoDprojDWDd100.avi and
TwoDprojDWDd200.avi are generally similar. For small values of C they show
that DWD is essentially the same as MD, and for large values of C, projections
on the DWD direction, are less spread, but the subpopulations are better sepa-
rated. The SVM versions of these movies, in the files TwoDprojSVMd100.avi
and TwoDprojSVMd200.avi, are also quite similar to each other. But they
are rather different from the corresponding DWD movies (although they were
computed from the same realizations of pseudo data). For large C, the SVM di-
rection exhibits very strong data piling. The data piling diminishes for smaller
C, but some traces are still visible at all values of C. The SVM does not ap-
pear to converge to MD, even for the smallest C values considered here. These
movies show that to achieve the beneficial data separation effects of DWD, it is
not enough to simply use SVM, with a lower choice of C.
But besides different choices of C, other variations that lie within the scope

of SOCP optimization problems should be studied. For example, the sum of
reciprocal residuals

P
i(1/ri), could be replaced by reciprocal residuals to other

powers, such as
P
i(1/ri)

p, where p is a positive integer.
An important area of future research is how the separating hyperplane dis-

crimination methods studied here can be effectively combined with dimension
reduction. Bradley and Mangasarian (1998) pioneered this area with an inter-
esting paper motivated by the SVM. An interesting improvement is the SCAD
thresholding idea of Zhang et al. (2004). A major challenge is to combine
dimension reduction (also known as feature selection) with DWD ideas.
Another domain of open problems is the classical statistical asymptotic

analysis: When does the DWD provide a classifier that is Bayes Risk con-
sistent? When are appropriate kernel embedded versions of either the SVM or
the DWD Bayes Risk consistent? What are asymptotic rates of convergence?
Many of the issues raised in this paper can also be studied by non-standard

HDLSS asymptotics, where the sample size n is fixed, and the dimension d→∞.
Hall, Marron and Neeman (2004) have shown that, perhaps surprisingly, such
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asymptotics can lead to a rigid underlying structure, which gives useful insights
of a mathematical statistical nature. Much more can be done in this direction,
to more deeply understand the properties of the SVM and the DWD.
Yet another domain is the performance bound approach to understanding

the effectiveness of discrimination methods that has grown up in the machine
learning literature. See Cannon, Ettinger, Hush and Scovel (2002), and Howse,
Hush and Scovel (2002) for deep results, and some overview of this literature.
Finally, can meaningful connection between these rather divergent views of

performance be established?

6 Appendix
This section contains details of the optimization formulations in Section 2 and
their properties. Further material on the Support Vector Machine, described
in Section 2.1 is in Section 6.1. A parallel detailed development of DWD, as
described in Section 2.2, is given in Section 6.2.

6.1 SVM Optimization and its Properties

Let us first assume that ξ = 0. Then we can maximize the minimum r̄i by
solving

max δ, r̄ = Y X 0w + βy, r̄ ≥ δe, w0w ≤ 1,
where the variables are δ, r̄, w, and β. The constraints here are all linear except
the last. Since it is easier to handle quadratics in the objective function rather
than the constraints of an optimization problem, we reformulate this into the
equivalent (as long as the optimal δ is positive) problem

min
w,β

(1/2)w0w, Y X 0w + βy ≥ e.

Now we must account for the possibility that this problem is infeasible, so
that nonnegative errors ξ need to be introduced, with penalties; we impose a
penalty on the 1-norm of ξ. Thus the optimization problem solved by the SVM
can be stated as

(PSVM ) min
w,β,ξ

(1/2)w0w + Ce0ξ, Y X 0w + βy + ξ ≥ e, ξ ≥ 0.

where C = CSVM > 0 is a penalty parameter.
This convex quadratic programming problem has a dual, which is

(DSVM ) max
α

−(1/2)α0Y X 0XY α+ e0α, y0α = 0, 0 ≤ α ≤ Ce.

Further, both problems do have optimal solutions, and their optimal values are
equal.
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The optimality conditions for this pair of problems are:

XY α = w, y0α = 0,
s := Y X 0w + βy + ξ − e ≥ 0, α ≥ 0, s0α = 0;
Ce− α ≥ 0, ξ ≥ 0, (Ce− α)0ξ = 0.

These conditions are both necessary and sufficient for optimality because the
problems are convex. Moreover, the solution to the primal problem (PSVM ) is
easily recovered from the solution to the dual: merely set w = XY α and choose
β = yi − x0iw for some i with 0 < αi < C. (If α = 0, then ξ must be zero and
all components of y must have the same sign. We then choose β ∈ {+1,−1} to
have the same sign. Finally, if each component of α is 0 or C, we can choose β
arbitrarily as long as the resulting ξ is nonnegative.)
Burges (1998) notes that there is a mechanical analogy for the choice of the

SVM hyperplane. Imagine that each support vector exerts a normal repulsive
force on the hyperplane. When the magnitudes of these forces are suitably
chosen, the hyperplane will be in equilibrium. Note that only the support
vectors exert forces.
Let us give a geometrical interpretation to the dual problem, where we as-

sume that C is so large that all optimal solutions have α < Ce. Note that
y0α = 0 implies that e0+α+ = e

0
−α−, where α+ (α−) is the subvector of α cor-

responding to the Class +1 (Class −1) points and e+ (e−) the corresponding
vector of ones. It makes sense to scale α so that the sum of the positive α’s
(and that of the negative ones) equals 1; then these give convex combinations
of the training points. We can write α in (DSVM ) as ζα̂, where ζ is positive
and α̂ satisfies these extra scaling constraints. By maximizing over ζ for a fixed
α̂, it can be seen that (DSVM ) is equivalent to maximizing 2/kXY α̂k2 over
nonnegative α̂+ and α̂− that each sum to one. But XY α̂ = X+α̂+ −X−α̂−,
where X+ (X−) is the submatrix of X corresponding to the Class +1 (Class −1)
points, so we are minimizing the distance between points in the convex hulls of
the Class +1 points and of the Class −1 points. Further, the optimal w is the
difference of such a pair of closest points.
From the optimality conditions, we may replace w in (PSVM ) byXY α, where

α is a new unrestricted variable. Then both (PSVM ) and (DSVM ) involve the
data X only through the inner products of each training point with each other,
given in the matrix X 0X. This has implications in the extension of the SVM
approach to the nonlinear case, where we replace the vector xi by Φ(xi) for
some possibly nonlinear mapping Φ. Then we can proceed as above as long as
we know the symmetric kernel function K with K(xi, xj) := Φ(xi)0Φ(xj). We
replace X 0X with the n× n symmetric matrix (K(xi, xj)) and solve for α and
β. We can classify any new point x by the sign of

w0Φ(x) + β = (Φ(X)Y α)0Φ(x) + β =
X
i

αiyiK(xi, x) + β.

Here Φ(X) denotes the matrix with columns the Φ(xi)’s. It follows that knowl-
edge of the kernel K suffices to classify new points, even if Φ and thus w are
unknown. See Section 4 in Burges (1998).
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We remark that imposing the penalty C on the 1-norm of ξ in (PSVM ) is
related to imposing a penalty in the original maximin formulation. Suppose
w, β, and ξ solve (PSVM ) and α solves (DSVM ), and assume that w and α are
both nonzero. Then by examining the corresponding optimality conditions, we
can show that the scaled variables (w̄, β̄, ξ̄) = (w,β, ξ)/kwk solve

min −δ +De0ξ̄, Y X 0w̄ + β̄y + ξ̄ ≥ δe, (1/2)w̄0w̄ ≤ 1/2, ξ̄ ≥ 0,

with D := C/e0α. Conversely, if the optimal solution to the latter problem
has δ and the Lagrange multiplier λ for the constraint (1/2)w̄0w̄ ≤ 1/2 positive,
then a scaled version solves (PSVM ) with C := D/(δλ).

6.2 DWD Optimization and its Properties

Now we minimize the sum of the reciprocals of the residuals plus the parameter
C = CDWD > 0 times the 1-norm of the perturbation vector ξ:

min
r,w,β,ξ

X
i

(1/ri) +Ce
0ξ, r = Y X 0w+ βy + ξ, (1/2)w0w ≤ 1/2, r ≥ 0, ξ ≥ 0.

Of course, in the problem above, ri must be positive to make the objective
function finite. (More generally, we could choose the sum of f(ri)’s, where f
is any smooth convex function that tends to +∞ as its argument approaches
0 from above. However, the reciprocal leads to a nice optimization problem,
as we show below.) Here we show how this can be reformulated as a SOCP
problem, state its dual and the corresponding optimality conditions, discuss a
dimension-reduction technique for the case that d À n, and give a geometric
interpretation of the dual. We also show how the method can be extended to
handle the nonlinear case using a kernel function K. Finally, we discuss an
interpretation of the penalty parameter C. Further details of the arguments
can be found in the paper DWD1.pdf in the web directory Marron (2004).
We first show how the reciprocals can be eliminated by using second-order

cone constraints. Recall that second-order cones have the form

Sm+1 := {(ζ;u) ∈ <m+1 : ζ ≥ kuk}.

To do this, write ri = ρi − σi, where ρi = (ri + 1/ri)/2, σi = (1/ri − ri)/2.
Then ρ2i − σ2i = 1, or (ρi;σi; 1) ∈ S3, and ρi + σi = 1/ri. We also write
(1/2)w0w ≤ 1/2 as (1;w) ∈ Sd+1. We then obtain

minψ,w,β,ξ,ρ,σ,τ Ce0ξ + e0ρ + e0σ
Y X 0w + βy + ξ − ρ + σ = 0,

ψ = 1,
(PDWD) τ = e,

(ψ;w) ∈ Sd+1, ξ ≥ 0, (ρi;σi; τ i) ∈ S3, i = 1, 2, . . . , n.
SOCP problems have nice duals. Indeed, after applying the usual rules for

obtaining the dual and simplifying the result, we obtain

(DDWD) max
α

−kXY αk+ 2e0
√
α, y0α = 0, 0 ≤ α ≤ Ce.
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This is very similar to (DSVM ) above, which instead maximizes−(1/2)kXY αk2+
e0α.
It is straightforward to show that the sufficient conditions for existence of op-

timal solutions and equality of the optimal objective function values of (PDWD)
and (DDWD) hold. See again the paper cited above. Further it can be shown
that the optimality conditions can be written as

Y X 0w + βy + ξ − ρ+ σ = 0, y0α = 0,
α > 0, α ≤ Ce, ξ ≥ 0, (Ce− α)0ξ = 0,
Either XY α = 0 and kwk ≤ 1,
or w = XY α/kXY αk,
ρi = (αi + 1)/(2

√
αi), σi = (αi − 1)/(2

√
αi), for all i.

In the HDLSS setting, it may be inefficient to solve (PDWD) and (DDWD)
directly. Indeed, the primal variable w is of dimension dÀ n, the sample size.
Instead, we can proceed as follows. First factor X as QR, where Q ∈ <d×n has
orthonormal columns and R ∈ <n×n is upper triangular: this can be done by
a (modified) Gram-Schmidt procedure or by orthogonal triangularization, see,
e.g., Golub and Van Loan [15]. Then we can solve (PDWD) and (DDWD) withX
replaced byR, so that in the primal problem Y R0w̄, with (ψ; w̄) ∈ Sn+1, replaces
Y X 0w, with (ψ;w) ∈ Sd+1. Thus the number of variables and constraints
depends only on n, not d.
Note that, since X 0 = R0Q0, any feasible solution (ψ, w̄,β, ξ, ρ,σ, τ) of the

new problem gives a feasible solution (ψ, w,β, ξ, ρ,σ, τ) of the original problem
on setting w = Qw̄ (kwk = kw̄k), since Y X 0w = Y R0Q0Qw̄ = Y R0w̄; moreover,
this solution has the same objective value. We therefore solve the new smaller
problems and set w = Qw̄ to get an optimal solution to the original problem.
(We can also avoid forming Q, even in product form [15], finding R by perform-
ing a Cholesky factorization R0R = X 0X of X 0X; if R is nonsingular, we recover
w as XR−1w̄, but the procedure is more complicated if R is singular, and we
omit details.)
There is again a mechanical analogy for the separating hyperplane found

by the DWD approach (we assume that all optimal solutions to (DDWD) have
α < Ce). Indeed, the function 1/r is the potential for the force 1/r2, so the
hyperplane is in equilibrium if it is acted on by normal repulsive forces with
magnitude 1/r2i at each training point. Indeed, ri = ρi − σi = 1/

√
αi at

optimality, so the force is αi at training point xi. The dual constraint y0α = 0
implies that the vector sum of these forces vanishes, and the fact that XY α is
proportional to w from the optimality conditions implies that there is no net
torque either.
We now give an interpretation of (DDWD), similar to that of finding the

closest points in the two convex hulls for (DSVM ). Indeed, if we again write
α as ζα̂, where ζ is positive and e0+α̂+ = e0−α̂− = 1, the objective function
becomes

max
ζ,α̂
−ζkXY α̂k+ 2

p
ζe0
√
α̂,
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and if we maximize over ζ for fixed α̂ we find ζ = (e0
√
α̂/kXY α̂k)2. Substituting

this value, we see that we need to choose convex weights α̂+ and α̂− to maximize

(e0+
p
α̂+ + e

0
−
p
α̂−)

2/kX+α̂+ −X−α̂−k.

Thus we again want to minimize the distance between points in the two convex
hulls, but now divided by the square of the sum of the square roots of the
convex weights. This puts a positive weight on every training point. As long
as the convex hulls are disjoint, the difference of these two points, XY α̂ =
X+α̂+ −X−α̂−, will be nonzero, and the normal to the separating hyperplane
will be proportional to this vector by the optimality conditions.
In the case that we expect, XY α 6= 0, w has the form XY α for a (scaled) α.

Hence it seems that we can once again handle the nonlinear case using a kernel
function K. But software for SOCP problems assumes the formulation is as
above, i.e., we cannot replace w byXY α and add the constraint αY X 0XY α ≤ 1.
Instead we can proceed as follows. Indeed, this approach also works in the
exceptional case, as we see below.
Form the matrix M := (K(xi, xj)) as in the SVM case, and factorize it as

M = R0R, e.g., using the Cholesky factorization. Now replace Y X 0w by Y R0w̄
in (PDWD), and replace (ψ;w) ∈ Sd+1 by (ψ; w̄) ∈ Sn+1. Similarly, in (DDWD)
replace XY α by RY α. (This is like the dimension-reducing technique discussed
above.) Suppose we solve the resulting problems to get w̄, α and β.
If RY α 6= 0, then it follows as in the linear case that w̄ = RY ᾱ, where

ᾱ := α/kRY αk. But even if RY α = 0, we note that w̄ appears in (PDWD)
only in the constraints Y R0w̄+ · · · = 0 and (ψ; w̄) ∈ Sn+1, and so we can replace
w̄ by the minimum norm ŵ with Y R0ŵ = Y R0w̄. The optimality conditions of
this linear least-squares problem imply that ŵ = RY ᾱ for some ᾱ. We claim
that we can classify a new point x as before by the sign of

P
i ᾱiyiK(xi, x)+β,

where ᾱ is obtained by one of the two methods above.
Indeed, since we can restrict w̄ to be of the form RY ᾱ, (PDWD) is equivalent

to the problem with Y R0w̄ replaced by Y R0RY ᾱ, and (ψ; w̄) ∈ Sn+1 replaced
by ᾱ0Y R0RY ᾱ ≤ 1; w̄ can then be retrieved by setting it to RY ᾱ. Now we can
make the same argument for the version of (PDWD) with YΦ(X)0w+· · · = 0 and
(ψ;w) ∈ Sd+1. We can assume that w is of the form Φ(X)Y α̃ and substitute
for w to get YΦ(X)0Φ(X)Y α̃ + · · · = 0 and α̃0YΦ(X)0Φ(X)Y α̃ ≤ 1, and then
recover w as Φ(X)Y α̃. But the two problems, one with ᾱ and one with α̃, are
identical, since

Y R0RY = YMY = Y (K(xi, xj))Y = Y Φ(X)
0Φ(X)Y,

and so both have identical optimal solutions, and hence we can classify new
points by the sign of w0Φ(x) + β = ᾱ0Y Φ(X)0Φ(x) + β =

P
i ᾱiyiK(xi, x) + β,

as claimed.
We should note that the “bad” case XY α = 0 can happen, e.g., with n = 2,

x1 = x2, and y1 = −y2. Then α1 = α2 = C and XY α = 0. But in this case,
all we need is the extra solution of a linear least-squares problem.
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Let us give an interpretation of the penalty parameter C = CDWD and some
suggestions on how it can be set. Recall that r̄ is the unperturbed residual,
so that r̄i := yi(w0xi + β), which can be of any sign. If this quantity is given,
(PDWD) will choose the nonnegative perturbation ξi to minimize 1/(r̄i + ξi) +
Cξi. It is easy to see that the resulting ξi (if positive) satisfies (r̄i+ξi)

−2 = C, so
that r̄i+ ξi = C

−1/2. This is the argument where the derivative of the function
f(t) := 1/t has slope −C, and it is not hard to check that the contribution of
the ith data point to the objective function of (PDWD) is f̄(r̄i), where f̄ is the
function that agrees with f to the right of C−1/2, and is a straight line with slope
−C to the left, with the constant part chosen to make the function continuous
(and continuously differentiable). Hence instead of perturbing the residuals and
penalizing the amount of perturbation, we can view the approach as perturbing
the criterion function f so that it applies to negative as well positive residuals.
This suggests using a value for C that is a typical slope of the reciprocal

function. Hence we find that C should scale with the inverse square of a distance
between the training points, but not with the number of training points, and
similarly to the SVM case, a reasonable value will be a large constant divided by
the square of a typical distance between training points. This recommendation
is also suggested by examining the optimality conditions, because if all xi’s are
scaled by γ, we expect w to be the same (since in the usual case its norm is
one), so that β, ξ, and ρ − σ are scaled by γ. Then α is scaled by γ−2, and
so C is scaled by the same factor. If training points are replicated, then the
vectors ξ, ρ, σ, and α are similarly expanded, but their components, and hence
C, remain the same.
SOCP problems are certainly much less well-known in optimization than

quadratic programming problems as in the SVM approach. However, there has
been rising interest in them recently, because of their power in modeling and
their amenability to efficient algorithms. See Alizadeh and Goldfarb (2003),
Lobo, Vandenberghe, Boyd and Lebret (1998), Nesterov and Todd (1997, 1998),
Tsuchiya (1999) and Tütüncü, Toh, and Todd (2001b). We used the SDPT3
package described in the last paper.

7 Acknowledgement
The research of J. S. Marron was supported by Cornell University’s College
of Engineering Mary Upson Fund and NSF Grants DMS-9971649 and DMS-
0308331. M. J. Todd was supported in part by NSF Grants DMS-9805602 and
DMS-0209457 and ONR Grant N00014-02-1-0057. Marron was grateful for the
chance to spend a year in the exciting research environment of the School of
Operations Research and Industrial Engineering, from which this collaboration
is a direct result.

32



References
[1] Ahn, J. and Marron, J. S. (2004) Maximal data piling in discrimination,

manuscript in preparation.

[2] Aizerman, M., Braverman, E. and Rozoner, L. I. (1964) Theoretical founda-
tions of the potential function method in pattern recognition, Automation
and Remote Control, 15, 821—837.

[3] Alizadeh, F. and Goldfarb, D. (2003) Second-Order Cone Pro-
gramming, Mathematical Programming, 95, 3—51. Available at
http://rutcor.rutgers.edu/~rrr/2001.html.

[4] Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M. and Marron,
J. S. (2004) “Adjustment of systematic microarray data biases,” Bioinfor-
matics, 20, 105—114.

[5] Bickel, P. J. and Levina, E. (2004). Some theory for Fisher’s Linear Dis-
criminant function, “naive Bayes,” and some alternatives when there are
many more variables than observations.” U of Michigan, Dept of Statistics
Technical Report #404, (to appear in Bernoulli).

[6] Bradley, P. S. and Mangasarian, O. L. (1998) Feature selection via
concave minimization and support vector machines. In J. Shavlik, edi-
tor, Machine Learning Proceedings of the Fifteenth International Confer-
ence (ICML ’98), 82—90, Morgan Kaufmann, San Francisco. Available at
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98—03.ps.

[7] Burges, C. J. C. (1998) A tutorial on support vector machines for pattern
recognition, Data Mining and Knowledge Discovery, 2, 955—974. Available
at http://citeseer.nj.nec.com/burges98tutorial.html.

[8] Cannon, A., Ettinger, J. M., Hush, D. and Scovel, C. (2002) Machine learn-
ing with data dependent hypothesis classes, Journal of Machine Learning
Research, 2, 335—358.

[9] le Cessie, S. and van Houwelingen, J. C. (1992) Ridge estimators in logistic
regression, Applied Statistics, 41, 191—201.

[10] Chaudhuri, P. and Marron, J. S. (1999) SiZer for exploration of structure
in curves, Journal of the American Statistical Association, 94, 807—823.

[11] Chaudhuri, P. and Marron, J. S. (2000) Scale space view of curve estima-
tion, Annals of Statistics, 28, 408—428.

[12] Cover, T. (1965) Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition, IEEE Transactions
on Electronic Computers, 12, 326—334, reprinted in (1992) Artificial Neural
Networks: Concepts and Theory, eds. P. Mehra and B. Wah, IEEE Com-
puter Society Press, Los Alamitos, Calif.

33



[13] Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vec-
tor Machines, Cambridge University Press, Cambridge, United Kingdom.

[14] Duda, R. O., Hart, P. E. and Stork, D. G. (2000) Pattern Classification,
John Wiley & Sons, New York.

[15] Golub, G. H., and Van Loan, C. F. (1989) Matrix Computations, 2nd ed.,
Johns Hopkins University Press, Baltimore, MD.

[16] Hall, P., Marron, J. S. and Neeman, A. (2004) Geometric representation
of high dimension low sample size data, submitted to Journal of the Royal
Statistical Society, Series B.

[17] Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Statis-
tical Learning, Springer Verlag, Berlin.

[18] Howse, J., Hush, D. and Scovel, C. (2002) Linking learning strategies and
performance for support vector machines, Los Alamos National Laboratory
Technical Report LA-UR-02-1933.

[19] Koch, I., Marron, J. S. and Chen, Z. (2004) Simulation of non-Gaussian
populations of images, unpublished manuscript.

[20] Lin, Y., Wahba, G., Zhang, H., and Lee, Y. (2002) Statistical properties and
adaptive tuning of support vector machines, Machine Learning, 48, 115—
136, 2002. Available at ftp://ftp.stat.wisc.edu/pub/wahba/index.html.

[21] Lobo, M. S., Vandenberghe, L., Boyd, S. and Lebret, H. (1998) Applications
of second-order cone programming, Linear Algebra and Its Applications,
284, 193—228.

[22] Marron, J. S. (2004) Web site:
http://www.stat.unc.edu/postscript/papers/marron/HDD/DWD/.

[23] Marron, J. S., Wendelberger, J. and Kober, E. (2004) Time series functional
data analysis, unpublished manuscript.

[24] Nesterov, Yu. E. and Todd, M. J. (1997) Self-scaled barriers and interior-
point methods for convex programming, Mathematics of Operations Re-
search, 22, 1—42.

[25] Nesterov, Yu. E. and Todd, M. J. (1998) Primal-dual interior-point methods
for self-scaled cones, SIAM Journal on Optimization, 8, 324—364.

[26] Peng, F. and McCallum, A. (2004) Accurate information extraction from
research papers using conditional random fields, Proceedings of Human
Language Technology Conference and North American Chapter of the As-
sociation for Computational Linguistics (HLT-NAACL), 2004.

34



[27] Perou, C. M., Jeffrey, S. S., van de Rijn, M., Eisen, M. B., Ross,
D. T., Pergamenschikov, A., Rees, C. A., Williams, C. F., Zhu, S.
X., Lee, J. C. F., Lashkari, D., Shalon, D., Brown, P. O. and Bot-
stein, D. (1999) Distinctive gene expression patterns in human mam-
mary epithelial cells and breast cancers, Proceedings of the National Acad-
emy of the Sciences, U.S.A. 96, 9212—9217. Web site: http://genome-
www.stanford.edu/sbcmp/index.shtml

[28] Schimek, M. (2003) Penalized logistic regression in gene expression analysis,
Proceedings to 2003 Semiparametric Conference, Berlin, Germany.

[29] Schölkopf, B. and Smola, A. J. (2002) Learning with Kernels: Support Vec-
tor Machines, Regularization, Optimization and Beyond, The MIT Press,
Cambridge, Massachusetts.

[30] Street, W. N., Wolberg, W. H. and Mangasarian, O. L. (1993) Nuclear
feature extraction for breast tumor diagnosis. IS&T/SPIE International
Symposium on Electronic Imaging: Science and Technology, 1905, 861—870.
See also http://www.cs.wisc.edu/~olvi/uwmp/cancer.html.

[31] Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002) Diagnosis of
multiple cancer types by shrunken centroids of gene expression, Proceedings
of the National Academy of Science, 99, 6567—6572.

[32] Tsuchiya, T. (1999) A convergence analysis of the scaling-invariant primal-
dual path-following algorithms for second-order cone programming, Opti-
mization Methods and Software, 11/12, 141—182.

[33] Tütüncü, R. H., Toh, K. C., and Todd, M. J. (2003) Solving semidefinite-
quadratic-linear programs using SDPT3, Mathematical Programming, 95,
189—217.

[34] Tütüncü, R. H., Toh, K. C., and Todd, M. J. (2001b) SDPT3 — a MATLAB
software package for semidefinite-quadratic-linear programming, available
from http://www.math.cmu.edu/ reha/home.html (August 2001).

[35] Vapnik, V. N. (1982) Estimation of Dependences Based on Empirical Data,
Springer Verlag, Berlin (Russian version, 1979).

[36] Vapnik, V. N. (1995) The Nature of Statistical Learning Theory, Springer
Verlag, Berlin.

[37] Wahba, G., Lin, Y., Lee, Y. and Zhang, H. (2001) Optimal prop-
erties and adaptive tuning of standard and nonstandard support
vector machines, to appear in Proceedings of the MSRI Berkeley
Workshop on Nonlinear Estimation and Classification. Available at
ftp://ftp.stat.wisc.edu/pub/wahba/index.html.

[38] Wright, S. J. (1997) Primal-dual Interior-point Methods, SIAM, Philadel-
phia.

35



[39] Yushkevich, P., Pizer, S. M., Joshi, S. and Marron, J. S. (2001) Intuitive,
Localized Analysis of Shape Variability, in Information Processing in Med-
ical Imaging (IPMI), eds. Insana, M. F. and Leahy, R. M., 402—408.

[40] Zhang, H., Ahn, J., Lin, X. and Park, C. (2004) Variable selection for SVM
using nonconcave penalty, unpublished manuscript.

[41] Zhang, T. and Oles, F. (2001) Text classification based on regularized linear
classifiers, Information Retrieval, 4, 5—31.

36


