SiZer for jump detection
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Abstract

SiZer is an exploratory graphical method for ..nding structure in data.
When the structure is a jump in the underlying curve, a “jump funnel”
is created in the SiZer map. The shape of this funnel is analyzed. The
result is the basis of a proposed variation of SiZer that is specially tuned
to ..nding jumps.
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1 Introduction

SiZer was introduced by Chaudhuri and Marron (1999), for ..nding structure in
smooths of data. This method is based on *“scale space” ideas, as discussed in
Chaudhuri and Marron (1998). Scale space is a family of Gaussian smooths
indexed by the bandwidth, shown as blue curves in the top panel of Figure
1, based on data shown as green dots. SiZer studies Slgni..cance of ZERo
crossings of the derivative of the smooths in scale space, as shown in the lower
panel of Figure 1. It represents regions, with respect to both location and scale
(i.e. bandwidth) with colors. Red is used where the smooth is signi..cantly
decreasing, blue is used for signi..cantly increasing, and the intermediate color
of purple is used for no signi..cant slope (i.e. a con..dence interval for the slope
contains the origin). The SiZer map shows that the increases on the left side, at
large bandwidths, are statistically signi..cant, as are the decreases on the right



side, although only for relatively smaller bandwidths. The solid white horizontal
bar in the SiZer map shows a good data driven bandwidth, as suggested by
Ruppert, Sheather and Wand (1995). The smooth with this bandwidth is
represented as the thick red curve in the top panel. The dotted white curves
give an idea about *“ermective window widths”, by showing +2h, where & is the
bandwidth. The dashed horizontal bar in the SiZer map is discussed in Section
3. See Marron and Chaudhuri (1998a,b) for additional examples and insights
about SiZer.
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Figure 1: Family of smooths (blue curves, top panel) and SiZer map (bottom
panel) for the Penny Thickness data (green dots, top panel). Funnels highlight
two jumps.

The data in Figure 1 come from Table B.4 of Scott (1992), and are nicely
analyzed in Section 8.3.2 of that book. The data are thicknesses (in mil) of
pennies, two measurements made for each year from 1945 to 1989. Scott com-
ments that there are known to be two jumps in the mean of this regression,
when the manufacturing process was changed. First in 1958, where the penny
was returned to its pre-war thickness after having been thinned for World War
I. Second in 1974, when it was thinned again. Scott uses the nice idea of
“modal regression” to show these features of the data.

The SiZer map in Figure 1 clearly shows these same two jumps. They
appear as “funnel shapes”, caused by the slopes being signi..cant, even for very
small bandwidths. This was discussed at the end of Section 4 of Chaudhuri



and Marron (1999) and in Section 3.1 of Marron and Chaudhuri (1998b). It
was remarked that this shape appears quite often when there are jumps in the
true underlying regression. In this paper, we analyze that characteristic funnel
shape, called the “jump funnel”, and propose a new visual device for using this
shape to learn about potential jumps in the regression curve.

In Section 2, we present some mathematical analysis, which reveals the shape
of the region caused by the underlying jumps. In particular, the boundary of
the jump funnels is seen to grow linearly with the bandwidth. In Section 3 this
mathematical insight is used to motivate a modi..cation of the SiZer map, which
is tuned to visually highlight jumps, by making the funnel boundaries appear
as straight lines. This is illustrated with a modi..ed SiZer map for the penny
data of Figure 1. Some additional simulated examples are discussed in Section
4.

2 Mathematical Analysis

Jump funnels, are most easily studied in the case of regression with an equally
spaced design, i.e. the data are (perhaps rescaled to be) of the form {(£,Y;) :i =1,...,n}.
SiZer for nonparametric regression, is based on the local linear smoother, where
one ..ts a line, say having equation y = mx + b, to the scatterplot of the data,
using weighted least squares, in a moving window. In particular, at each lo-
cation x € [0,1], a slope estimate m,,(z) and an intercept estimate by, (z) are
found by minimizing, over m and b, the kernel weighted least squares criterion
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where Kj,(-) = K (5), for a kernel function K controlling the shape of the
local window around z, and a bandwidth A controlling the width of the win-
dow. SiZer uses the standard Gaussian density for K, for scale space reasons as
discussed in Chaudhuri and Marron (1998). However, for ease of illustration, we
consider here the uniform kernel. The “moving intercept” curve, Eh(x), provides
a reasonable estimate of the underlying regression curve, see for example Wand
and Jones (1995) and Fan and Gijbels (1996) for good discussion of the prop-
erties of this smoothing method. SiZer is based on the slope estimate m, (z),
and whether or not it is signi..cantly positive or negative. This signi..cance is
determined by its normalized version

where o, is the usual (locally weighted) estimate of the standard deviation
of m. SiZer uses the color blue (red) when i (2) g larger than (smaller than,

8771(‘”)

resp.) ¢, an appropriate quantile to the Gaussian distribution (where ¢ is chosen



to give simultaneous inference). Thus the boundary of the jump funnels, is

B= {(x,h) : ?28 = q}.

Simplest analysis of the jump funnels comes from working with data which
are constant except for a single jump. In particular, consider

where it is enough to keep the constant height at 1, since 3ﬁ is vertically scale
free. For the moment, ignore the kernel weights, i.e. take K; = 1. Straight-
forward calculation, using the standard formulas for simple linear regression
gives
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in the limit as n — oo, with £ — 0.

Now to use (1) for analysis of SiZer, consider a uniform window local linear
estimate, with bandwidth h, centered at the point z,, and suppose the jump
occurs at a point z;. When the centerpoint z,, is far enough from the boundary
(in particular, z,, > h and z,, < 1 — h) the number of points in each window is
nyw = 2nh (where 22 is used since appropriate rounding may be needed to make
2nh and integer). When the jump point z; is inside the window, and to the
left of z,, (i.e. z; € (xw — h,zw)), then the above calculations apply with the
changes of variable:
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This gives the approximation:
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for the boundary of the funnel on the right side of the jump (i.e. z; < z,,). For
the left side of the jump, i.e. x,, < x;, similar calculations show that the right
boundary of the funnel is approximated as
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This shows that the jump boundary is approximately linear as a function of the
bandwidth A. The curved funnel shapes shown in the bottom panel of Figure
1, come from the fact that the log,, scale is used for & in that display. The
log,, bandwidth scale was chosen for SiZer, since that scale gives smooths that
are more “equally spaced”, as shown in Marron and Chung (1997). In Section
3, changing this choice in the context of jump detection is proposed.

Another consequence of (1) is that SiZer will not show a signi..cant increase,
if only a single point is much larger than all of the others, regardless of how
large that is. In particular, if all the data in a window have a constant value,
except at a single point, SiZer has the best chance of indicating a signi..cant
slope, when the point is at the edge of the window. From (1), this is the case
j =n—1, which gives (after some simpli..cation)
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(independent of n and of ) which is not large enough to be signi..cant for
reasonable values of the critical level . This shows that SiZer cannot ..nd
“single point features”, such as might arise in spectral analysis, where a single
frequency is dominant.

3 Jump SiZer

An important lesson from Section 2 is that the boundaries of the jump funnels
grow linearly with the bandwidth, h. Since the human eye is better at notic-
ing lines than particular curves, it is sensible to modify the SiZer map so that
the jump funnels have linear boundaries. This is done by replacing the usual
log,(h) scale in the SiZer map by the linear h scale. The result of this for
the data of Figure 1 is shown in Figure 2. As expected from the theory devel-
oped in Section 2, the boundaries of the jump funnels are now linear. Hence,
for situations where exploratory jump detection is of interest, we recommend
appending a linear scale SiZer map (as in Figure 2) to the usual SiZer analysis
(shown in Figure 1).
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Figure 2: Jump Sizer, for Penny Data shown in Figure 1. Linear
bandwidth scale highlights jump funnels.



Note that the curved lines, showing +2h, are also now linear. A price
to be paid in looking at this modi..cation of the SiZer map is that a smaller
range of bandwidths is needed to see the important jump structure of the data.
The reason is that if the full range of bandwidths is used, then the linear scale
concentrates too much on the larger bandwidths, which is not where the jump
funnel occurs. We recommend addressing this problem, by using only half the
range (on the log scale). In particular, if the range [log,q (Amin) ;10810 (Amax)]
is used for SiZer, the Jump SiZer should use the range

[hminy e(log 10(hmin)+1og1o(hmax))/2 .

The upper endpoint of this range is shown on the original SiZer map (bottom
of Figure 1) as the dashed horizontal bar.

4 Examples

In this section, we show some examples illustrating the use of this version of
SiZer. Figure 3 shows a simulated example, based on the same data as consid-
ered in Figure 8 of Chaudhuri and Marron (1999), where the funnel shapes were
..rst noticed. It was also pointed out there that each jump in the regression
function corresponds to a funnel. The underlying regression function, called
“Blocks” comes from Donoho and Johnston (1994), and the additive i.i.d. Gaus-
sian noise is the same “high noise” used by Marron, Adak, Johnstone, Neumann
and Patil (1998).
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Figure 3: Jump SiZer for the Blocks target curve, and high level Gaussian
noise. Every jump point is found.

Note that the new bottom panel in Figure 3 shows that many of the funnels
in the middle panel are clearly of the type associated with jumps. However,
some of the funnels are too small to clearly see the linear structure, because
they are too close together.

This type of jump detection is intended as exploratory. It is recommended
that after potential jumps are found in this way, their signi..cance should be
investigate by any of many conventional change point testing methods. See
Carlstein, Muller and Siegmund (1994) for access to that literature.

Another example, showing some additional insights is shown in Figure 4.
Here the setting is the low noise level, “Angles” target, from Marron, Adak,



Johnstone, Neumann and Patil (1998).
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Figure 4: Jump SiZer for the Angles target curve, and low level Gaussian
noise. Shows erects of sloped regions in the regression.

Figure 4 explores the impact on the jump SiZer map, when the underlying
regression is piecewise linear, without jumps. Note that in regions where the
slope is very steep, even the smallest bandwidth parts of the SiZer maps are
colored (as happens in jump regions), because the noise level is low relative to
the slope. The blue-red boundary on the left side is nearly vertical, but slopes
a little to the left, since the slopes are dicerent on each side of the ..rst angle.
This same erect is visible at the last red blue boundary. The boundaries of
the large purple triangular region have a slope that is more similar to those
observed for jumps in Figures 2 and 3. A very careful look shows that e.g. the
purple blue boundary is slightly less steep than the nearby dotted line, while in



Figures 2 and 3, the full jump funnels are slightly more steep. This is caused
by the sharp increase that generates the blue region being not quite vertical.
This shows that jump SiZer gives meaningful impressions of the data, even when
there is only a rapid increase in the regression, instead of an actual jump.
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