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ABSTRACT

Scale space theory from computer vision leads to an interesting and novel
approach to nonparametric curve estimation. The family of smooth curve
estimates indexed by the smoothing parameter can be represented as a sur-
face called the scale space surface. The smoothing parameter here plays the
same role as that played by the scale of resolution in a visual system. In
this paper, we study in detail various features of that surface from a sta-
tistical viewpoint. Weak convergence of the empirical scale space surface to
its theoretical counterpart and some related asymptotic results have been
established under appropriate regularity conditions. Our theoretical analysis
provides new insights into nonparametric smoothing procedures and yields
useful techniques for statistical exploration of features in the data. In par-
ticular, we have used the scale space approach for the development of an
e®ective exploratory data analytic tool called SiZer. SiZer is a graphical de-
vice for evaluating statistical signi¯cance of features (e.g. peaks and valleys)
visible in a curve estimate by assessing the signi¯cance of zero crossings of
the derivatives of that curve estimate at di®erent levels of smoothing.
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1 Introduction : Curve Estimation and Scale
Space Theory

Curve estimation using nonparametric smoothing techniques is an e®ective
tool for unmasking important structures from noisy data. Over the last
couple of decades, nonparametric curve estimates have emerged as powerful
exploratory and inferential tools for statistical data analysis [see e.g. Sil-
verman (1986), Eubank (1988), MÄuller (1988), HÄardle (1990), Rosenblatt
(1991), Wahba (1991), Green and Silverman (1994), Wand and Jones (1995),
Fan and Gijbels (1996), Simono® (1996)]. Many di®erent methodologies such
as kernel, nearest neighbor, local polynomial, splines and wavelets have been
investigated in the literature for construction of the nonparametric estimate
f̂h(x) of an unknown curve f(x). Here the subscript h denotes the smoothing
parameter associated with the curve estimate the nature of which varies de-
pending on the methodology used (e.g. in the case of kernel smoothing it is
the bandwidth). In the usual approach taken in the statistics literature, one
focuses on the \true underlying function" f(x), and an extensive amount of
work has been reported on the estimation of f(x) and on optimal choice of
the smoothing parameter from the data and inferences about f(x) based on
con¯dence bands. A fundamental problem in nonparametric function estima-
tion is that Eff̂h(x)g is not necessarily equal to f (x), so there is an inherent
bias which creates special challenges. The problem does not appear in clas-
sical parametric statistics, where one tacitly assumes a \correct" parametric
model for f (x) with parameters that can be unbiasedly estimated.

In this paper, we study nonparametric curve estimation from the view-
point of \scale space theory" from the computer vision literature [see e.g.
Lindeberg (1994)]. We will focus simultaneously on a wide range of values
for the smoothing parameter (h 2 H, say) instead of trying to estimate the
optimum amount of smoothing from the data. From the point of view of data
analysis this is an e®ective strategy since di®erent levels of smoothing may
reveal di®erent useful information [see e.g. the \family approach" in Marron
and Chung (1997)]. When H is a subinterval of (0;1) (e.g. the range of
possible bandwidths in a kernel smoother) and x varies in an interval I of
the real line (¡1;1), the family of smooth curves ff̂h(x) j h 2 H ; x 2 Ig
can be represented by a surface, the \scale space surface"shown in Figure
1, which models di®erent features of the data visible at di®erent levels of
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smoothing that are comparable with variations in the scales of resolution in
a visual system. This unconventional way of handling the curve estimation
problem leads to an interesting reorientation of the bias problem mentioned
in the preceding paragraph. We shift our attention from the \true underlying
curve" f(x) to the \true curves viewed at di®erent scales of resolution", which
is Eff̂h(x)g as h varies in H and x varies in I . Eff̂h(x)g is a \smoothed
version" of the function f (x) and can be viewed as the theoretical scale space
surface if we consider f̂h(x) as the empirical scale space surface. The empir-
ical version here is by de¯nition unbiased for the theoretical version.

We make Eff̂h(x)g our target and focus our inference on it with the idea
that it will enable us to extract relevant information available in the noisy
data at a given level of smoothing. A large value of the smoothing parameter
models \macroscopic or distant vision", where one can hope to resolve only
large scale features. Similarly a small value of the smoothing parameter will
model \microscopic vision" that can resolve small scale features provided
that we have a su±cient amount of informative data. A detailed discussion
of scale space philosophy and many related interesting examples can be found
in Lindeberg (1994).

Figure 1a shows a simulated regression example, based on a target curve

f (x) (dashed line type), and an equally spaced design, xi =
i¡ 1
n¡ 1

for sam-

ple size n = 201, and data Yi = f(xi) + "i (dots), where the "i's are inde-
pendent N(0; ¾2), with ¾ = 0:2. A family of Gaussian kernel local linear
smooths

n bfh(x) : h 2 H
o
, indexed by the bandwidth, is overlaid on Figure

1a, as thin solid lines. The Ruppert, Sheather and Wand (1995) data driven
choice of bandwidth is indicated as the thick solid line. The family shows
the very wide range of smoothing being considered, from nearly the raw data
(very wiggly thin line), to nearly the simple least squares ¯t line (the limit
as the window width goes to in¯nity). Figure 1b, shows this same family of
smooths

n bfh(x) : h 2 H
o
, arranged one behind the other in bandwidth order,

to give the empirical scale space surface. Figure 1c shows the correspond-
ing theoretical scale space surface

n
E bfh(x) : h 2 H

o
, which is constructed by

applying the same smoothing operations to ff(xi) : i = 1; :::; ng, instead of to
fYi : i = 1; :::; ng. Figure 1d shows the di®erence surface

n bfh(x) ¡ E bfh(x) : h 2 H
o
,

which is showing how noise is attenuated in scale space since it is the corre-
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sponding family of smooths of f"i : i = 1; :::; ng.

[put Figure 1 about here]

Figure 1: Simulated regression example showing scale space ideas. Fig-
ure 1a shows the target curve as the dashed line, the data as small dots,
and a family of local linear smooths as thin solid lines, with the Ruppert-
Sheather-Wand bandwidth highlighted as the heavy solid line. Figure 1b is
the empirical scale space surface. Figure 1c is the theoretical scale space sur-
face, i.e. smooths of the target curve. Figure 1d is the \noise surface", i.e.
the di®erence between the surfaces shown in Figures 1b and 1c.

The target curve has been selected to highlight an important question
that arises in data analysis by smoothing methods: which features visible
in a smooth are \really there?". The broad peak around x = 0:55 and the
deep valley around x = 0:85 seem to be clearly discernible from the data. It
is likely that the peak at x = 0:2 and the valley at x = 0:3 can be shown
to be \statistically signi¯cant" as well. But what about the thinner peak at
x = 0:65? This is much more questionable, since the corresponding sizes of
the smooths are roughly comparable to the size of the spurious peaks just
to the left. Note that the much thinner peak at x = 0:75 clearly does not
have enough mass to be distinguishable from the background noise (even
though it is a feature of the target curve). In Section 4 we discuss SiZer,
a visualization which gives a convenient solution to this problem of which
features are \really there", i.e. are \statistically signi¯cant".

Figure 1b shows how the scale space view of smoothing is looking at the
data at a number of di®erent resolutions. Figure 1c shows the corresponding
multi-resolution views of the underlying target curve. These surfaces have
a number of interesting properties, some of which are discussed in Section
2. Convergence results, which give a way of making precise the apparent
approximations of the surfaces in Figures 1b and 1d, are derived in section
3. Figure 1d shows the \noise surface" that is displaying the variance part
of the smoothing problem.
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2 The Scale Space Surface
One of the prime objectives of nonparametric curve estimation is exploration
of structures such as peaks and valleys. An important requirement, which
the scale space surface should satisfy, is that as one moves from lower to
higher levels of smoothing, structures (e.g. peaks and valleys) should dis-
appear monotonically. In other words, the smoothing method should not
introduce artifacts by creating \spurious structures" as we go from a ¯ner
to a coarser scale. This idea has been formalized as \causality" in the scale
space literature [see e.g. Lindeberg (1994)], which is a property of the scale
space surface, and it implies that the number of local extrema in the curve
f̂h(x) or Eff̂h(x)g for a given h will be a decreasing function of h. The term
\causality" was introduced to convey the idea that there should be a cause
for structures appearing at coarser scales, in terms of ¯ner scale structures.
Causality, i.e. non-creation of new features with more smoothing, is visually
apparent in Figures 1b, c and d.

Again assume that x varies in a subinterval I of (¡1;1) and h varies
in a subinterval H of (0;1). The kernel density estimator based on data
X1; X2; : : : ;Xn, is

f̂h(x) = (nh)¡1
nX

i=1
Kf(x¡Xi)=hg ;

where K(x) is the kernel function, which is usually taken to be a smooth
density symmetric around zero. The fact that the number of peaks in a kernel
density estimate based on a Gaussian kernel K(x) = (1=

p
2¼) exp(¡x2=2)

decreases monotonically with the increase in the bandwidth was proved in the
statistics literature by Silverman (1981). Let us now consider the regression
problem based on the data (Y1; X1); (Y2; X2); : : : ; (Yn; Xn). In this case, we
have the Priestley-Chao estimate

(A) f̂h = (nh)¡1
nX

i=1
YiKf(x¡Xi)=hg

or the Gasser-MÄuller estimate

(B) f̂h(x) =
nX

i=1
Yi

Z ti
ti¡1

(1=h)Kf(x¡ s)=hgds ;
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where ¡1 = t0 < X1 < t1 < X2 < t2 < : : : < tn¡1 < Xn < tn = 1.

Observe that local extrema like peaks and valleys of the curve f̂h(x) for

¯xed h are determined by the zero crossings of the derivative
@f̂h(x)
@x

. Sim-
ilarly, points of in°exion are determined by the zero crossings of the second

derivative
@2f̂h(x)
@x2

. In general, zero crossings of the m-th order derivative

@mf̂h(x)
@xm

for m ¸ 1 can be used to identify structures in a smooth curve. We
now state a theorem which gives an analog of Silverman's (1981) result for
nonparametric regression problems. The proof is in Section 5.

Theorem 2.1 : Assume that the scale space surface f̂h(x) arises as in
(A) or (B) above, and K(x) = (1=

p
2¼) exp(¡x2=2). Then for each ¯xed

h 2 H and m = 0; 1; 2; : : :, the number of zero crossings of the derivative
@mf̂h(x)
@xm

will be a decreasing and right continuous function of h for all pos-
sible choices of the data (Y1; X1); (Y2; X2); : : : ; (Yn; Xn). Further, the same

result holds for the m-th order derivative
@mEff̂h(x)g
@xm

of the theoretical scale
space surface when we assume that the Yi's are conditionally independently
distributed given the Xi's, and E denotes the conditional expectation given
X1; X2; : : : ;Xn.

It will be appropriate to note here that for other versions of kernel
based regression smoothers such as the Nadarya-Watson estimate and kernel
weighted local polynomial estimates [see Wand and Jones (1995), Fan and
Gijbels (1996) and Cleveland and Loader (1996) for useful discussion and
historical background], which arise in the forms of ratios of two weighted
averages, the \causality" (monotonicity) property may fail to hold on their
scale space surfaces for certain data sets even if the Gaussian kernel is used.
While discussing Silverman's (1981) result on kernel density estimates, Min-
notte and Scott (1993) constructed some counter-examples to show that this
monotonicity may fail to hold for certain non-Gaussian kernels including
some compactly supported ones. However, they did not resolve the case of
Cauchy kernel in a de¯nite way. The example in Figure 2 demonstrates that
the Cauchy kernel may not produce a scale space surface with the \causality"
property.

6



The noncausality of the Cauchy kernel proved to be rather elusive, with
trial and error simulation experiments not turning up a counterexample [sim-
ilar to the experience reported by Minnotte and Scott (1993)]. This suggested
that modes that were created with increasing bandwidth were rare and/or
very small. To improve the magni¯cation of our search method, we studied
very small sets of parametrically indexed examples, which gave simple an-
alytic representations for the derivative of the Cauchy kernel smooths. In
particular, for regression with three data points, the number of roots of the
derivative is the same as the number of real roots in a degree eight polyno-
mial. Figure 2 shows one example where lack of causality, i.e. creation of
additional modes, appeared for the Cauchy kernel. Figure 2a shows the three
data points as circles, together with sample smooths using 3 bandwidths.
Figure 2b shows the number of roots as a function of the bandwidth with the
vertical overlaid lines corresponding to the three bandwidths in Figure 2a.
Note the increase around log10(h) = 0:4, which implies that the number of
modes in the smooth increases with h at that point. Note also that it is not
clear in Figure 2a that the dashed and dot-dashed curves have two modes
while the solid curve has three modes. Figures 2c and 2d show that this is
actually the case, by successive zooming. The trimodality of the solid curve
only becomes clear using the large amount of magni¯cation shown in Figure
2d.

[put Figure 2 about here]

Figure 2: Counterexample showing that the Cauchy kernel does not satisfy
the causality property. A three point regression data set is shown as circles
in Figure 2a, together with 3 Cauchy kernel smooths. Figure 2b shows the
numbers of real roots of the derivative, as a function of the bandwidth , with
the 3 smooths in Figure 2a represented as vertical bars with the same line
types. Figure 2c and 2d are successive enlargements of the regions shown as
boxes in Figures 2a and 2c respectively.

Other examples we found were of similar very small magnitude, so we
believe this noncausality of the Cauchy kernel is always small scale. We also
were unable to ¯nd an example where all of the Y-values were positive, as in
density estimation. So we conjecture that the Cauchy kernel may be causal
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for density estimation [recall that Minnotte and Scott (1993) reported not
¯nding a counterexample in that case].

For scale space surfaces arising as smooth convolutions of the form

(C) S(x; h) = f (x) ¤ (1=h)K(x=h) =
Z
f(t)(1=h)Kf(x¡ t)=hgdt ;

where f(x) is a smooth function, Lindeberg (1994) gives a detailed dis-
cussion of the causality property and several interesting related results fol-
lowing Schoenberg (1950), Hirschmann and Widder (1955), Karlin (1968),
Witkin (1983) and Koenderink (1984). A very interesting justi¯cation for
the \causality" in the scale space surface S(x; h) generated by the Gaussian
kernel can be found in the scale space literature. If we accept that di®usion
(e.g. heat di®usion) is a physical process that \destroys structures" over time
and does not \create structures", and view the smoothing parameter as the
time parameter in the di®usion process, the \causality" of the scale space
surface can be reformulated in terms of the classical heat di®usion equation

(D)
@S(x;

p
t)

@t
= (1=2)

@2S(x;
p
t)

@x2
:

The Gaussian kernel emerges as the Green's function solving (D). Here h =p
t, so that time in the heat di®usion goes like the square of the bandwidth,

i.e. the variance of the kernel window. For more formal mathematical details
on the derivation of the heat equation in this context and its solution, readers
are referred to Koenderink (1984) and Section 2.5 in Lindeberg (1994). Figure
3 provides visual insight into how solutions to the heat equation correspond
to families of smooths.

The physical model for Figure 3 is a thin wire, with hot and cold spots
at the beginning, and the heat dissipating over time (represented here by
bandwidth). The color map in Figure 3b shows how the heat di®uses. The
surface in Figure 3a is the corresponding solution to the heat equation. The
starting values used were the raw data shown in Figure 1a. Figures 3a and
3b are both approximations, based on Gaussian kernel Nadaraya-Watson
smooths.

[put Figure 3 about here]
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Figure 3: Figure 3a shows a family of Nadaraya-Watson smooths, similar
to Figure 1b, for the data of Figure 1a, but now panels are shaded using a
\temperature" color scale. Projection of these colors into the plane is shown
in Figure 3b, which shows how (one dimensional) heat di®uses in time.

The use of the heat equation as a paradigm for smoothing is quite well
developed in some parts of the literature [see Weickert (1997) for good ac-
cess to this work]. But for statisticians this approach provides a host of new
answers to some old problems, e.g. boundary adjustments and corrections.
Another such problem is: how should continuous convolution be discretized,
as for nonparametric regression? There has been substantial debate con-
cerning the Nadaraya-Watson (evaluate the kernel) vs. the Gasser-MÄuller
(integrate the kernel over small rectangles) approaches. Many statisticians
now prefer the local linear, for reasons made clear by Fan (1992,1993), al-
though see e.g. Stone (1977) and Cleveland (1979) for much earlier insights
in this direction. However, the heat equation approach gives a quite di®erent
resolution of this controversy, using the solution of a discrete analog of the
heat equation. See section 3.6.2 of Lindebergh (1994) for details.

Silverman (1981) introduced the notion of \critical bandwidths", which
are used to test for multimodality of densities. If N(h) denotes the number
of modes in a density estimate based on the Gaussian kernel with band-
width h, we have already noted that N(h) is a monotonically decreasing
and right continuous function of h, and \critical bandwidths" are precisely
the points of jump discontinuities of N (h). Minnotte and Scott (1993) [see
also Marchette and Wegman (1997)] introduced the notion of a \mode tree",
which is a graphical tool that presents the locations of modes of a kernel
density estimate at di®erent bandwidths. We will now discuss some im-
portant connections between these statistical concepts and the geometry of
the scale space surface. Suppose that we have a smooth scale space surface
ff̂h(x) j x 2 I; h 2 H g arising from a density estimation or a regression
problem, and assume that \causality" holds for this surface. Consider the
trajectories of the critical points on this surface given as

(
(x; h; f̂h(x)) j x 2 I; h 2 H; @f̂h(x)

@x
= 0

)
:

Then these trajectories trace the \mode tree" as well as the \antimode tree"
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on the scale space surface (antimode = valley). Critical points (x; h; f̂h(x))

where
@2f̂h(x)
@x2

= 0, are called degenerate critical points. Critical points

where
@2f̂h(x)
@x2

6= 0, are called non-degenerate. Degeneracy of a critical point
is a form of singularity on the surface where bifurcation of the trajectory may
occur. The following theorem describes some interesting features of critical
points on a scale space surface.

Theorem 2.2 : A critical point (x; h; f̂h(x)) corresponds to a \critical
bandwidth" only if it is a degenerate critical point. With the increase in the
value of scale, the x co-ordinate of a non-degenerate critical point moves
with a ¯nite velocity along its trajectory (however, this drift velocity at a
degenerate critical point may be in¯nite).

Figure 4 shows a discretized version of these trajectories, for the same
example as used in Figures 1 and 3. Red highlights the mode tree (subset of
scale space consisting of local maximizers in the x direction), and yellow high-
lights the antimode tree (subset of scale space consisting of local minimizers
in the x direction). The critical bandwidths are at the branch locations.

[put Figure 4 about here]

Figure 4: Figure 4a shows the same family of smooths as in Figure 1b,
with modes highlighted in red, and antimodes highlighted in yellow. Figure
4b shows the projection of the red mode locations and the yellow antimode
locations into the plane, yielding the mode and antimode trees.

Variations on mode and anti-mode trees have been developed in parallel in
other literatures, see Muzy, Bacry and Arneodo (1994) for a wavelet version,
and Wong (1993) for a neural net version.

3 Weak Convergence of Empirical Scale Space
Surface and Its Derivatives

Though we have stated Theorem 2.2 in the preceding Section only for the
empirical scale space surface ff̂h(x) j x 2 I; h 2 Hg, analogous results hold

10



for the theoretical scale space surface fEff̂h(x)g j x 2 I; h 2 Hg, and the
proofs will be virtually identical. Note that the \critical bandwidths" as
well as the \mode tree" have their empirical and theoretical (or population)
versions, where the former can be viewed as an estimate of the latter. We will
now focus attention on statistical convergence of the empirical scale space
surface and its derivatives to their theoretical counterparts. Consider ¯rst
the density estimation problem based on i.i.d observations X1; X2; : : : ;Xn.
Assume that f̂h(x) is the usual kernel density estimate (nh)¡1 Pn

i=1Kf(x¡
Xi)=hg and Eff̂h(x)g = E[h¡1Kf(x¡Xi)=hg].

Theorem 3.1 : Suppose that X1; X2; : : : ;Xn are i.i.d random variables
with a common distribution Fn, where as n ¡! 1, Fn converges weakly
to a distribution F , and assume that I and H are compact subintervals of
(¡1;1) and (0;1) respectively. Let the smooth kernel K(x) be such that

for integer m ¸ 0, the derivatives
@mh¡1K(x=h)

@xm
and

@m+2h¡1K(x=h)
@h@xm+1 both

remain uniformly bounded as h varies in H and x varies in (¡1;1). Then
as n ¡! 1, the 2-parameter stochastic process

n1=2
"
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

#

with (h; x) 2 H £ I converges weakly to a Gaussian process on H £ I with
zero mean and covariance function

cov(h1; x1; h2; x2) = COV
Ã
@mh¡11 Kf(x1 ¡X)=h1g

@xm1
;
@mh¡1

2 Kf(x2 ¡X)=h2g
@xm2

!
;

where X has distribution F .

Let us next consider the regression problem based on independent obser-
vations (Y1; X1); (Y2;X2); : : : ; (Yn;Xn), and in this case we will assume that
f̂h(x) has the form n¡1 Pn

i=1 YiWn(h; x;Xi), where Wn is a smooth weight
function that arises from the kernel function in usual kernel regression or
kernel weighted local polynomial regression with bandwidth h. We will also
set Eff̂h(x)g =def n¡1

Pn
i=1E(YijXi)Wn(h; x;Xi) as before.

Theorem 3.2 : Suppose that (Y1;X1); (Y2; X2); : : : ; (Yn;Xn) are i.i.d
observations with a common bivariate distribution Gn such that we have
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sup
n¸1

sup
x2I
EGn

n
jY ¡ E(Y jX = x)j2+½ jX = x

o
< 1 for some ½ > 0, and as

in Theorem 3.1, I and H are compact subintervals of (¡1;1) and (0;1)
respectively. For integer m ¸ 0, assume that as n ¡! 1,

n¡1
nX

i=1
V ARGn(YijXi)

@mWn(h1; x1; Xi)
@xm1

@mWn(h2; x2; Xi)
@xm2

converges in probability to a covariance function cov(h1; x1; h2; x2) for all
(h1; x1) and (h2; x2) 2 H £ I, and

n¡(1+½=2)
(
max
1·i·n

¯̄
¯̄
¯
@mWn(h; x;Xi)

@xm

¯̄
¯̄
¯

½) nX

i=1

(
@mWn(h; x;Xi)

@xm

)2

¡! 0

in probability for all (h; x) 2 H £ I. Also, assume that as h varies in H

and x varies in I, V ARGn(YijXi)
(
@m+2Wn(h; x;Xi)
@h@xm+1

)2

will be uniformly

dominated by a positive function M(Xi) such that sup
n¸1
EGnfM(Xi)g < 1.

Then as n ¡! 1, the 2-parameter stochastic process

n1=2
"
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

#

with (h; x) 2 H £ I converges weakly to a Gaussian process on H £ I with
zero mean and covariance function cov(h1; x1; h2; x2).

When Fn ´ F or Gn ´ G for all n ¸ 1 (G being a ¯xed bivariate distri-
bution), Theorems 3.1 and 3.2 yield the weak convergence of the empirical
scale space surfaces and their derivatives under the standard i.i.d set up. On
the other hand, if we take Fn = F̂n i.e. the usual empirical distribution of
the univariate data, or Gn = Ĝn i.e. the usual empirical distribution of the
bivariate data, in view of the uniform strong consistency of the empirical
distribution function based on i.i.d data (Glivenko-Cantelli theorem), we get
the bootstrap versions of the weak convergence results. In that case, Theo-
rems 3.1 and 3.2 imply that the weak convergence of the scale space surfaces
(as well as their derivatives) to appropriate Gaussian processes will hold even
under the bootstrap or resampled distributions. These results are useful in
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setting up bootstrap con¯dence sets for theoretical scale space surfaces and
their derivatives and also for carrying out bootstrap tests of signi¯cance for
their features [see Chaudhuri and Marron (1997)].

Note that the conditions assumed on the kernel function in Theorem
3.1 are satis¯ed for many standard kernels including the Gaussian kernel.
Similarly, the conditions assumed on the weight function in Theorem 3.2 are
satis¯ed for many standard kernel regression estimates and kernel weighted
local polynomial estimates for suitable distributions of (Y;X). Observe that a
natural estimate for the covariance function in the case of density estimation
is

dcov(h1; x1; h2; x2) = n¡1
nX

i=1

@mh¡11 Kf(x1 ¡Xi)=h1g
@xm1

@mh¡1
2 Kf(x2 ¡Xi)=h2g

@xm2

¡ n¡2
Ã nX

i=1

@mh¡1
1 Kf(x1 ¡Xi)=h1g

@xm1

! Ã nX

i=1

@mh¡1
2 Kf(x2 ¡Xi)=h2g

@xm2

!
;

which can be computed from the data in a straight forward way. Similarly,
in the regression problem, a natural estimate for the covariance function is

dcov(h1; x1; h2; x2) = n¡1
nX

i=1

dV AR(YijXi)
@mWn(h1; x1; Xi)

@xm1

@mWn(h2; x2; Xi)
@xm2

;

which too can be easily computed from the data once we have a suitable
estimate for the conditional variance V AR(YijXi).

We will now state the last theorem in this section, which is related to
the behavior of the di®erence between the empirical and the theoretical scale
space surfaces under the supremum norm on H £ I and the uniform conver-
gence of the empirical version to the theoretical one as the sample size grows.

Condition A1 : In the set up of Theorem 3.1, let the smooth kernel

K(x) be such that for integer m ¸ 0, the derivatives
@m+1h¡1K(x=h)

@xm+1 and
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@m+1h¡1K(x=h)
@h@xm

both remain uniformly bounded as h varies in H and x
varies in (¡1;1).

Condition A2 : In the set up of Theorem 3.2, as h varies in H and x
varies in I, both of

VARGn(Yi jXi)
(
@m+1Wn(h; x ;Xi)

@xm+1

)2

and

VARGn(Yi jXi)
(
@m+1Wn(h; x ;Xi)

@h@xm

)2

are uniformly dominated by a positive functionM ¤(Xi) such that sup
n¸1
EGnfM ¤(Xi)g <

1.
Theorem 3.3 : Assume either the set up of Theorem 3.1 and Con-

dition A1 or that of Theorem 3.2 and Condition A2. Then as n ¡! 1,

sup
x2I;h2H

n1=2
¯̄
¯̄
¯
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

¯̄
¯̄
¯ converges weakly to a random variable

that has the same distribution as that of sup
x2I;h2H

jZ(h; x)j. Here Z(h; x) with
h 2 H and x 2 I is a Gaussian process with zero mean and covariance func-
tion cov(h1; x1; h2; x2) as de¯ned in Theorem 3.1 or Theorem 3.2 so that

Prf Z(h; x) is continuous for all (h; x) 2 H £ I g = 1 ;

and consequently Pr
(

sup
x2I;h2H

jZ(h; x)j <1
)
= 1.

It immediately follows from the preceding theorem that we have

sup
x2I;h2H

¯̄
¯̄
¯
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

¯̄
¯̄
¯ = OP (n

¡1=2) as n ¡! 1 :

This uniform n1=2-consistency of the empirical scale space surfaces and their
derivatives ensure convergence of the empirical versions of the \critical band-
widths" and the \mode tree" to their theoretical (or population) counterparts
as the sample size grows.
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Note that all the weak convergence results in this section have been es-
tablished under the assumption that both of H and I are ¯xed compact
subintervals of (0;1) and (¡1;1) respectively. Compactness of the set
H £ I enables us to exploit standard results on weak convergence of a se-
quence of probability measures on a space of continuous functions de¯ned
on a common compact metric space. However, conventional asymptotics for
nonparametric curve estimates allows the smoothing parameter h to shrink
with growing sample size. There frequently one assumes that hn is of the or-
der n¡° for some appropriate choice of 0 < ° < 1 so that the estimate f̂hn(x)
converges to the \true function" f(x) at an \optimal rate". This makes one
wonder about the asymptotic behavior of the empirical scale space surface
when h varies inHn = [an¡°; b], where a; b > 0 are ¯xed constants. Extension
of our weak convergence results along that direction will be quite interesting,
and we leave it as a challenging open problem here.

4 Some Applications
In nonparametric curve estimation a question of fundamental importance is
which of the observed features in an estimated curve are really signi¯cant,
and which ones are spurious artifacts of random noise in the data. In the scale
space literature, \blobs" in scale space surface are used as the primary tools
for assessing signi¯cance of peaks observed in smooth curves at various levels
of scale. Readers are referred to Lindeberg (1994) for detailed discussion
on \blobs" and related mathematics. On the other hand, in the statistics
literature on mode testing [see e.g. Good and Gaskins (1980), Silverman
(1981), Hartigan and Hartigan (1985), Donoho (1988), MÄuller and Sawitzki
(1991), Hartigan and Mohanty (1992), Mammen, Marron and Fisher (1992),
Minnotte and Scott (1993), Fisher, Mammen and Marron (1994), Marchette
and Wegman (1997), Minnotte (1997)], various statistical tests have been
proposed for measuring the signi¯cance of modes in estimated curves. It
will be interesting to note here that some of these tests, which are based
on Silverman's \critical bandwidths", are comparable with the signi¯cance
measures based on \lifetimes of blobs" (i.e. the ranges of the scale over
which the \blobs" exist in the scale space surface). Similarly, other measures
of \blob" signi¯cance that are obtained from the sizes and spatial extents
of \blobs" have close connection with statistical tests based on MÄuller and
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Sawitzki's \excess mass estimates".

We have already pointed out that features like peaks, valleys, points of
in°exion, etc. of a smooth curve can be characterized in terms of zero cross-
ings of derivatives. Hence the signi¯cance of such features, as discussed in
Section 2, can be judged from statistical signi¯cance of zero crossings or
equivalently the sign changes of derivatives. This idea has been successfully
exploited by Chaudhuri and Marron (1997) in developing a simple yet ef-
fective tool called SiZer for exploring signi¯cant structures in curves. Let

us now consider the null hypothesis H (h;x)
0 :

@mEff̂h(x)g
@xm

= 0 for a ¯xed
x 2 I and an h 2 H. Then a statistical test can be carried out for this

hypothesis based on
@mf̂h(x)
@xm

, and if H(h;x)
0 is rejected, one can claim to have

statistically signi¯cant evidence for
@mEff̂h(x)g
@xm

being positive or negative

depending on the sign of
@mf̂h(x)
@xm

. Then each point of signi¯cant zero cross-

ing of
@mf̂h(x)
@xm

at a given level of scale (i.e. h) will be located between a pair
of points x1; x2 2 I such that there will be signi¯cant evidence in the data

against both of H (h;x1)
0 and H(h;x2)

0 , and
@mf̂h(x1)
@xm1

and
@mf̂h(x2)
@xm2

will have

opposite signs. We have already seen in the preceding section that the pro-

cess n1=2
"
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

#
has a limiting Gaussian distribution, and

this can be used to construct simultaneous asymptotic tests for the family of
hypotheses fH (h;x)

0 jh 2 H; x 2 Ig. We now state a theorem that highlights
performance of such tests.

Theorem 4.1 : Assume that either all the conditions in Theorem 3.1 and
Condition A1 (in the case of density estimation) or those in Theorem 3.2 and
Condition A2 (in the case of regression) hold. Let q(1¡®) be the (1 ¡ ®)-th
quantile of the continuous distribution of sup

x2I;h2H
jZ(h; x)j, where Z(h; x) is

the Gaussian process on H £ I with covariance function cov(h1; x1; h2; x2)
introduced in Theorem 3.3. Consider the statistical test that accepts the

16



null hypothesis H(h;x)
0 :

@mEff̂h(x)g
@xm

= 0 if
¯̄
¯̄
¯
@mf̂h(x)
@xm

¯̄
¯̄
¯ · n¡1=2q(1¡®) and

concludes signi¯cant evidence for
@mEff̂h(x)g
@xm

being positive or negative if

@mf̂h(x)
@xm

> n¡1=2q(1¡®) or < ¡n¡1=2q(1¡®) respectively. Then the asymptotic

simultaneous level of this test for the entire family of hypotheses fH(h;x)
0 jx 2

I; h 2 Hg will be ®. In other words, if the hypotheses H (h;x)
0 are true for all

(h; x) 2 S µ H £ I, all of them will be accepted by the test with asymptotic
probability at least (1¡®) as n ¡! 1. Further, this test will have the prop-

erty that for any ¯xed h 2 H, if
@mEff̂h(x)g
@xm

has k ¸ 1 sign changes (i.e.
k zero crossings) as x varies in I, the test will detect signi¯cant evidence for
all of these k sign changes with probability tending to one as n ¡! 1.

Finding the exact distribution of the supremum of the absolute value
of a general Gaussian process is an almost impossible task, and the results
available in the literature can only provide exponential bounds for the prob-

ability Pr
(

sup
x2I;h2H

jZ(h; x)j > ¸
)

for ¸ > 0 [see e.g. Adler (1990) for some

detailed discussion]. Therefore in practice it may not be possible to evaluate
the quantile q(1¡®) analytically, and one may have to use some approximation
for it such as an estimate based on the bootstrap [see Chaudhuri and Marron
(1997)]. Note that so long as such an approximation converges to the true
quantile as the sample size grows to in¯nity, the asymptotic performance of
the test described in the preceding theorem remains una®ected. One nice
feature of the statistical test considered here is that it tries to detect the
positions of signi¯cant zero-crossings in the derivative of the scale space sur-
face in addition to the number of such zero crossings at di®erent levels of the
scale. Mode testing procedures considered in the literature however focus
only on the number of modes of the curve, with little or no attention to their
positions.

Figure 5a shows the SiZer map for the data shown in Figure 1a. Regions
in scale space are shaded blue for signi¯cantly increasing, red for signi¯cantly
decreasing, purple for unable to distinguish (i.e. the con¯dence interval for
the derivative contains the origin), and gray for insu±cient data in each
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window. The SiZer map shows that the underlying regression is signi¯cantly
increasing near x = 0:1, and near x = 0:4, and is signi¯cantly decreasing near
x = 0:25 and x = 0:7. However the spikes in the regression curve, shown in
Figure 1a, at x = 0:65 and x = 0:75 are not discernible from the data with
this level of noise. Many more applications of SiZer are shown in Chaudhuri
and Marron (1997).

[put Figure 5 about here]

Figure 5: Figure 5a shows the SiZer map corresponding to the data and
the family of smooths shown in Figure 1b. This shows which modes in the
smooths are signi¯cant, and which are spurious sampling artifacts. Figure 5b
shows the family surface with panels shaded according to the SiZer colors.

A statistical test that has simultaneous asymptotic level ® for all of the
null hypotheses H(h;x)

0 as x varies in I and h varies in H may turn out to
be overly conservative in many ¯nite sample situations. If necessary, one
may consider tests that have simultaneous asymptotic level ® only for the
hypotheses H(h;x)

0 as x varies in I for some ¯xed h 2 H. In some sense, it
may be quite reasonable to consider di®erent levels of the scale separately
and carry out separate tests for di®erent curves corresponding to di®erent
values of h instead of pooling those curves together and conducting one si-
multaneous test for all of them. In this case, one has to use (1 ¡ ®)-th
quantiles of the distributions of sup

x2I
jZ(h; x)j for di®erent h 2 H. Readers

are referred to Chaudhuri and Marron (1997) for detailed discussion on dif-
ferent statistical tests for signi¯cant zero crossings of the derivative of the
scale space surface and many illustrative examples that demonstrate their
numerical implementation and performance.

5 Appendix : The Proofs
Proof of Theorem 2.1 : Let us denote the theoretical scale space surface
Eff̂h(x)g by gh(x). First observe that since E here means conditional ex-
pectation given X1;X2; : : : Xn and the Yi's are assumed to be conditionally
independent given the Xi's, in the case of Priestley-Chao estimate (A), we
have

18



gh(x) = (nh)¡1
nX

i=1
E(YijXi)Kf(x¡Xi)=hg ;

while in the case of Gasser-MÄuller estimate (B), we have

gh(x) =
nX

i=1
E(YijXi)

Z ti
ti¡1

(1=h)Kf(x¡ s)=hg ;

where ¡1 = t0 < X1 < t1 < X2 < t2 < : : : < tn¡1 < Xn < tn = 1 as
before. Next observe that for Gaussian kernel K(x) = (1=

p
2¼) exp(¡x2=2)

and any integer m ¸ 0, we have

@mf̂h1(x)
@xm

¤K(x=h2) =
@mf̂ph21+h22(x)

@xm
and
@mgh1(x)
@xm

¤K(x=h2) =
@mgph21+h22(x)

@xm

for all h1; h2 > 0 and both of Priestley-Chao and Gasser-MÄuller estimates.
Here ¤ denotes usual convolution, and note that we are using the fact that
K(x=h1) ¤ K(x=h2) = K

µ
x=

q
h21 + h22

¶
. Now it follows from total posi-

tivity of Gaussian kernel and the variation diminishing property of func-
tions generated by convolutions with totally positive kernels [see Schoenberg

(1950), Karlin (1968)] that the number of sign changes in
@mf̂h(x)
@xm

and that

in
@mgh(x)
@xm

will both be monotonically decreasing function of h.

Suppose next that
@mf̂h0(x)
@xm

has k ¸ 0 sign changes for some ¯xed h0 > 0.
Then arguing as in Silverman (1981), it is easy to see using the continuity

of
@mf̂h(x)
@xm

as a function of h and x that there exists ² > 0 such that for

all h 2 [h0; h0 + ²) @
m f̂h(x)
@xm will have at least k sign changes. Hence the

monotonic decrease in the number sign changes with increase in h implies

that the number of sign changes in
@mf̂h(x)
@xm

will be exactly equal to k for all
h 2 [h0; h0 + ²). An identical argument can be given for the number of sign

changes in
@mgh(x)
@xm

. This completes the proof of right continuity. 2
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Proof of Theorem 2.2 : Let (x0; h0; f̂h0(x0)) be a non-degenerate crit-

ical point i.e.
@f̂h0(x0)
@x0

= 0 and
@2f̂h0(x0)
@x20

6= 0. Then using the continuity of

@2 f̂h(x)
@x2 as a function of h and x there will be an ² > 0 and a ± > 0 such that
@2f̂h(x)
@x2

will be non-zero and have the same sign for all h 2 (h0 ¡ ²; h0 + ²)
and x 2 (x0 ¡ ±; x0 + ±). Further, in view of the implicit function theorem
of calculus, ² and ± can be so chosen that for every h 2 (h0 ¡ ²; h0 + ²)

there will be a unique x = x(h) 2 (x0 ¡ ±; x0 + ±) satisfying
@f̂h(x)
@x

= 0,

and (x(h); h; f̂hfx(h)g) will automatically be a non-degenerate critical point.
Now, if h0 is a \critical bandwidth", it must correspond to a point of bifur-
cation (x0; h0; f̂h0(x0)) of the trajectory of critical points on the scale space
surface. Hence, if ² and ± are su±ciently small, for all h 2 (h0 ¡ ±; h0], there

will be more than one x's in (x0 ¡ ±; x0 + ±) satisfying
@f̂h(x)
@x

= 0. This
contradicts the uniqueness of x(h) and completes the proof of the ¯rst part
of the theorem.

For the second part of the theorem let us observe that we have for x =

x(h) 2 (x0 ¡ ±; x0 + ±),
@f̂h(x)
@x

=
@f̂hfx(h)g
@fx(h)g = 0 for all h 2 (h0 ¡ ±; h0 + ±).

Then the rule for di®erentiation of implicit functions leads to

@2f̂h(x)
@h@x

+
@2f̂h(x)
@x2

@x
@h

= 0 ;

which implies that at x = x(h), we will have

@x
@h

= ¡
(
@2f̂h(x)
@h@x

) (
@2f̂h(x)
@x2

)¡1

:

Finiteness of the drift velocity is now immediate. 2

Proof of Theorem 3.1 : Let us ¯rst ¯x (h1; x1); (h2; x2); : : : ; (hk; xk) 2
H £ I and t1; t2; : : : ; tk 2 (¡1;1). Then observe that

n1=2
kX

i=1
ti

"
@mf̂hi(xi)
@xmi

¡ @
mEff̂hi(xi)g
@xmi

#
= Zn (say)
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has zero mean, and its variance converges to
kX

i=1

kX

j=1
titjcov(hi; xi; hj; xj) as

n ¡! 1 in view of the weak convergence of Fn to F and uniform bounded-

ness of
@mh¡1K(x=h)

@xm
as h varies in H and x varies in (¡1;1). Further,

uniform boundedness of
@mh¡1K(x=h)

@xm
implies that Lindeberg's condition

holds for Zn, and consequently its limiting distribution will be normal. This
in turn implies using Cramer-Wold device that as n ¡! 1, the joint limiting
distribution of

n1=2
"
@mf̂hi(xi)
@xmi

¡ @
mEff̂hi(xi)g
@xmi

#
= Un(hi; xi) (say)

for 1 · i · k is multivariate normal with zero mean and cov(hi; xi; hj; xj) as
the (i; j)-th entry of the limiting variance covariance matrix for 1 · i; j · k.

Next ¯x h1 < h2 in H and x1 < x2 in I . Then uniform boundedness of
@m+2h¡1K(x=h)
@h@xm+1 implies that

EFn fUn(h2; x2) ¡ Un(h2; x1) ¡ Un(h1; x2) + Un(h1; x1)g2

· nEFn

(
@mf̂h2(x2)
@xm2

¡ @
mf̂h2(x1)
@xm1

¡ @
mf̂h1(x2)
@xm2

¡ @
mf̂h1(x1)
@xm1

)2

· C1(h2 ¡ h1)2(x2 ¡ x1)2

for some constant C1 > 0. It now follows from one of the main results in
Bickel and Wichura (1971) that the sequence of processes

n1=2
"
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

#

on H £ I will have the tightness property. This completes the proof of the
theorem. 2

Proof of Theorem 3.2 : Once again let us begin by ¯xing (h1; x1); (h2; x2),
: : : ; (hk; xk) 2 H£I and t1; t2; : : : ; tk 2 (¡1;1). Then it is straight forward
to verify by direct algebraic computation that the conditional distribution of
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n1=2
kX

i=1
ti

"
@mf̂hi(xi)
@xmi

¡ @
mEff̂hi(xi)g
@xmi

#
= Zn (say)

given X1;X2; : : : ; Xn has zero mean, and its variance is

n¡1
nX

i=1

nX

j=1
titj

nX

l=1
V ARGn(YljXl)

@mWn(h1; xi; Xl)
@xmi

@mWn(h2; xj; Xl)
@xmj

;

which converges in probability to
kX

i=1

kX

j=1
titjcov(hi; xi; hj ; xj) as n ¡! 1.

Also, uniform boundedness of the conditional (2 + ½)-th central moment of
Y given X = x and the condition that

n¡(1+½=2)
(
max
1·i·n

¯̄
¯̄
¯
@mWn(h; x;Xi)

@xm

¯̄
¯̄
¯

½) nX

i=1

(
@mWn(h; x;Xi)

@xm

)2

¡! 0

in probability as n ¡! 1 together imply that Lindeberg's condition holds
for Zn, and consequently its limiting distribution must be normal. Finally,
it follows using Cramer-Wold device as in the proof of Theorem 3.1 that as
n ¡! 1, the joint limiting distribution of

n1=2
"
@mf̂hi(xi)
@xmi

¡ @
mEff̂hi(xi)g
@xmi

#
= Un(hi; xi) (say)

for 1 · i · k is multivariate normal with zero mean and cov(hi; xi; hj; xj) as
the (i; j)-th entry of the limiting variance covariance matrix for 1 · i; j · k.

Next ¯x h1 < h2 in H and x1 < x2 in I . Then the last condition assumed
in the statement of the theorem implies that

EGn fUn(h2; x2) ¡ Un(h2; x1) ¡ Un(h1; x2) + Un(h1; x1)g2

= n¡1EGnn
¡1

nX

i=1
V AR(YijXi)

(
@mWn(h2; x2; Xi)

@xm2
¡ @

mWn(h2; x1; Xi)
@xm1

¡@
mWn(h1; x2; Xi)

@xm2
¡ @

mWn(h1; x1; Xi)
@xm1

)2
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· C2(h2 ¡ h1)2(x2 ¡ x1)2EGn
(
n¡1

nX

i=1
M(Xi)

)
· C3(h2 ¡ h1)2(x2 ¡ x1)2

for some constants C2 and C3 > 0. It now follows [see Bickel and Wichura
(1971)] that the sequence of processes

n1=2
"
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

#

on H £ I will have the tightness property, and consequently the assertion in
the theorem follows. 2

Proof of Theorem 3.3 : Let us begin by observing that for (h1; x1) and
(h2; x2) in H £ I , we have

E fZ(h2; x2) ¡ Z(h1; x1)g2

= cov(h2; x2; h2; x2) + cov(h1; x1; h1; x1) ¡ 2cov(h2; x2; h1; x1)

· C4f(h2 ¡ h1)2 + (x2 ¡ x1)2g
for some constant C4 > 0. The above follows straight away from the fact
that

E fUn(h2; x2) ¡ Un(h1; x1)g2 · C4f(h2 ¡ h1)2 + (x2 ¡ x1)2g

for all n ¸ 1 with some appropriate choice of C4 if either Condition A1
or Condition A2 holds. Here Un is as in the proof of Theorem 3.1 or 3.2
depending on whether we have a density estimation or a regression problem.
Next consider the compact metric space H£I metrized by the pseudo metric

df(h2; x2); (h1; x1)g =
h
E fZ(h2; x2) ¡ Z(h1; x1)g2

i1=2
;

which is nothing but the so called canonical metric associated with the Gaus-
sian process Z(h; x). Let N(²) be the smallest number of closed d-balls
with radius ² > 0 in this metric space that are required to cover H £ I.
So, logfN (²)g is the usual metric entropy of H £ I under the metric d.
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Note that for any ² > diameter(H £ I), N(²) = 1 and N(²) = O(²¡2) for
0 < ² · diameter(H £ I). Hence, we must have

Z 1

0
[logfN (²)g]1=2d² < 1.

This ensures the continuity of the sample paths of the process Z(h; x) as well
as the ¯niteness of sup

x2I;h2H
jZ(h; x)j with probability one [see Adler (1990, pp.

104{107)]. The proof of the theorem is now complete in view of the weak
convergence of the centered and normalized empirical scale space process to
the Gaussian process Z(h; x) on H £ I established in Theorems 3.1 and 3.2.
2

Proof of Theorem 4.1 : First observe that if H(h;x)
0 is true for all

(h; x) 2 S µ H £ I, we have
@mEff̂h(x)g
@xm

= 0 for all (h; x) 2 S. Hence,

Pr
n
H(h;x)

0 is accepted for all (h; x) 2 S
o

= Pr
( ¯̄

¯̄
¯
@mf̂h(x)
@xm

¯̄
¯̄
¯ · n¡1=2q® for all (h; x) 2 S

)

¸ Pr
(

sup
(h;x)2H£I

n1=2
¯̄
¯̄
¯
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

¯̄
¯̄
¯ · q®

)

¡! Pr
(

sup
(h;x)2H£I

jZ(h; x)j · q®
)

= (1 ¡ ®) :

Note that the convergence in the last step asserted above follows from the
weak convergence results established in Theorems 3.1 and 3.2, and this com-
pletes the proof of the ¯rst half of the theorem.

Next note that if for a ¯xed h 2 H ,
@mEff̂h(x)g
@xm

has k ¸ 1 sign changes,
we will be able to choose x1 < x2 < : : : < xk < xk+1 in I such that
@mEff̂h(xi)g
@xmi

6= 0 for all 1 · i · k+1, and
@mEff̂h(xi)g
@xmi

and
@mEff̂h(xi+1)g

@xmi+1
will have opposite signs for all 1 · i · k. Since n¡1=2q® ¡! 0 as n ¡! 1,
the second half of the theorem now follows from the fact that

max
1·i·k+1

¯̄
¯̄
¯
@mf̂h(xi)
@xmi

¡ @
mEff̂h(xi)g
@xmi

¯̄
¯̄
¯
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· sup
(h;x)2H£I

¯̄
¯̄
¯
@mf̂h(x)
@xm

¡ @
mEff̂h(x)g
@xm

¯̄
¯̄
¯ = OP (n

¡1=2) ;

which has been observed following Theorem 3.3. 2
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