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Abstract

A new method of statistical classiÞcation (discrimination) is proposed. The method
is most effective for high dimension low sample size data. Its value is demonstrated
through a new type of asymptotic analysis, and via a simulation study.
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1 Introduction

High dimension, low sample size (HDLSS) data present special challenges to many classical
statistical techniques. For example, in much of standard multivariate analysis, the usual
Þrst step of �sphering the data�, by multiplying by the root inverse covariance matrix, is
impossible because the empirical covariance matrix is not of full rank. Because such data
are appearing more and more frequently in a variety of settings, including micro-arrays for
gene expression, medical image analysis, and chemometrics, it is no longer appropriate to
simply insist that more data must be gathered before analysis. This motivates a need for
development of a large range of new (multivariate) statistical procedures.
Here the statistical context of classiÞcation (also called discrimination) is considered.

The common approaches of Fisher Linear Discrimination (FLD) and Gaussian Likelihood
ratio are generally inadequate. The Gaussian Likelihood ratio fails completely in the HDLSS
case, because there is no density available. The standard FLD formula cannot be computed
because the empirical covariance matrix is not invertible. This hurdle can be overcome,
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using a generalized inverse, but the result is usually poor, because a spurious direction is
usually found. In particular, when the dimensionality is higher than the sample size, FLD
will often Þnd a direction vector with the property that the projected data for each class will
pile up on a single point. Such a direction is �perfect� for discrimination of the given data,
but is usually very poor for new data, i.e. it results in poor �generalization performance�.
A very simple and intuitive approach to discrimination in HDLSS situations is the �Mean

Difference� (MD) method, where one simply uses the direction vector which is the difference
of the two mean vectors. A new data point is projected onto the difference vector, and the
class whose mean is closest to the given data point is chosen. A shrinkage based reÞnement of
this idea gives the �centroid method� of Tibshirani, Hastie, Narasimhan and Chu (2002a,b).
This method is Bayes Risk Optimal, regardless of the dimension, if both class distributions
are multivariate Gaussian, with the same spherical covariance structure. However, in other
cases, either non-Gaussian distributions, or non-identical, or non-spherical covariance, it can
be far from effective.
This motivates a search for improved methods of classiÞcation in HDLSS settings. The

Support Vector Machine (SVM), see Vapnik (1982,1995), has improved properties of this
type. However, as noted by Marron and Todd (2002), this has some undesirable properties
for HDLSS situations, in terms of data (projected onto the direction vector) also piling at the
margin. Marron and Todd went on to propose Distance Weighted Discrimination (DWD),
which like the SVM relies on sophisticated optimization techniques. DWD gives superior
performance to SVM for HDLSS data because it replaces the margin based optimization
criterion with a �distance weighted� version, which avoids the data piling on the margin.
In this paper, we propose a simpler method, that also gives effective performance in a

variety of HDLSS situations. Starting with the Mean Difference idea, we provide robust-
ness against non-Gaussian distributions by replacing the sample means with Huber�s L1

M-estimate, a much more robust notion of �center�. We also address the problem of non-
spherical covariance, by using a rank based quantile method, on the data projected onto the
difference vector, for deciding the Þnal classiÞcation. The resulting method is called Robust
Centroid Quantile (RCQ) classiÞcation.
Details of the RCQ discrimination method are given in Section 2. The use of asymptotic

analysis for assessment and comparison to other methods can be found in Section 3. The
asymptotics are along the lines of Hall and Marron (2003), and are completely different
from those appearing elsewhere (yet are appropriate for HDLSS settings) in that the sample
size is Þxed, and the dimension tends to inÞnity. This mode of asymptotics results in a
particular limiting geometry, that is explained in Section 3.1. This geometry is then used to
understand how SVM, DWD and RCQ relate to each other in Section 3.2, where it is seen
that the direction chosen by RCQ has less variability than SVM direction (a property shared
by DWD), and that RCQ has better properties in the unequal sample size case than DWD.
Further investigation of this comparison is done in a simulation study in Section 4, where it
is seen that as expected, no method is uniformly best. RCQ is the best, or else quite similar
to the best, rather often. It is especially strong in situations with non-spherical covariance
structure.
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2 RCQ ClassiÞcation

Suppose that X = {X1, · · · ,Xn1} and Y = {Y1, · · · , Yn2}, are two independent training sets,
which are each iid samples from d-dimensional populations. In the HDLSS case, n1, n2 ¿ d.
For medical image analysis examples, n1 and n2 are frequently in the range of 20 to 100, and
d is in the high tens to hundreds. In the case of micro-array gene expression data, n1 and
n2 are usually in the lower tens, while d is in the thousands to tens of thousands. Many
chemical spectral data sets have n1 and n2 also in the tens, and d in the thousands.
The classiÞcation (discrimination) problem is to assign new observations, i.e. new d-

dimensional vectors to Class X or Class Y, depending on which is �most appropriate�. See
Duda, Hart and Stork (2000) for an overview of available classiÞcation methods. In this
paper, we restrict attention to two class methods for simplicity. We also restrict attention
to methods which have give a �direction vector� where projection of the data gives effective
separation of the classes. We prefer such methods, because they frequently give insight into
differences between the classes, of a type that is unavailable from the widely studied nearest
neighbor and neural network methods.
As noted in Section 1, the SVM is a promising method of this type, which is substantially

improved by DWD in HDLSS settings. In this paper, we propose a classiÞcation rule which
is simpler than DWD, based on robust centroid Þtting and quantile searching.
Let CX denote a robust centroid of the X population, and CY that of the Y population.

There are many choices of �robust population centroid�, and a large literature on this topic,
see e.g. Hampel, Ronchetti, Rousseeuw and Stahel (1986), Huber (1981), Rousseeuw and
Leroy (1987) and Staudte and Sheather (1990).
The new RCQ method proposed in this paper proceeds as follows:

(i) Find robust estimators �CX and �CY of CX and CX respectively. We take �CX and �CY to be
�L1 M-estimate of location�, detailed in Section 2.1, although many other choices are
possible as well. Let �CXY be the vector �CY − �CX and let X ∗ = {X∗

1 , · · · , X∗
n1
} denote

the projection of X onto the unit vector �CXY /
°°° �CXY °°°, and let Y∗ = {Y ∗1 , · · · , Y ∗n2}

denote the same projections of Y.
(ii) The classiÞcation boundary in Rd is the hyperplane P (the RCQ plane) whose unit

normal vector is �CXY /
°°° �CXY °°°, and whose intercept is deÞned in terms of the projected

data:

�C∗ = median

(
C :

1

n1

n1X
i=1

1(X∗
i ≤ C) =

1

n2

n2X
j=1

1(Y ∗j ≥ C)
)
. (1)

(iii) Classify a new vector Z as coming from the X− or Y− population according to its
position with respect to the hyperplane P. In particular, assign Z to Class X when
the inner product of Z with �CXY /

°°° �CXY °°° is ≤ �C∗.

Since the solution set of the inner equality in (1) may be an either a point or an interval,
we take �C∗ as the median to make it �most representative�.
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Note that �C∗ can be viewed as an empirical estimator of the population version

C∗ = median{C : P (X∗ ≤ C) = P (Y ∗ ≥ C)}, (2)

where X∗ and Y ∗ represent projection onto the population normal vector CXY ≡ CY −
CX . The discrimination rule, including the cutoff point C∗ and the hyperplane P can be
interpreted in terms of Rd without projecting onto CXY .
The cutoff �C∗, deÞned at (1) can be computed as

�C∗ ≡ median{c : F ∗X(c) = 1−G∗Y (c)}, (3)

where F ∗X and G∗Y are empirical distribution functions of X
∗ and Y ∗, respectively. We

approximated these functions, by linear interpolation, over an equally spaced grid of 100
points from the median of X ∗ to the median of Y∗.

2.1 Robust Centroid Estimation

The robust centroid estimate studied here is the �L1 M-estimate of location�, see Section
6.3 of Huber (1981). Given a multivariate data set, such as X = {X1, · · · ,Xn1} ⊆ Rd, this
is deÞned as: bθ = argmin

θ

n1X
i=1

kXi − θk2 ,

where k·k2 denotes the usual Euclidean norm on Rd. Note that bθ may be found as the
solution of the equation:

0 =
∂

∂θ

n1X
i=1

kXi − θkp2 =
n1X
i=1

Xi − θ
kXi − θk2

. (4)

Insight as to how this location estimate dampens the effect of outliers comes from recog-
nizing that

Xi − θ
kXi − θk2

+ θ = PSph(θ,1)Xi,

i.e. the projection of Xi onto the sphere centered at θ, with radius 1. Thus the solution of
(4) is the solution of

0 = avg
©
PSph(θ,1)Xi − θ : i = 1, ..., n1

ª
.

Hence bθ may be understood by considering candidate unit spheres centered at θ, projecting
the data onto the sphere, then moving the sphere around until the average of the projected
values is at the center of the sphere. These ideas are illustrated in Figure 4.2 of Locantore,
et. al (1999).
It can be shown that in one dimension, bθ is any sample median. Hence bθ has been called

�the spatial median� for higher dimensions. Another consequence is that this location
estimate is not unique. However, Milasevic and Ducharme (1987) have shown that in more
than one dimension, bθ is unique, unless all of the data lie in a one dimensional subspace.
Other terminology has also been used, e.g. Haldane (1948) called it the �geometric median�
and made very early remarks on its robustness properties.
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A simple and direct iterative method for calculating bθ comes from Gower (1974) or from
Section 3.2 of Huber (1981). Given an initial guess, bθ0, iteratively deÞne:

bθ` = Pn1
i=1wiXiPn1
i=1wi

where
wi =

1°°°Xi − bθ`−1°°°
2

.

This iteration can be understood through the relationship

bθ` = bθ`−1 +
Pn1

i=1wi
³
Xi − bθ`−1´Pn1
i=1wi

= bθ`−1 + 1
n1

Pn1
i=1 PSph(θ`−1,1)Xi − bθ`−1

1
n1

Pn1
i=1wi

.

This shows that the next step is in the direction of the vector from the current sphere centerbθ`−1 to the mean of the projected data, 1
n1

Pn1
i=1 PSph(θ`−1,1)Xi. The length of the step is

weighted by the harmonic mean distance of the original data to the sphere center (so larger
steps are taken when the data are more spread). We take bθ0 to be the sample mean, and
iterate until either 20 steps have been taken, or the relative difference between bθ` and bθ`−1
was less than 10−6. More work should be done on veriÞcation and Þne tuning of these
choices in HDLSS setting, and it may be useful to use a different starting point, such as the
coordinate-wise median.

3 Properties

In this section, asymptotic analysis is done to compare the classiÞcation methods RCQ, SVM
and DWD. The asymptotics are unusual, and follow the ideas of Hall and Marron (2003),
who discovered an interesting geometry, discussed in Section 3.1.
This asymptotic analysis studies the limit as d→∞, for Þxed n1 and n2. Letting X(k)

denote the k-th entry of the vector X, useful technical assumptions are:
On average, the variance of the entries of the Class X data vectors is σ2:

1

d

dX
k=1

var(X(k))→ σ2. (5)

On average, the variance of the entries of the Class Y data vectors is τ 2:

1

d

dX
k=1

var(Y (k))→ τ 2. (6)

The average squared difference between means of the entries of the Class X and Class Y
data vectors is µ2:

1

d

dX
k=1

[E(X(k) −E(Y (k)))]2 → µ2. (7)
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X and Y are independent. (8)

Laws of Large Numbers for the sequence of entries in the Class X and Class Y data vectors
follow from:

The components of X and Y form ρ mixing time series, (9)

and from the moment conditions:

sup
k=1,...,d

E
¡
X(k)

¢4 ≤M, (10)

sup
k=1,...,d

E
¡
Y (k)

¢4 ≤M, (11)

for some M .

3.1 Geometry

Assume that the conditions above hold. From the geometric representation, developed by
Hall and Marron (2003) for the points in the sample, X say, we know that the distance
between Xi and Xj, for any i 6= j, approximately equals

√
2σ2d as d→∞, in the sense that

1√
d
{

dX
k=1

(X
(k)
i −X(k)

j )
2} 12 p→

√
2σ2,

as d → ∞, where X(k)
i is the k-th component of the vector Xi. Similarly, the distance

between Yi and Yj, for any i 6= j, approximately equals
√
2τ 2d, and the distance between

Xi and Yj, for any i, j, approximately equals ` ≡
p
(σ2 + τ 2 + µ2)d as d → ∞. Then

after rescaling each component of d-variate space by the factor d−1/2, we have the following
geometric structure for the samples X and Y (see Section 3.2 of Hall and Marron 2003):

After rescaling each component of d-variate space by the factor d−1/2, the
N = n1 + n2 points in X ∪ Y are asymptotically located at the vertices of a
convex N-polyhedron in (N − 1)-dimensional space, where the polyhedron has N
vertices and N(N − 1)/2 edges. Just n1 of the vertices are the limits of the n1
points of X , and are the vertices of an n1-simplex of edge length 21/2σ. The
other n2 vertices are the limits of the n2 points of Y, and are the vertices of an
n2-simplex of edge length 21/2τ . The lengths of the edges in the N-polyhedron
that link a vertex deriving from a point in X to one deriving from a point in Y,
are all of length �`. An N-polyhedron is a Þgure in (N − 1)-dimensional space
that has just N vertices and has all its faces given by planes in (N − 1)-variate
space. The particular one discussed above has all the scale-invariant properties
of an N-simplex, and in particular has just

¡
N
k

¢
k-faces, or faces that are of

dimension k − 1. Thus, it has ¡N
1

¢
vertices,

¡
N
2

¢
edges, and so on.

The SVM method chooses the hyperplane which perpendicularly bisects the two closest
points in the convex hulls of the respective datasets. Asymptotically, the convex hulls are
precisely the n1− and n2− simplices the vertices of which represent the limits, as d → ∞,
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of the datasetsX and Y, respectively (see Hall and Marron, 2003). Note that each pair
of points from X and Y has the same limiting distance after rescaling by the factor d−1/2.
Then the SVM plane asymptotically perpendicularly bisects any pair of vertices from the
two simplices. Denote by XR the most closest point in X to the SVM plane, and YL that in
Y. Then the SVM hyperplane asymptotically perpendicularly bisects the line connecting X∗

R

and Y ∗L , where X
∗
R and Y

∗
L denote the projections on the normal vector of the SVM plane.

By the deÞnition in (1), �C∗ is exactly the middle point ofX∗
R and Y

∗
L if the two populations

are separated. Once the samples overlap, the quantile C∗ is a good choice for the cutoff point
since it is decided by the distributional structures of the two populations. It is difficult to give
mathematically the difference between the RCQ and the SVM rules when the dimensionality
and samples are Þxed.
However, when d→∞ the RCQ hyperplane P convergences to the limiting RCQ plane,

P0 say, it can be shown that the direction of the normal vector �CXY asymptotically coincides
with the direction of the vector Y ∗L −X∗

R, and �C
∗ is exactly the middle point of the limiting

points of X∗
R and Y

∗
L , (do a lemma about this in the appendix? ???) after rescaling by

the factor d−1/2, so that the RCQ plane asymptotically coincides with the SVM plane and
each edge of the simplices are asymptotically parallel to P0. That is, asymptotically for any
Þxed n1 and n2, the RCQ and the SVM rules choose the same separating hyperplane which
asymptotically coincides with the DWD plane only when n1 = n2 (see Hall and Marron
2003).
However, as shown in the next section the errors among DWD, RCQ and SVM rules

are totally different. In addition, the DWD and the SVM rules does not cope well with
differences of the sampling distributions, especially when the shapes are the same and the
variances are different for the two populations; while the RCQ rule robustly estimates the
normal vector and automatically adapts to the structures of the sampling distributions. This
will be reßected in the simulations in Section 4.

3.2 Error comparison among RCQ, SVM and DWD

The argument employed here for error comparison is basically from Hall and Marron (2003).
Let ri and si respectively denote the perpendicular distances from Xi and Yi to the RCQ
hyperplane P after rescaling by d−1/2, similarly let r and s be the distances to P from
the centroids �CX and �CY , respectively. Then r = n−11

Pn1
i=1 ri and s = n

−1
2

Pn2
i=1 si. Write

ri = r
0
i (P)+ξi(P) and si = s

0
i (P)+ηi(P), where r

0
i (P) and s

0
i (P) are the distances to P from

the simplex vertices to which Xi and Yi convergence, after rescaling by d−1/2, as d→∞; and
ξi(P) and ηi(P) are stochastic perturbations. Let the Þnite vectors v and v

0 be parameters
for intercepts and slopes of the hyperplane P and P0, respectively, where v = v0 + d−1/2w,
then following Hall and Marron (2003),

r0i (P) = r
0
i (P0) + d

−1/2wT úr0i + op(d
−1/2)

and

s0i (P) = s
0
i (P0) + d

−1/2wT ús0i + op(d
−1/2),
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where úr0i and ús
0
j denote the vectors of derivatives of r

0
i (P) and s

0
j(P) with respect to v,

evaluated at v0. Then

r0(P) = r0(P0) + d
−1/2wT úr0 + op(d−1/2)

and
s0(P) = s0(P0) + d

−1/2wT ús0 + op(d−1/2),

where úr0 and ús0 denote the averages of úr0i and ús
0
j , respectively. Again following Hall and

Marron (2003), ξi(P) and ηi(P) can be written as ξi(P) = d
−1/2ξ0i + op(d

−1/2) and ηj(P) =
d−1/2η0j + op(d

−1/2), where ξ0i and η
0
j are independent and normally distributed with mean

zero and variance, σ2X and σ
2
Y say respectively. It follows that

r = r0 + d
−1/2(ξ0 + wT úr0) + op(d−1/2),

and

s = s0 + d
−1/2(η0 + wT ús0) + op(d−1/2),

where ξ0, η0, r0 and s0 are respectively the averages of ξi(P), ηj(P), r
0
i (P) and s

0
i (P0). Since

r0i and s
0
i are all the same in the limit, then by the deÞnition of RCQ plane

ξ0 + wT úr0 = η0 + wT ús0 + op(1).

Then for any Þxed n1, n2, wT ( úr0− ús0) = η0− ξ0 asymptotically holds. Recall that ξ0i and η0j
are independent and normally distributed with mean zero, then when d→∞

wT (n−11

n1X
i=1

úr0i − n−12
n2X
j=1

ús0j) = n
−1
2

n2X
j=1

η0j − n−11
n1X
i=1

ξ0i ≈ 0, (12)

and the RCQ plane is, up to op(d−1/2) perturbations of v0, the plane P0 after d−1/2w has
been added to v0. Since w in (12) is approximately orthogonal to the vector n−11

Pn1
i=1 úr

0
i −

n−12
Pn2

j=1 ús
0
j which is a difference between two averages rather than an extremum as for SVM

(see Hall and Marron, 2003), the mean square of w is generally smaller than that for SVM,
which holds even for unequal n1 and n2 while for the DWD this is true only when n1 = n2.
This suggests a reason why the RCQ rule is effective more often than its alternatives in the
simulations below.

4 Simulations

This section reports the results of a simulation study comparing the simple centroid, SVM,
DWD and RCQ methods for HDLSS classiÞcation. The data are essentially iid standard
normal, with means +3/

³
2
√
d
´
for Class X and means −3/

³
2
√
d
´
for Class Y. We focus

on these important variations in HDLSS setting:

1. Sample Sizes: same (n1 = n2 = 25) or different (n1 = 25, n2 = 50).
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2. Class Variances: same (σ2 = τ 2 = (1)2) or different (σ2 = (1)2, τ 2 = (4)2).

3. Population Shape: Spherical Gaussian or with heteroscedasticity where the Þrst half
of the entries magniÞed by a factor of 4, and the second half are shrunken by a factor
of 1/4.

4. Population Shape: Standard Gaussian, or with 10% outliers of 10
√
d in the Þrst entry

only.

In the spirit of the mathematical results above, we Þxed n1 and n2 as indicated in (1)
above, and worked with a range of dimensions, d = 10, 25, 100, 400, 1600.

We computed the classiÞcation error rates, for all 2x2x2x2 = 16 setting above, for all 5
values of d. The full results are too voluminous to report here, so we present summaries,
and a detailed look at some of the most interesting cases. RCQ was the best, or among the
best in a majority of the cases considered here, suggesting robust performance across a wide
variety of cases.
Figure 1 shows a summary of the misclassiÞcation rates for a setting where RCQ was

generally much better than the other methods. This was for n1 = n2 = 25, different Class
variances (σ2 = (1)2, τ 2 = (4)2), heteroscedastic population shape, and no outliers.

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

log
10

(dimension)

Pr
op

or
tio

n 
W

ro
ng

Centroid

SVM

DWD

RCQ

Figure 1: Comparison of Centroid, SVM, DWD, RCQ, for same n, different variance,
same shape, no outliers.

Figure 1 shows that except for the extreme dimensions, d = 10 and d = 1600, RCQ is
substantially better than the other methods. The convergence of all methods is expected
for very large d from the asymptotic theory described in Section 3.1.
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Figures 2 and 3 give an indication of the reason behind the superior performance on
RCQ. They each show the projections of the two classes onto the direction vectors, for RCQ
in Figure 2, and for DWD in Figure 3. In each case 4 simulated realizations are shown, to
give a simple visual impression of the variation across simulated data sets.

-15 -10 -5 0
0

0.1

0.2

0.3

Realization 1

Class X

Class Y

-20 -10 0
0

0.1

0.2

0.3

Realization 2

Class X

Class Y

-15 -10 -5 0
0

0.1

0.2

0.3

0.4

Realization 3

Class X

Class Y

-15 -10 -5 0 5
0

0.05

0.1

0.15

0.2

0.25

Realization 4

Class X

Class Y

Figure 2: Projection of the training data (4 realizations) onto the direction vector
determined by RCQ, in the case of Figure 1.

Figure 2, showing the RCQ direction, correctly shows the large difference between in
variance between the two classes. This is expected from the method that was used to
generate the data. This also clearly shows why it is not enough to use the midpoint between
the centroids as the cutoff �C, in the algorithm described in Section 2. Instead one should
use a cutoff, that correctly balances the spread of the two classes, which was the motivation
for �C∗ deÞned in (1).
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Figure 3: Projection of the training data (4 realizations) onto the direction vector chosen
by DWD, in the case of Figure 1.

Figure 3 shows the corresponding graphic for the DWD direction. Note that in all cases,
the classes are �better separated� than in Figure 2, which is not surprising, since DWD
attempts to �maximize the separation between the classes�. However, note that this is done
at some cost in terms of the spread within each class (Class Y no longer appears 4 times as
spread as Class X ), which is what gives the superior performance of RCQ, as shown in Figure
1. The analog of Figure 3 for SVM is similarly poor for DWD, where again the respective
spread of the classes disappears, because SVM again attempts to maximize separation of the
classes. The analog of Figure 2 for the simple centroid method is quite similar to Figure
2 (in particular showing the relative class spreads correctly), but this method is inferior,
because it takes the midpoint of the centroids as the cutoff �C, which shows the value of the
quantile adjusted version �C∗ deÞned in (1).
As noted in the introduction, each method had some situations where it was best. Re-

vealing insights come from understanding these.
The simple Centroid was best when the variance was the same (σ2 = τ 2 = (1)2), the

population shapes were homoscedastic, and there were no outliers. This makes sense because
in these Gaussian settings, the centroid method is Bayes risk optimal. Otherwise, outliers
have a signiÞcant impact on the sample mean (the simple centroids), or the centroid midpoint
is quite ineffective.
SVM was the best of the methods considered here when the variance was the same

(σ2 = τ 2 = (1)2), but the distribution shapes were heteroscedastic, and outliers were present.
SVM was the worst of the four methods in the homoscedastic case with no outliers. This
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Þts with the very �nonparametric� approach taken by this method.
As shown in Figure 4, DWD was the best for the heteroscedastic case, in the presence of

outliers.
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Figure 4: Comparison of Centroid, SVM, DWD, RCQ, for different n, different variance,
same shape, outliers.

It is revealing to study the reason behind the good performance of DWD in this case,
using the same graphical device as in Figures 2 and 3. Figure 5 shows the projections of
the two classes onto the RCQ directions, again for 4 realizations.
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Figure 5: Projection of the training data (4 realizations) onto the direction vector
determined by RCQ, in the case of Figure 4.

Note that this time the 4 projections reveal rather different directions, which shows
the RCQ is rather unsteady in this case, suggesting that this direction is not so useful for
discrimination (a stark contrast to Figure 2).
Figure 6 shows the corresponding projections onto the DWD directions.
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Figure 6: Projection of the training data (4 realizations) onto the direction vector chosen
by DWD, in the case of Figure 4.

Figure 6 shows that for these data, DWD Þnds a much more useful discrimination direc-
tion that RCQ, as shown in Figure 5. This time trying to optimize the separation between
the classes is much more useful for classiÞcation than the direction chosen the class centroids.
In summary over all cases, RCQ was generally better for n1 = n2, and also for σ2 = τ 2,

with heteroscedastic shape and no outliers, because in this case the robust centroid direction
is very good, and the quantile adjusted cutoff �C∗ gave an added advantage. RCQ had the
most difficulty for σ2 = τ 2, with homoscedastic shape and outliers, because in that case the
outliers had the most inßuence on the quantiles, yet there was no advantage to the quantile
cutoff �C∗.
A variation that we tried, without dramatic success, was to replace the empirical distri-

bution functions by class size weighted versions in (3), i.e. using the cutoff

�C∗∗ ≡ median{c : n1F ∗X(c) = n2 (1−G∗Y (c))}, (13)

This point could be investigated more deeply, in particular by trying values of n1 and n2
which are more different than those considered here.
Another issue that we suspect could be important is the variation in the classiÞcation

error rates (we only studied the means across our simulations).
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