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Preface

This book is intended as a resource for researchers in the development of novel
statistical and data science methodology. At the time of this writing, Big Data is
a very popular area of study. While Big Data does indeed present major statistical
challenges, an even greater challenge is dealing effectively with Complex Data
which is the main motivation for Object Oriented Data Analysis. The latter is a
framework that facilitates inter-disciplinary research through new terminology for
discussing the often many possible approaches to the analysis of complex data.
Such data are naturally arising in a wide variety of areas. This book aims to pro-
vide ways of thinking that enable the making of sensible choices. The main points
are illustrated with many real data examples, based on the authors’ personal expe-
riences, which have motivated the invention of a wide array of analytic methods.

A generally relevant comment is that most statistical problems can be solved
in many sensible ways. Simon Sheather elegantly summarized that state of affairs
(applicable to the many methods discussed in this book) as: “every dog has its
day”. The point is that any method that has been seriously advocated by someone
has situations where it gives excellent performance, but also situations where it can
be quite poor. The challenge is to understand the properties of each well enough to
guide good choices. The material in this book will provide the reader with useful
insights and a general framework to assist in this process.

A fundamental theme throughout the book, that has not been deeply explored
elsewhere is modes of variation. That provides a novel terminology and frame-
work for understanding many aspects of Object Oriented Data Analysis.

While the mathematics goes far beyond the usual in statistics (including differ-
ential geometry and even topology), the book is aimed at accessibility by graduate
students. There is deliberate focus on ideas over mathematical formulas. An ex-
ception is the detailed linear algebra development in Chapter 17. While many
references to various aspects of OODA are given, it should be noted we have
deliberately not attempted to be comprehensive in those. Our aim instead is to
simply provide useful starting points that interested researchers can use for their
own bibliographic searches.

The historical background of the Object Oriented Data Analysis terminology is
discussed in Section 18.1.

Much of the material that went into this book, including data sets, and the code
to generate most of the graphics can be found in the the web companion to this
book at Marron (2020). Many of those require Marron’s Matlab Software, avail-
able at: Marron (2017b). The companion website also contains further references
and links to other software packages.
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CHAPTER 1

What is OODA?

The fields of human endeavor currently known as statistics, data science and data
analytics have been radically transformed over the recent past. These transfor-
mations have been driven simultaneously by a massive increase in computational
capabilities coupled with a rapidly growing scientific appetite for ever deeper un-
derstanding and insights. The notion of forming a data matrix provides a useful
paradigm for understanding important aspects of how these fields are evolving.
In particular, the currently popular context of Big Data has several quite different
facets, ranging from low dimension high sample size areas (the basis of classi-
cal mathematical statistical thought, which is perhaps typified by sample survey
and census data), through both high dimension and sample sizes (common for in-
ternet scale data sets of many types), and on to high dimension low sample size
contexts (frequently encountered in areas such as genetics, medical imaging and
other types of extremely rich but relatively expensive measurements). The press-
ing need to analyze data in this wide array of contexts has generated many exciting
new ideas and approaches.

Yet a deeper look into these developments suggests that the organization of data
into a matrix may itself be imposing limitations. In particular, there is a growing
realization that the challenges presented by Big Data are being eclipsed by the
perhaps far greater challenges of Complex Data, which are typically not easily
represented as an unconstrained matrix of numbers. Object Oriented Data Anal-
ysis (OODA) provides a useful general framework for the consideration of many
types of Complex Data. It is deliberately intended to be particularly useful in the
analysis of data in complicated situations, diverse examples of which are given in
the first two chapters. The phrase OODA in this context was coined by Wang and
Marron (2007). An overview of the area was given in Marron and Alonso (2014).
For more discussion of Big Data and its relation to statistics see Carmichael and
Marron (2018), and see many interesting viewpoints in the special issue edited by
Sangalli (2018).

The OODA viewpoint is easily understood through taking data objects to be
the atoms of a statistical analysis, where atom is meant in the sense of elementary
particle, studied in several contexts of increasing complexity:
• In a first course in statistics atoms are numbers, and the goal is to develop

methods for understanding of variation in populations of numbers.
• A more advanced course, termed multivariate analysis in the statistical cul-

ture, generalizes the atoms, i.e. the data objects from numbers to vectors and
involves a host of methods for managing uncertainty in that context. For exam-
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ple see Mardia et al. (1979), Muirhead (1982) and Koch (2014) (for a more up
to date treatment).
• At the time of this writing a fashionable area in statistics is Functional Data

Analysis (FDA), where the goal is to analyze the variation in a population of
curves. A good introduction to this vibrant research area, where functions are
the data objects, can be found in Ramsay and Silverman (2002, 2005) . A case
study, illustrating many of the basic concepts of FDA which are useful for
understanding OODA is given in Section 1.1.
• OODA provides the next step in terms of complexity of atoms of a statistical

analysis to a wide array of more complicated objects. The important example
of shapes as data objects is considered in the case study of Section 1.2. A wide
variety of other examples, which highlight the breadth of OODA, appears in
Chapter 2.

Note that each of the above areas can be thought of as containing the preceding
ones as special cases. E.g. multivariate analysis is the case of FDA where the func-
tions are discretely supported. Similarly multivariate analysis and FDA are special
cases of OODA. In later chapters it is useful to recall that OODA includes these
predecessors as special cases. This is because often simple multivariate examples
are used for maximal clarity in the illustration of concepts and methods, but the
ideas are useful more generally for OODA.

A good question is: What is the value added to applied statistics and data sci-
ence from the concept of OODA and its attendant terminology? The terminology
is based on very substantial real world experience with a wide variety of complex
data sets. A fact that rapidly becomes clear in the course of interdisciplinary re-
search is that there frequently are substantial hurdles in terminology. Especially at
the beginning of such endeavors, it can feel like collaborators are even speaking
different languages, so often serious effort needs to be devoted to the develop-
ment of a common set of definitions just to carry on a useful discussion. An added
complication is that for complex data contexts, it is frequently not obvious how to
even “get a handle on the data”. Usually there are many options available, which
are most effectively decided upon through careful discussion between domain sci-
entists and statisticians. In such discussions, the issue of what should be the data
objects? has proven to frequently lead to useful choices, thus resulting in an ef-
fective and insightful data analysis.

Real data examples demonstrating data object choices in a variety of contexts
are given in the following and Chapter 2. In particular, Section 1.1 introduces
curves as data objects. A more complex variant involves curves with interesting
variation in phase in place of, or in addition to, the usual FDA amplitude variation
discussed in Section 2.1. A mathematically deeper case is considered in Section
1.2 where shapes are the data objects which require special treatment as shapes
are most naturally viewed as points on a curved manifold. Section 2.2 considers
a perhaps even more challenging data set of tree structured data objects. The data
objects in Section 2.3 are recordings of sounds, in particular human spoken words,
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which bring special challenges in the choice of data objects. Finally, in Section
2.4, a fun example with images of faces as data objects is considered.

It is seen that the notion of data objects provides a particularly useful format
for discussing modes of variation that give insights about population structure.
This term is formally defined in Section 3.1, but until then the meaning should be
intuitively clear from the context.

One more general aspect of OODA is that there are frequently three major
phases of this type of data analysis:
1. Object Definition. This is the phase where the fundamental issue of what should

be the data objects is addressed. A number of examples of this phase are pro-
vided in the rest of this chapter and also in further examples in other sections.

2. Exploratory Analysis. Here the goal is to find perhaps surprising population
structure in data, often using some type of visualization method. A wide va-
riety of examples and methods for exploratory analysis are given in the rest
of this Chapter and in Chapters 2, 4, 5 - 10. Exploratory analysis frequently
only appears sparingly in most classical statistics courses, but is usually more
prominent in machine learning. However it has a strong statistical tradition,
going back well before the ideas nicely summarized in Tukey (1977).

3. Confirmatory Analysis. While many great discoveries have been made using
exploratory methods, it is also very easy to make discoveries that are not real,
in the sense of being non-replicable sampling artifacts. For this reason it is very
important to validate such discoveries. This critical topic and many variants of
approaches to it are discussed in detail in the very large classical statistical lit-
erature. Some less well known aspects, that are particularly relevant to OODA
are discussed in Chapter 13.

A companion website to this book, containing links to available software, the Mat-
lab or R programs used to generate most of the figures in this book, and additional
graphics can be found at Marron (2020).

Further discussion on other ideas and nomenclature related to OODA can be
found in Chapter 18. Additional big picture discussion of data science and statis-
tics can be found in Marron (2017a) and Carmichael and Marron (2018).

1.1 Case Study: Curves as Data Objects

An interesting example of functional data analysis (viewed here as an important
special case of OODA) is the Spanish Mortality data, first studied from an FDA
viewpoint in Section 2 of Marron and Alonso (2014). Such data sets are available
at the Human Mortality Database of Wilmoth and Shkolnikov (2008). For a given
population (e.g. citizens of one country) mortality data are generally a matrix with
rows and columns indexed by years and ages. The matrix entries are the chance of
a person of each age dying in the given year, calculated as the number of deaths
divided by the number of people for that year - age pair. Here we study mortality
of males in Spain, mostly because there are interesting features in the data, due to
recent Spanish history.
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This data set provides good illustration of the issue of Object Definition, be-
cause there are several data object choices to be made in the analysis of this data.
First, since these probabilities range over several orders of magnitude, logarithms
are useful to provide good visual separation across a wide range of scales. Particu-
larly strong interpretability comes from the choice of log10 of the probability (e.g.
−2 corresponds to a probability of 0.01 as opposed to about 0.135 for the natural
log). The utility of this data object choice is demonstrated in Figure 1.1, where
the raw probabilities are shown in the left panel (with much interesting structure
missed since this is very nearly 0 for the important younger age groups) with log10

mortality in the right (highlighting important contrasts among the younger ages).
Second there are two different ways to turn the matrix of data into functional data.
One is to consider data objects to be curves of mortality as a function of age, with
curves indexed by year. The other is (the matrix transpose) where the mortality
is viewed as a function of year, with data object curves indexed by age. In this
analysis, the former choice is used, because it gives the best illustration of the
usefulness of OODA concepts and also gives an interesting narrative. The latter
choice is considered in Figure 17.7. An analysis that also integrates female mor-
tality in an interesting way can be found in Feng et al. (2018). The choice here
results in n = 95 curves corresponding to the years 1908-2002. Ages considered
here are 0 through 98, since larger ages are problematic due to occasional small
population sizes. The raw data are shown as overlaid curves in Figure 1.1. There
the curves are distinguished using the standard graphical technique of a rotating
color palate (in this case the default 7 colors in Matlab).
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Figure 1.1 Spanish Mortality curves as a function of age. Raw male mortality is in the
left panel, with log10 mortality on the right. Years are distinguished using a rotating color
palette. Shows age effects and large variation (factors of more than 10 for some age groups)
across years, as well as the data object choice of log10 mortality being the more useful
scaling of the data.

This view already shows interesting aspects of the data. For example, being
born is a risky activity, with a high mortality rate. However, the chance of dy-
ing falls off rapidly, up until the teen years when risky behavior tends to begin.
Then through adulthood the death rate slowly increases, becoming quite high in
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old age. Also note the bundle of curves is quite thick, with the axes indicating
approximately a 10 fold change over the years, begging an investigation into how
things have changed over time. This is easily provided in Figure 1.2, by applying
a different color scheme to the curves in the right panel of Figure 1.1. Here time
ordering of the curves is highlighted through coloring with a rainbow scheme to
indicate years, starting with magenta ([1 0 1] in RGB coordinates) for 1908 and
ranging through violet, blue, cyan, green, yellow and orange to red ([1 0 0] in
RGB) for 2002.
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Figure 1.2 Spanish Mortality curves using a rainbow color scheme to indicate progression
in time (over years 1908-2002). Shows major improvements in mortality over this time
range.

This shows a very clear overall improvement over the years in mortality, due
mostly to improvements in medicine and public health. Note also that these im-
provements have benefited younger people more than the old, as there is not yet
much treatment available for aging. As happens frequently with OODA data, ad-
ditional visual insights come from careful decomposition of the variation present
in these curves, through a Principal Component Analysis (PCA). See Chapters 4
and 17 and Jolliffe (2002) for background information concerning the many ways
this method is used. One important use of PCA is to gain insight into how data
objects relate to each other. Insight comes from considering the data as lying in
an abstract point cloud in d = 99 dimensional space, where low dimensional
projections frequently visually illustrate key relationships (e.g. clustering of data
objects). An often useful first step of a PCA is mean centering, which essentially
moves the point cloud so that it is centered at the origin. As seen in Figure 1.3,
this centering operation itself can provide an informative decomposition of the
data into the mean and residuals about the mean.
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Figure 1.3 Left panel is the mean mortality curve. Right panel contains the mean residuals,
where the mean is subtracted from each curve, using the same color scheme. Shows that
age effects are essentially common for all (i.e. over time), in the sense of appearing in the
mean. Improvements over time appear in the residuals, with overall most improvement for
the young.

The left panel of Figure 1.3 shows the mean curve, computed as the point-wise
mean of the curves in Figure 1.2. The right panel contains the mean residuals,
which are computed by subtracting the mean from each of the data curves, while
retaining the original year coloring. Note that the mean curve contains many of the
important features of the raw data, especially those related to age. In particular, the
danger of being born together with low mortality for the young with increasingly
higher mortality for the old are all properties of the mean. These essentially do
not appear in the mean residuals, indicating that these are population properties
which have not changed much over time. A perhaps surprising aspect of the mean
is the occasional blips that appear. One might think these are random noise, but
note that they are quite periodic and in fact appear at decades. This is a function
of historically poor record keeping. The early lack of birth certificates for the full
population led to some uncertainty of age at the time of death for some, with
subsequent rounding to decades which is clearly visible. The mean residuals also
reflect an important aspect of the population structure, being driven by the changes
over time. Most important are the dramatic improvements in mortality that have
been made over the course of this study. This view also makes it clear that the
young have benefited the most with that benefit decreasing as a function of age.
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Figure 1.4 PC1 mode of variation plot (left) and scores distribution plot (right). The former
shows that this dominant mode of variation reflects most of the overall improvement in
mortality. Scores plot shows most of the improvements happened relatively rapidly, plus
highlights the 1918 Flu Pandemic (violet outlier on the right) and the Spanish Civil War
(light blue sharp trend to the right).

PCA is usefully understood as decomposing the mean centered data in the right
panel of Figure 1.3 into insightful modes of variation (this concept is formally de-
fined in Section 3.1.4). One such mode is the variation revealed by the first princi-
pal component as shown in Figure 1.4. Insight comes from thinking of the above
mentioned point cloud, where each data object (curve in this case) is a point. The
PCA modes of variation are developed by seeking orthogonal directions of maxi-
mal variation within the point cloud. The first PC direction is the unit (i.e. norm 1)
vector, based at the sample mean, which maximizes the variance of the data pro-
jected onto that vector. This direction is easily computed as the first eigenvector of
the sample covariance matrix (defined at (3.5)). The entries of that vector (which
indicate how it relates to the variables, i.e. features, of the data set) are called the
loadings. Visual insight into these loadings comes from the mode of variation plot
in the left panel of Figure 1.4. The horizontal axis indexes the variables, which are
ages in this case, and the curves are all multiples of the eigenvector. In particular
the curves are projections of the data curves onto the direction vector. These are
the columns of the rank 1 matrix that is the product of the column vector of load-
ings times the row vector of scores, which are the projection coefficients of each
data object onto the eigenvector. In classical multivariate analysis the scores are
also called the principal components. This matrix is the (least squares) best rank 1
approximation of the mean residual matrix shown in the right panel of Figure 1.3.
This PC1 view highlights the dominant mode of variation, which nicely reflects
the major overall improvement in mortality. In addition, as life and death record
keeping has improved over time, the decline in age rounding effects is reflected in
the decadal spikes pointing upwards (early) and downwards (later). In particular,
the rounding was present earlier, not later, so it shows up partially in the mean in
Figure 1.3, and then as this contrast in Figure 1.4 (left panel).

The right panel of Figure 1.4 is the PC1 scores distribution plot, which will be
used frequently in the following to display detailed information as to how the data
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objects relate to each other. Each circle represents one score, using the same color
scheme. Horizontal coordinates indicate the score and vertical coordinates indi-
cate order in the data set, in this case the year. The magenta color of the top circle
is the year 1908 and the red color of the lowest circle is for the year 2002. The
overall leftward trend again shows the overall improvement in mortality over these
years. The black curve shows a kernel density estimate, which can be thought of as
a smooth histogram. The vertical axis records the heights of this curve. Detailed
discussion of kernel density estimation is in Chapter 15. See Wand and Jones
(1995) for a more in depth overview. This type of display of one dimensional dis-
tributions, which includes both the actual data points and the smooth histogram,
is used many other times in the following. In this case it shows much higher den-
sity of scores in the higher and lower regions, which is another way of seeing that
most of the overall transition from higher to lower mortality was relatively rapid.
A couple of smaller scale aspects are also clear in this scores plot. The violet year,
farthest to the right was the year 1918, when many people around the world died
during a flu pandemic, which until recently was the largest ever well-documented
epidemiological event worldwide. Also notable is the shift towards higher mortal-
ity (i.e. to the right) shown as light blue, which was the time of the Spanish Civil
War, just before World War II (in which Spain was not a combatant).
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Figure 1.5 PC2 mode of variation (left) and scores distribution (right), using the same
format as Figure 1.4. The loadings plot shows this second mode of variation provides a
contrast between the 20-45 year old with the rest. The scores plot shows the deep effects of
the flu pandemic, the Spanish civil war and automotive death rate.

Figure 1.4 showed the first mode of variation in the mortality data called PC1.
An interesting complementary mode of variation is the second PC, as shown in
Figure 1.5. This represents the direction of second strongest variation (in the sense
of being orthogonal to the first direction) measured again in terms of variance of
projections. It is computed as the second eigen direction of the sample covariance
matrix. The PC2 mode of variation plot (left panel) shows that this direction high-
lights differences between the 20-45 year old cohort, with the union of the young
and the old. The color pattern is harder to interpret in this mode, but is very clear
in the scores distribution plot (right panel). Note that the 20-45 year olds suffered
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even stronger effects from both the pandemic and also the war, as they died at a
substantially higher rate than usual in those times. Another interesting feature is
the growing mortality for this cohort in the 1960s to 1980s (green to orange). This
period corresponds to growing access to automobiles, and apparently the idea that
young males are the group most prone to risky automobile behavior. Note that
in the final years, the direction of this trend has fortunately reversed, which has
been ascribed to much improved car safety (such as seat belts) and also to major
improvements in roads.

The concept of modes of variation as determined by PCA loadings and scores
is explored more deeply in Section 3.1.
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Figure 1.6 Scatterplot of PC1 vs. PC2 scores. This shows many of the above historical
trends in a single plot.

Figure 1.6 shows a scatterplot of the bivariate distribution of the PC1 and PC2
scores, which provides a useful and concise summary of both modes of variation,
i.e. of much of the structure in this data set. The one dimensional PC1 scores
distribution in the right panel of Figure 1.4 is on the horizontal axis, while the ver-
tical axis has the corresponding PC2 scores distribution from the right of Figure
1.5. This is the two dimensional projection of the data onto the plane with maxi-
mal variation. Note that the circles representing the data objects (i.e. the mortality
curves) are connected with line segments in time order, which facilitates keeping
the progression of years in mind when interpreting the plot. The overall improve-
ment in mortality, with the exceptions of flu and war, are clear from the main
leftwards progression. Variation over time of the contrast between the 20-45 year
olds and the rest are also clear on the vertical axis, nicely highlighting the flu, war
and automobile effects.

For this data set, the most interesting views are in the first two PC components.
For others, more components can also be quite insightful. A useful summary of
several PC components is a matrix of such scatterplots, with the axes carefully
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coordinated over both rows and columns. The diagonal of such a display is most
useful when it shows some sort of 1-d distributional summary, e.g. the combina-
tion of jitter plots (the colored circles) and kernel density estimates used to show
the distribution of scores in the right panels of Figures 1.4 and 1.5. Jitter plots
are discussed in more detail in Section 4.1. Further examples of such matrices of
scatterplots can be found in Figures 4.4, 4.12, 4.13 and many other places in later
chapters.

Mortality rates for other countries can be explored in a similar way. For exam-
ple mortality data from Switzerland (also available in Wilmoth and Shkolnikov
(2008)) show similar flu pandemic and automobile effects as observed here, but
neither the data rounding (due to a longer period of good record keeping) nor the
war caused mortality effects are visible as expected.

1.2 Case Study: Shapes as Data Objects

A particularly deep and important example of shapes as data objects is the
Bladder-Prostate-Rectum data, motivated by the challenge of planning radiation
treatment of prostate cancer described in Chaney et al. (2004).

1.2.1 The Segmentation Challenge

Radiation treatment of cancer is quite effective, and administered over the course
of a number of days. The goal is to provide a maximal radiation dose to the
prostate while minimizing the impact on nearby sensitive organs such as the at-
tached bladder and the rectum, which is adjacent. A major radiation treatment
planning challenge is that (even within the same person) the locations of all 3 or-
gans vary widely on the critical time scale of days. Computed Tomography (CT)
images are useful for visually locating these organs on a given day, with CT pre-
ferred over Magnetic Resonance images due to its superior accuracy of location.
However segmentation, i.e. finding the set of voxels (three dimensional analogs of
pixels) inside each organ, was a challenging problem because of poor contrast and
noise, as shown in Figure 1.7. That is one slice of a 3-d stack of images, showing
a side view of the hip region for one patient. The color scheme of CT is the same
as for x-rays, so dense objects such as bones show up as white. Thus the upper
right of Figure 1.7 shows the tailbone, and a hipbone passes through this slice in
the lower center. Black indicates the least dense regions which are gas bubbles in
the rectum, which is the curved lighter region containing the darkest spots starting
near the top center and curving down below and to the left of the tail bone. The
lighter gray region between the top of the rectum and the small hip bone is the
bladder. The prostate, which is the target of the treatment, is a light gray region
between the hip bone, the bladder and the lowest visible section of the rectum.
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Figure 1.7 One slice of 3-d CT image in Bladder-Prostate-Rectum data. Bones are white,
black gas bubbles indicate the rectum. Bladder and prostate are light gray near the center
and lower center. This image shows that automatic segmentation is very challenging.

Segmentation of the prostate is quite challenging because of very poor contrast
with surrounding objects (it is essentially the same shade of gray and has both
lighter and darker regions nearby) and because of the relatively high noise level.
For these reasons, incorporation of anatomical knowledge is essential to the seg-
mentation process. Manual segmentation achieves this through an anatomically
trained technician drawing the boundary of an object on each slice of the 3-d
image. The union of the interior voxels aggregated over slices then gives a seg-
mentation of the object. An example of that process is in Figure 1.8, which shows
two views of a manual segmentation of the bladder in Figure 1.7. The left panel
shows how voxels are aggregated across slices, using a view orthogonal to that
where the drawing was done. The right panel is a rotated view of the highlighted
collection of blue colored voxels without the CT image, giving a clear impression
of the 3-d object.
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Figure 1.8 Left panel shows the results of a manual segmentation of the bladder, performed
sequentially on orthogonal slices. Right panel shows a rotated view of the same bladder, to
highlight the 3-d aspect of the segmentation.

While manual segmentation is quite effective at locating these organs for plan-
ning radiation treatment, it is time consuming and hence it is not practical to repeat
this manual operation many times over the course of radiation treatment (i.e. in a
clinical setting). This has motivated a lot of research on automatic segmentation
of these organs, much of which was developed in the references cited at the end of
this section. The key idea is to incorporate anatomical information into the training
process, using a Bayesian statistical model. The starting point for this is a shape
representation, i.e. a parametric model for each organ.

1.2.2 General Shape Representations

In some contexts shape is conveniently represented by landmark configurations,
i.e. a set of points that correspond across members of the data set, which can be
readily found on each. The statistical analysis of landmark configuration shape
data objects was pioneered by Kendall (1984) and Bookstein (1986). For intro-
duction to the large literature on that, see Dryden and Mardia (2016). The fun-
damental idea is illustrated by a toy data set of triangles in R2 as data objects in
Figure 1.9. An intuitive representation of each triangle is the configuration of the
R2 coordinates of the vertices (a 6-tuple) , which are natural landmarks. However
many triangles with different configurations have the same shape. In particular,
the triangles to the left of the dashed line are all translations, rotations and scal-
ings of each other, i.e. all have the same shape. Two other sets of common shapes
appear between the vertical lines, and to the right of the dot-dashed line. The math-
ematical device of equivalence relation provides a convenient formulation of the
notion of shape. Calling two triangular configurations equivalent when they are
translations, rotations and scalings of each other, results in equivalence classes.
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These are the sets of all triangles which can be translated, rotated and scaled into
each other, i.e. triangles of the same shape. These equivalence classes of identi-
fied triangles then become the shape data objects. Spaces of equivalence classes
are widely studied in differential geometry, where they are called quotient spaces.
Common synonyms for the equivalence classes are fibers (frequently used here in
Chapter 8) and orbits (appearing often here in Chapter 9). As discussed in Sec-
tion 8.4 and in Section 4.3.4 of Dryden and Mardia (2016), the natural geometry
of the quotient space of triangle shapes is the sphere S2 (see (3.2) for a formal
definition). Sections 8.2 and 8.4 contain a broader discussion of shape quotient
spaces, where it is seen that many of those are also curved. This provides strong
motivation for studying data objects lying on curved manifolds, as done below
and in more depth in Section 8.3.
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Figure 1.9 Toy data set of triangles in R2, to illustrate shapes as data objects. Lines sepa-
rate three equivalence classes (i.e. fibers or orbits) with respect to translation, rotation and
scaling.

While landmark approaches are useful for many tasks, they are typically less
useful in many medical imaging situations, such as soft tissues, where landmarks
that correspond across cases can be hard to find, with often very few obvious
choices apparent. Hence, there has been much research devoted to boundary rep-
resentations. In the computer graphics world a very common boundary represen-
tation is a triangular mesh, see e.g. Owen (1998). A major challenge to the use of
mesh representations in shape statistics is correspondence, i.e. relating the mesh
parameters (e.g. triangle vertices) across instances of shape data objects. Two im-
portant approaches to this are Active Shape Models, see Cootes et al. (1994) for
a good introduction, and the entropy based ideas of Cates et al. (2007). Another
major formulation of boundary representations is through Fourier methods, e.g.
as in Kelemen et al. (1999). For sufficiently smooth shapes, Kurtek et al. (2013)
have shown that superior representation comes from enhancing boundary repre-
sentations by also including surface normal vectors in the data objects.
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1.2.3 Skeletal Shape Representations

As discussed in Siddiqi and Pizer (2008), a medial representation can provide
improvements for a number of imaging tasks. The key idea is to base the repre-
sentation on the more robust concept of 3-d solids, instead of on 2-d boundary
surfaces. For the reasons discussed in Chapter 3 of Siddiqi and Pizer (2008), the
concept of medial locus has been generalized to give skeletal representations. As
noted in Pizer et al. (2013) the enhanced flexibility of skeletal representations al-
lows for superior fits to data. A skeletal representation of one bladder, prostate and
rectum instance is illustrated in Figure 1.10.

Figure 1.10 Skeletal representation of a single bladder-prostate-rectum. Left panel shows
the central skeletal sheets, atoms and spokes for each shape object. Center panel adds the
implied boundaries as quad meshes, using yellow for the bladder, green for the prostate,
red for the rectum. Right panel represents the implied boundaries using a light source
rendering.

The left panel of Figure 1.10 shows the interior components of three skeletal
representations, one for each organ. Each has a set of yellow dots, called skeletal
atoms, connected by green line segments, which are a discretization of the skele-
tal sheet, the 2-d surface which is approximately medial in the sense of being
equidistant from both boundaries. Each skeletal atom has spokes, shown as cyan
and magenta line segments, extending from the skeletal sheet to the boundary of
the organ. Skeletal atoms at the edge of the sheet each have one additional spoke
shown in red, extending to the edge of the organ. The central panel of Figure 1.10
adds three colored meshes (yellow for the bladder, green for the prostate, red for
the rectum) which indicate the boundary of each that is implied by the interior
components as a quadrilateral mesh that connects the ends of the spokes. The
right panel shows the boundary more explicitly by coloring the panels of the quad



CASE STUDY: SHAPES AS DATA OBJECTS 15

meshes and using a light source shading in the same colors. The skeletal model is
a parametric model of shape, whose parameters are the 3-d locations of the yellow
atoms, the lengths of the spokes, and the angles of the spokes, each of which is
represented as a point on the sphere S2.

The data objects in this OODA case study are chosen to be the skeletal models
represented by the locations of k atoms in R3, l positive spoke lengths in R+and
m directions on S2. For CT images where a manual segmentation has been per-
formed, the skeletal shape model can be fit to the binary image shown in blue in
Figure 1.8 (i.e. the various parameters estimated), using direct methods such as
least squares. However as discussed above, for clinical applications such as radi-
ation treatment planning, with a need for a technician to perform this operation
several tens of times for one course of treatment, manual segmentation is pro-
hibitively expensive. This motivated the work cited at the end of this section, on
automating fitting of skeletal models (as shown in Figure 1.10) directly to raw CT
images (as shown in Figure 1.7). As discussed above, this requires incorporation
of something akin to anatomical information. That is done using a Bayesian sta-
tistical approach. Essentially some manual segmentations are used to train a prior
distribution using OODA, which is combined with a likelihood based on a new CT
image, to generate a posterior distribution which is maximized over the parameters
of the skeletal shape representation, to give an automatic segmentation.

1.2.4 Bayes Segmentation via Principal Geodesic Analysis

The Bayes implementation employed in this type of application differs somewhat
from most modern Bayes applications. On one hand, the underlying probability
distributions are very basic, since only conjugate Gaussian priors, likelihood and
hence posteriors are used. This is a strong contrast with the complicated models
involving Monte Carlo Markov Chain methods that are currently very prevalent in
applications of Bayes methods. On the other hand, this Bayes application is rel-
atively deep in two ways. First the number of parameters to fit is typically much
higher then the number of training instances, i.e. it lies in the high dimensional
OODA domain discussed in a general way in Chapter 14. The second compli-
cation is the non-Euclidean nature of the reparameterizations, caused mostly by
each spoke naturally lying on the surface of the sphere S2. As this research has
progressed, the high dimensionality has been handled by a variety of methods
related to PCA. More challenging is that skeletal parameterized data objects are
naturally elements of a space of the form R3k × Rl+ × (S2)m (i.e. tuples of k
real numbers, l positive reals, and m points on the sphere). Such spaces are called
manifolds in differential geometry (see Section 8.2 for an introduction to aspects
of this topic needed for OODA) and are usefully thought of as curved surfaces
(e.g. the surface of a sphere).

The need to address the first complication (the high dimension) in the bladder-
prostate-rectum segmentation challenge described above has led to a series of de-
velopments in terms of analogs of PCA for data lying on the manifolds of skeletal
representations. The Principal Geodesic Analysis (PGA) of Fletcher et al. (2004)
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represents an important early advance in this work. The main idea of PGA is
to consider the Euclidean PCA basis as a set of orthogonal lines that (sequen-
tially) best fit the data. In PGA these best fitting lines are replaced by best fitting
geodesics (e.g. great circles on S2) which are a natural analog of lines. The results
of a PGA, based upon n = 17 skeletal representations (collected over a sequence
of days) from a single patient are shown in Figure 1.11.

Figure 1.11 reveals clinically interesting modes of variation of these organs
within this person. The left column (first mode of variation) seems to reflect verti-
cal shift variation driven by the rectum. The second mode (middle column) shows
twisting, while the third (right column) is about emptying and filling of the blad-
der. This input led to the Bayes segmentation method giving very effective auto-
matic segmentation. That was the basis for the successful start-up company Mor-
phormics, which was subsequently purchased by the radiation treatment equip-
ment manufacturer Accuray.

More recently there has been a series of improvements to PGA, motivated by a
succession of deeper and deeper integrations of statistical ideas with differential
geometry. Detailed discussion of this progression appears in Section 8.3. While
this discussion has focused mostly on segmentation using skeletal shape represen-
tations, much important related work has been done on classification as discussed
in Chapter 11 and on confirmatory analysis which appears here in Chapter 13. A
good overview of the usefulness of skeletal representations, especially in compar-
ison to other types of representations can be found in Pizer et al. (2013, 2014),
Schulz et al. (2016) and Hong et al. (2016).
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Figure 1.11 Principal Geodesic Analysis of Bladder-Prostate-Rectum variation within one
person. Columns give visual impression of first 3 PGA modes of variation. All three plots
in the second row are the Fréchet mean (notion of center defined in (7.5)). Top row shows
the three +2 standard deviation departures from the mean, and bottom row shows the cor-
responding -2 standard deviation departures. This gives three interpretable and sensible
modes of variation.

The bladder-prostate-rectum research that lies at the core of the discussion
of this section was developed in a series of papers. That includes Chaney et al.
(2004), Broadhurst et al. (2005), Davis et al. (2005), Pizer et al. (2005a,b, 2006,
2007), Lu et al. (2007), Stough et al. (2007), Jeong et al. (2008), Merck et al.
(2008) and Feng et al. (2010).





CHAPTER 2

Breadth of OODA

This chapter illustrates the breadth of OODA through relatively brief overviews
of quite diverse applications.

2.1 Amplitude and Phase Data Objects

A challenging situation in FDA is when the curve data objects are misaligned,
as shown in the top panel of Figure 2.1 for a Proteomics data set called the TIC
Curves here. Many statistical methods can be strongly impacted by misalignment.
An example of the impact of misalignment on the sample mean in FDA is shown
using the Shifted Betas toy data in Figure 5.17. A quite different type of impact on
PCA appears in Figure 9.2. As noted in Marron et al. (2014b), FDA approaches
to dealing with alignment issues are sometimes called curve registration, because
it is very useful in situations where the curve data objects are clearly misaligned.

There are many approaches to the curve registration challenge, with an
overview provided in the survey paper Marron et al. (2015). Most methods in
the area involve tuning parameters that have proven to be tricky to choose in a
fully automatic way, as illustrated in Figure 9.1. This problem has been solved
using the OODA way of thinking, as discussed in Chapter 9. In particular, that
approach is based on unusually deep mathematical ideas based on the Fisher-Rao
metric, which resulted in a rigorous methodology that is hence fully automatically
useful.

An interesting example of curve registration, from Koch et al. (2014) and Mar-
ron et al. (2014a), is shown in Figure 2.1. The data objects here are proteomics
mass spectrometry profiles from Ho (2011), a larger study of bio-markers in Acute
Myeloid Leukemia. A detailed description of this data set including a number of
pre-processing steps (such as median smoothing and interpolation to an equally
spaced grid) can be found in Koch et al. (2014). Essentially there are 5 patients,
represented as colors, with 3 replicate curves for each patient, thus 15 curves in
all, shown in the top part of the top panel. Each curve shows Total Ion Counts
(TIC), for an equally spaced grid of 2001 mass to charge ratios (horizontal coor-
dinate). The TIC curves have many peaks, which correspond to various peptides.
A common goal of mass spectrometry analyses is curve registration, i.e. finding
deformations, sometimes called warpings (intuitively thought of as stretchings
and compressings of the horizontal axis), to properly align the peaks so that they
chemically correspond. In most contexts it is hard to quantitatively assess the per-
formance of a given registration, but this data set is special because the locations
of several of the actual peptide peaks have been (laboriously) found for each curve
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using additional information as detailed in Koch et al. (2014). These peak loca-
tions, for each of the 15 curves, are indicated by peak numbers (1-14), with colors
corresponding to the curves. The peak numbers are sorted vertically by height of
the corresponding peak and connected with gray line segments to give some visual
correspondence. It is hard to see much pattern, showing this to be a challenging
curve registration problem.

As noted above, there are a number of approaches to this type of data challenge,
with several such analyses of this data set discussed in Marron et al. (2014a).
The bottom panel of Figure 2.1 shows the results of registration of these same
TIC curves using the Fisher-Rao method proposed in Srivastava et al. (2011) and
Kurtek et al. (2012) (discussed in more detail in Section 9.1), using only the curves
themselves and not the peak location information. The colored numbers reveal that
this is a particularly challenging problem, because the peaks have quite different
heights across patients. Peak 10 is particularly challenging as it is quite low for
the red patient (especially compared to nearby very tall peaks), yet is the highest
peak for other patients. Note the alignment is not perfect for every numbered peak,
but it is still of impressively high quality. Roughly comparable quality has been
obtained using a linear registration approach that is integrated with clustering in
Bernardi et al. (2014b), and by a Bayesian approach in Cheng et al. (2014).
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Figure 2.1 Top panel contains raw TIC Curves data (9 with a labeling of certain impor-
tant peaks in the lower part of the panel. Bottom panel shows a Fisher-Rao registration
of the TIC curves. Numbers under the curves indicate peak locations, showing that the
registration has been mostly quite effective.

An important point made in the overview of Marron et al. (2015) is that curve
registration methods are useful more generally than simply to align curves. While
in some contexts, such as that of Figure 2.1, the phase component is merely nui-
sance variation to be dealt with but of no intrinsic interest, there are many other
situations where the warps themselves represent useful modes of variation. In
such contexts it is insightful to consider different types of data objects for OODA.
In particular, amplitude data objects, whose variation is contained in the aligned
curves, and phase data objects which are the warps used to achieve the alignment.
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Depending on the context either or both choices of data object can be of primary
interest, or either could represent just nuisance variation.

The notions of amplitude and phase data objects are illustrated using the Bi-
modal Phase Shift example in Figure 2.2. The upper left panel shows a simulated
functional data set, where every data object (curve) has two peaks and is a multiple
of a beta mixture probability density. A rainbow color scheme is used to distin-
guish the curves, in order of how separated the peaks are. The peaks have both
different heights showing substantial amplitude variation, and also quite different
locations reflecting strong phase variation. These two types of mode of variation
are decomposed in a useful way by the warping functions shown in the bottom
right panel, computed using the Fisher-Rao method, described in Section 9.1. The
vertical axis is the same as in the upper left panel. Rescaling that axis using the ma-
genta warp functions moves the magenta peaks inwards, and using the red warp
functions moves the red peaks outwards. The top right panel shows the ampli-
tude data objects, i.e. aligned curves. A careful look shows that the random peak
heights are linearly related with the left peak being high when the right peak is
low. This set of amplitude data objects consists of just a single one dimensional
mode of variation. The warps in the lower right panel can be thought of as the
phase data objects, although they are not easy to interpret. Enhanced interpreta-
tion of the variation in the phase data objects comes from the view in the lower left
panel. That is an application of each of the warps to the Fréchet mean (discussed
in Section 7.7) template from the Fisher-Rao calculation, which nicely reflects the
one dimensional phase variation.
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Figure 2.2 Bimodal Phase Shift data (top left panel) showing decomposition into amplitude
(top right panel) and phase (bottom left panel) modes of variation. Decomposition is based
on the warping functions (bottom right panel). Rainbow color scheme highlights the phase
mode, with red for closest peaks through magenta for farthest peaks.

As clearly demonstrated in Figures 9.2, 9.3, 9.9, and 9.11, decompositions of
the type shown in Figure 2.2 can be much more useful than a standard PCA in
FDA, which tends to both mix the amplitude and phase components, and also to
spread the variation of the phase component over a large number of components,
because it is a nonlinear mode of variation from that viewpoint. As discussed in
Marron et al. (2014b, 2015), amplitude-phase decomposition is useful in many
FDA applications. As noted above, for some of these, such as the TIC data shown
in Figure 2.1, the amplitude data objects are the focus of the analysis, and the
phase data objects can be viewed as nuisance parameters. However in other sit-
uations, for example when analyzing neural spike train data (as discussed in Wu
et al. (2014)) the phase data objects are of primary interest, and the amplitude
data objects are the nuisance component. In still other situations, both amplitude
and phase data objects are important, as is their joint variation. These include the
variation in the AneuRisk65 artery shape data in Sangalli et al. (2014a), and in the
juggling data discussed in Ramsay et al. (2014).

Figure 2.3 shows some of the analysis of the Juggling data from Lu and Mar-
ron (2014a). The starting point was positional recordings of location over time of
the hand of a juggler, which were reduced to time series of acceleration curves,
as discussed in Ramsay et al. (2014). These traces were cut into cycles and time
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registered, to obtain the 113 curves shown in the far left panel of Figure 2.3. Thus
the data objects in this OODA are time registered 1-d acceleration curves. Figure
3 of Lu and Marron (2014a) shows a variety of PCA type scores plots. Most of
these seem to indicate a homogeneous population. The middle left panel of Figure
2.3 shows the version based on the method of Principal Nested Spheres (PNS),
from Jung et al. (2012a). As further described in Sections 8.5 and 9.2, PNS makes
special use of the fact that Fisher-Rao warp data objects naturally lie on a high di-
mensional sphere. The value added of using this method which takes the curvature
of the sphere properly into account, is that it shows two clear clusters, which are
highlighted using the graphical technique of brushing, i.e. visually separating the
cluster through the use of colors and symbols. See Section 9.2 for more discussion
(based on Yu et al. (2017a)) of how and why PNS provides enhanced statistical
analysis of Fisher-Rao phase data objects. The clusters shown in the center left
panel of Figure 2.3 represent important underlying structure in the data. This is
clear from the two right hand panels of Figure 2.3, which show actual vertical
and horizontal locations of the paths (orthographic projections) corresponding to
these clusters, using the same colors. These are clearly two quite different types
of motions present in the data, which correspond to “better controlled” and “less
well controlled” cycles.

Figure 2.3 Analysis of the Juggling data. Far left panel shows the input acceleration
curves. Center left is the Principal Nested Spheres scatterplot, revealing two distinct clus-
ters, highlighted by brushing. Right panels verify these clusters represent two different types
of cycles.

Figure 2.3 uses parts of Figures 2, 3 and 4 from Lu and Marron (2014a).

2.2 Tree Structured Data Objects

A very different example of OODA is trees, in the sense of graph theory, as data
objects. An interesting data set, where each data object is a representation of the
set of arteries in one person’s brain, was collected by Bullitt and Aylward (2002);
Aylward and Bullitt (2002). While a long term goal is to study pathologies, in-
cluding stroke tendency or brain cancer, such cases were deliberately screened
out of this data set, to focus on normal variation within the population. Interesting
quantities that are useful for various comparisons below are age and gender. Sec-
tion 10.1 gives an overview of various analytic approaches that feature improving
abilities to distinguish age and gender.

These data objects were acquired using a modality of Magnetic Resonance
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Imaging called Magnetic Resonance Angiography (MRA). This modality flags
motion as white, so the flow of blood through the arteries shows up very well.
This is seen in Figure 2.4 as the white spots, where the different panels show
adjacent horizontal slices of the 3-d image.

Figure 2.4 Three adjacent slices of an MRA image for a single subject. Arteries show up
as white dots and curves.

A major contribution of Aylward and Bullitt (2002) was the development of a
3-d tube tracking algorithm which was used to generate reconstruction of a given
artery tree. At this point the data object is the union of many small spheres, whose
centers follow the central curve of each arterial branch, and whose radii are the
branch radius at that point. This tree representation, from the MRA shown in Fig-
ure 2.4 can be seen in Figure 2.5. The three panels show different rotations of the
same set of arteries. The left panel is a fairly large rotation and the right panel is a
small one, with the closest vessels moved to the left and right respectively.

Figure 2.5 Three views of the arterial tree for the subject in Figure 2.4, showing the 3-d
structure through somewhat different rotations.

Such data object representations have been computed for approximately 100
people, in the Brain Artery data set. For example, three more of these for three
different subjects are shown in Figure 2.6. The original study was a little larger,
but some were deleted due to MRA acquisition problems.
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Figure 2.6 Artery tree data objects for three additional subjects.

Data objects of this type present major challenges to doing statistical analysis.
For example, it is really not clear how to define even the sample mean of such a
set of objects. Understanding variation about the mean, e.g. as done by PCA in
Section 1.1, is a further challenge. A number of approaches to this are discussed
in Chapter 10, which studies these trees in the more general context of graphs as
data objects.

2.3 Sounds as Data Objects

Another example of OODA is sounds as data objects, which have been studied in
a particularly deep way in a series of papers analyzing human speech based on
digital recordings. Hadjipantelis et al. (2012, 2015) investigated Mandarin Chi-
nese using a mixed effect model to develop relations between dialects which were
consistent with linguistic ideas. Coleman et al. (2015) used these methods to ex-
trapolate back in time to estimate how archaic languages may have sounded. Pigoli
et al. (2018) analyze the relationships between modern romance languages, yield-
ing insights well beyond those available from classical textual linguistic analysis
(such as studied in Section 10.2). In addition a transformation is proposed that pro-
vides an estimated reconstruction of how a given speaker would sound speaking
a different language. Tavakoli et al. (2019) combined these analyses with spatial
smoothing to produce a dialectic map of the United Kingdom. Shiers et al. (2017)
developed a sound based evolutionary tree for romance languages and dialects.

A typical first step in those analyses is to decompose the raw digital recording
of the sound into a spectrogram, which is a moving window version of the Fourier
transform, giving a frequency representation in time, as shown in Figure 2.7, from
the study of Pigoli et al. (2018), kindly provided by Davide Pigoli. The top panel
is the raw recording of one person saying the word “deux” (two) in French.
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Figure 2.7 Summarization of raw recording of a human speech sound of “deux” in French,
top panel, into a corresponding spectrogram showing time and frequency information with
color coding height, shown in the bottom panel.

Frequently, the focus is on human speech from the viewpoint that aspects such
as pitch and timing are nuisances to be removed from the analysis. For that choice
of data objects, those effects are removed by reducing the spectrogram to appropri-
ately defined time and frequency covariance matrices (which are finite represen-
tations of covariance functions). Mean vectors also sometimes play an important
role. Color heat-map representation summaries (as discussed in Section 6.1) of
five covariance matrices (with entries colored according to the bars on the right,
all using the same scale to facilitate comparison) from Pigoli et al. (2018) are
shown in Figure 2.8, also from Davide Pigoli. For each language these summaries
are based on aggregating sounds for the spoken digits (1-10). An exploratory vi-
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sual comparison of these suggest some similarities (e.g. American and Castilian
Spanish) and also some stark contrasts such as Portuguese from the others. Confir-
matory analysis of these points and a number of others using permutation testing
methods can be found in Pigoli et al. (2018).

Figure 2.8 Covariance representation summaries of speech sounds from five different lan-
guages/dialects. Note strong differences between them, with potentially interesting histori-
cal and geographical connections.

In the overall area of sounds as data objects, there is another interesting parallel
to the phenomenon noted in Section 2.1, that depending on the context either phase
or amplitude data objects could be the major focus of the analysis with the other
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considered to be nuisance variation. In particular, the above work focused on a
particular type of analysis of sounds as data objects, where the goal was to study
human speech, by a variety of speakers. As the human brain does when parsing
speech, they deliberately chose data objects which focused on aspects of the sound
that are about meaning of the words, which means generally treating issues such as
pitch, volume and timing as nuisances, to be mathematically ignored. This a strong
contrast with the area of Music Data Analysis, which has been deeply studied in
Weihs et al. (2016) where timing, volume and pitch are actually of keen interest
as the data objects.

Statistical analysis of covariance matrices as data objects is particularly chal-
lenging, and discussed further in Section 8.7.

2.4 Images as Data Objects

The field of image analysis is very large. Statistics has traditionally appeared there
in several ways. Early work, with famous papers including Geman and Geman
(1984) and Besag (1986), tended to focus on aspects of mostly a single image,
with tasks such as denoising, segmentation and registration being predominant.
However, those fields are now relatively mature, so a currently more important
role for statistical ideas comes at the population level which yields a very rich
source of potential data objects. For example, the shapes studied in Section 1.2
and the trees considered in Section 2.2 are two types of data objects derived from
images.

But in other situations the images themselves can be treated as data objects.
An example of this is the Faces data that appears in Benito et al. (2017), which
studies a data set of n = 108 images (actually 248× 186 gray level photographs)
of students from the University of Carlos III in Madrid. There is quite a lot of
variation among the faces, yet the human perceptual system is good at distinguish-
ing gender. In that paper, male vs. female classification of these data is carefully
studied. As discussed in Section 5.4 of Benito et al. (2017), manual affine regis-
tration was used to put each face into a common location in its image. Then the
gray level pixels of the images were vectorized (by stacking columns, an opera-
tion sometimes denoted as vec) into a single long vector, and various classification
methods were used to try to understand the difference between males and females.
Classification, also sometimes called discrimination, is an important OODA topic
discussed in Section 11. The classification methods used on this face data set were
linear methods, as those yield the best interpretation of the results.

Particularly good results came from Distance Weighted Discrimination (DWD)
(proposed by Marron et al. (2007) and studied here in Section 11.4) as shown
in Figure 2.9. DWD is discussed in more detail and compared with other classi-
fication methods in Chapter 11. The lower panel of Figure 2.9 shows the DWD
scores, i.e. the projections of the data onto the DWD separation direction (the nor-
mal vector to the DWD separating hyperplane) using a format similar to that of
the right panel of Figure 1.4. The red plus signs correspond to the females and
the blue circles are the males, which are completely separable using DWD. Also
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shown are three kernel density estimates. That for the full population appears in
black (mostly underneath the others). Female and Male sub-densities (i.e. rescaled
according to sub-sample size) are shown as and red and blue respectively. The top
panel gives insight into what DWD is doing with the images, by showing a repre-
sentative set of 8 reconstructions (i.e. the vectors are converted back into an image)
from 8 equally spaced points (locations shown as the 8 equally spaced black bars
in the bottom panel) along the DWD separating vector.

Figure 2.9 Results of DWD discrimination between males and females in the Faces data.
Bottom panel shows distribution of DWD scores. Top panel contains 8 reconstructions of
faces, corresponding to the 8 points along the DWD separating vector shown as vertical
bars in the bottom. Shows clear insight as to how DWD separates males from females.

The array of faces in the top panel is quite compelling. They look clearly very
female on the left side, quite androgynous in the middle, and clearly male on the
right. Also apparent in perhaps the second and third panels from either end is the
idea from Langlois and Roggman (1990) that average faces tend to be more beau-
tiful. In addition, note that farther to the right corresponds to stronger masculinity.
Note that this collection of faces represents yet another type of mode of variation,
which focuses on the female - male differences, instead of on maximal variation
as in the PCA analysis of the Spanish Mortality data discussed in Section 1.1.

Another example of images as data objects is the Cornea Curvature data studied
in Section 16.2.1. That analysis uses a much different data object representation.



CHAPTER 3

Data Object Definition

This chapter and the next together discuss basic aspects of OODA. There are two
main themes. The first theme is the three phases of OODA (object definition,
exploratory analysis and confirmatory analysis) that were introduced at the be-
ginning of Chapter 1. Object definition is discussed here, while exploratory and
confirmatory analysis are detailed in Chapter 4. The second theme is modes of
variation, which have been informally discussed through most of Chapters 1 and
2, and will be formally defined here in Section 3.1.4. This chapter also provides
an overview of methods discussed in more detail in later chapters.

3.1 OODA Foundations

3.1.1 OODA terminology

Any OODA starts with data object selection. This typically has two main compo-
nents, determination of data objects, and their numerical representation. Determi-
nation involves choice of focus of the analysis. One example is the Spanish Mor-
tality data of Section 1.1 and the choice between age indexed curves over years
and year indexed curves over age, as well as the choice of log10 mortality. An-
other example is choosing whether to focus on amplitude and / or phase variation
in Section 2.1. It is useful to consider the notion of object space as the concep-
tual space containing all potential data objects, e.g. the space of curves for these
two examples. Fundamental OODA insights come from simultaneously consid-
ering the parallel notion of feature space, which contains the practical numerical
representations, such as feature vectors, as illustrated in Section 3.1.2.

Feature vectors are often aggregated into a data matrix which is a useful frame-
work for organizing data analytic thoughts. One of the matrix dimensions typi-
cally represents the cases, i.e. the elements of a statistical sample, which are also
sometimes called observations or individuals. Some potentially confusing cross-
cultural terminology has arisen in bioinformatics, where a complex biological ex-
periment is used to collect each measurement, i.e. feature vector, which itself is
frequently called a sample (by biologists, in stark contrast to the statistical use of
the term applying to the entire data set). The other matrix dimension is used to
index features or numerical descriptors of each data object, with variables being
a common synonym, as in Table 3.1. Another synonym is traits which is common
in biological applications and is particularly useful in Chapters 6 and 17.

31
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Number Synonyms

Cases n elements of a statistical sample, observations,
individuals, biological samples, experimental units

Features d variables, descriptors, traits

Table 3.1 Commonly used synonyms for cases and features.

An important issue is that there is a distinct dichotomy in personal preference as
to which data matrix dimension is which. From the classical linear algebraic point
of view, where vectors are columns, it makes the most sense to treat each data
object as a column vector, and then to horizontally concatenate these (i.e. bind the
columns), resulting in columns as data objects, with rows representing numerical
features. However, from the equally classical statistical tabulation viewpoint, it is
perhaps more natural to put variables (i.e. features or traits) in the columns and to
hence use row vectors as the data objects.

Keeping this distinction in mind is critical to having meaningful technical con-
versations, especially when linear algebra is involved. OODA terminology makes
this straightforward, by first agreeing whether it will be rows or columns that are
the data objects. This choice is often closely connected with software preference.
Much mainstream statistical analysis is done using R and SAS, where rows as
data objects are the convention. More mathematically oriented work is often done
in Matlab where columns as data objects is the more natural choice. Columns as
data objects is typical in bioinformatics as well, although this convention appears
to be largely driven by the fact that typical data sets tend to have many more vari-
ables (features or traits) than cases, which were easiest to store in early versions
of Excel in that format. The convention in this book is columns as data objects.

Another point of varying conventions is the letters used to denote the dimen-
sions of the data matrix. Again this is context dependent, with choices like m and
n appearing in some areas. Statisticians generally agree that n should be used
for sample size, i.e. for the number of data objects. Quite common also is p for
the number of variables (features, traits). Less clear is what p might stand for.
Some say it stands for predictors, but this seems limited to mostly regression con-
texts. Others suggest parameters, which makes sense in contexts such as regres-
sion where the mean is the focus, but not for consideration of covariance matrices
(which typically involve many more than p parameters). The convention here is
d standing for dimension of the data object vectors, and so with columns as data
objects the data matrix is a d × n matrix throughout this book. Further matrix
notation appears at (3.4).

3.1.2 Object and Feature Space Example

As noted in Marron and Alonso (2014) and mentioned above, a useful framework
for understanding relationships between data objects is through the twin concepts
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of object and feature spaces. The object space contains the raw curves, images,
shapes or trees, while the feature space contains some sort of numerical represen-
tation often in vector form. As pointed out in Telschow et al. (2014), the feature
space can also be called descriptor space, because that is where statistical descrip-
tion, such as the mean and variation about the mean as in the following example,
are naturally computed.

The interplay between these spaces is illustrated using the simple 2-d Toy FDA
example shown in Figure 3.1. The data objects are the n = 24 very simple func-
tions shown as black piece-wise lines in the left panel of Figure 3.1, the conceptual
object space. This piece-wise linear functional form is used here because it is two
dimensional, in the sense that each data curve is entirely determined by heights of
the two x signs plotted on the vertical lines. Each curve has the constant values of
height x1 on [0,1] and x2 on [2,3], and is piece-wise linear between the x signs
(on [1,2]).
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Figure 3.1 Simple 2-d Toy example illustrating object space (left panel) showing data ob-
jects as (simple piece-wise linear) curves, and feature space representing the same data
objects as points (circles in the right panel). The sample mean is shown in green in both
panels.

The relationships between these data objects is clearly illustrated in the fea-
ture space view shown in the right panel, where each black circle represents one
piece-wise linear function, using a conventional (x1, x2) scatterplot. Note that ev-
ery point (not just the data points) in the feature space has a representation as a
piece-wise curve and vice versa, i.e. there is a one to one correspondence between
these spaces. This view clearly shows two very distinct clusters, which are also
apparent in the left panel, at least after seeing the right panel. In general higher
dimensional cases, the feature space is usually of at least somewhat higher dimen-
sion, and thus is more challenging to visualize. However, it is often very useful
to still think in terms of such a point cloud in feature space as a device for con-
sidering relationships between data objects (e.g. the clusters apparent here). This
concept was used to explain the PCA modes of variation in Figures 1.4 and 1.5
for the Spanish Mortality data. Graphical devices for visualizing such point clouds
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include matrices of scatterplots as introduced in Figure 1.6 and discussed further
in Section 4.1.

Figure 3.1 also shows the sample mean in green. This is computed as the con-
ventional vector mean in the feature space, shown as the green plus sign. The
corresponding piece-wise curve is shown in green in the object space in the left
panel. Note that the green curve is also the point-wise mean of the data curves.

It was seen in Section 1.1 that PCA can provide an insightful decomposition
into modes of variation. This is explored in the context of this same 2-d toy exam-
ple in Figure 3.2. The first principal mode of variation is usefully understood in
the feature space as based on the direction from the mean (i.e. the red line through
the green plus sign), that maximizes projected variation. The projection of each
black data point onto the red line is a magenta plus sign, which is the point on the
line closest to the data point, connected by a cyan line segment. The coefficients
of this projection (relative to the unit vector pointing in the direction of the red
line) are the scores (e.g. these quantities were highlighted for the Spanish Mor-
tality data in the right panels of Figures 1.4 and 1.5). The entries of the direction
vector are the loadings that determine the shape of the mode of variation shown
in the left panel of Figure 3.1. The red line has been carefully chosen to maximize
the sample variance of the scores, thus giving the direction of maximal variation
in the data. By the Pythagorean theorem, it is easily seen that this solution is the
same as minimizing the sum of the squared lengths of the cyan line segments.
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Figure 3.2 First principal component mode of variation for the 2-d Toy example. Red line in
the right panel is the direction of maximal variation, cyan line segments show projections to
magenta plus signs. Left panel shows corresponding projected piece-wise lines in magenta.
This plot shows how PC1 is the one dimensional approximation which captures most of the
variation in the data.

The left panel of Figure 3.2 shows these projected points as curves. As the
magenta plus signs in the right panel are close to the black circles, the magenta
piece-wise lines in the left panel are close to their corresponding black curves.
These magenta curves are the best one dimensional approximation of the data,
in that they are (signed) multiples of the same curve (with respect to the mean)
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that has been determined by the loadings. Thus in the left panel the Coordinate
1 (x1) heights are negatively correlated with the Coordinate 2 (x2) heights. This
negative correlation is of course also reflected by the circles in the right panel. The
magenta curves are also usefully interpreted as a mode of variation, with relatively
small variation in the first coordinate (x1) and much larger negatively correlated
variation in the second coordinate (x2).

Also insightful is the second mode of variation, defined in terms of the second
principal component, shown in Figure 3.3. The yellow line in the right panel shows
the second principal component direction, which is orthogonal to the red line in
Figure 3.2 (generally the orthogonal line with maximal variation, but in this 2-d
example it is the only choice). Magenta line segments indicate the operation of
projection of each black data point onto the yellow line, which results in a cyan
plus sign. Note that lengths of these magenta line segments are the same as the
distances between the green center point and the magenta plus signs in the right
panel of Figure 3.2. Furthermore the distances between the cyan plus signs and
the green center point on the right of Figure 3.3 are the lengths of the short cyan
line segments on the right in Figure 3.2.
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Figure 3.3 Second principal component mode of variation for the 2-d Toy example. Yel-
low line in the right panel is the PC direction, with magenta line segments showing cyan
projections. Second mode of variation is shown as cyan piece-wise lines in the left panel.

The left panel of Figure 3.3 shows the corresponding mode of variation as the
cyan piece-wise curves. Note that there is far less visual variation present which is
not surprising because this is the direction of minimal variation. Also note that the
x1 heights (Coordinate 1) are positively correlated with the x2 heights (Coordinate
2). This is consistent with the fact that the cyan pluses in the right panel lie on an
upward sloping line.

A useful summary of the decomposition into modes of variation shown in the
above plots appears in Figure 3.4. The raw data object piece-wise lines shown in
black in the upper left are the sum of the components shown in the other panels:
the sample mean in green in the upper right, magenta PC1 projections (first mode
of variation) in the lower left, cyan PC2 projections (second mode of variation)
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in the lower right. Note that the magenta first mode focuses on the clustering
aspect of the data, in addition to the negative correlation of x1 and x2 and greater
variability in x2 compared to x1. The cyan second mode of variation is much
smaller in magnitude, and contains the smaller scale positive correlation between
x1 and x2 as well as being driven more by x1 than by x2. Note that several effects
have been picked up by each mode of variation, as is typical in many applications.
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Figure 3.4 PC decomposition of 2-d Toy example. Raw data objects in the upper left, mean
in the upper right (green), 1st mode in the lower left (magenta), 2nd in the lower right
(cyan). Raw curves are the sum of others, showing insightful decomposition of variation.

3.1.3 Scree Plots

Another aspect of this data set that is clearly visible in Figure 3.4 is that the first
mode of variation (magenta curves in the lower left) contains much more of the
overall variation in the data than the second mode (cyan curves, lower right). This
apportionment of variation is often worth numerically quantifying using sums of
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squares and then graphically displaying the results as a scree plot, several of which
are shown in Figure 3.5. A scree plot summarizes the variation (measured as sums
of squares) of each PC mode, as a function of the component index plotted as a
solid red piece-wise line. This is frequently (as here) scaled so the total is one, thus
displaying the proportion of variation for each mode. It is also frequently useful to
study the proportion of variation explained by the approximation of the data made
by each mode together with its predecessors. This is the cumulative sum of the
red values, shown here using a dashed blue piece-wise line. A few of the values
are also highlighted using circles (for the red single mode points) and plus signs
(for the blue cumulatives). These represent modes that are explicitly displayed in
the respective analyses elsewhere in this book.

The upper left panel of Figure 3.5 shows the scree plot for the 2-d Toy data set
used in Figures 3.1 - 3.4. This shows that the first PC mode of variation has 98.3%
of the variation, which is consistent with the visual impression in the lower panels
of Figure 3.4. Note that there are only two components for this data set, so the
dashed blue cumulative curve is actually at height one starting at mode index 2.

The scree plot for the Spanish Mortality data from Figures 1.1 - 1.6 is in the
upper right panel of Figure 3.5. Once again the first mode contains a very large
share of the variation (95.8%), which is consistent with the fact that the vertical
axis for displaying the first mode of variation in the left panel of Figure 1.4 is an
order of magnitude larger than for the second mode in Figure 1.5. A careful look
(together with the overall wiggliness of the curves in Figure 1.2) suggests there
may be additional variation in other modes of variation although it is visually hard
to distinguish from 0. When it is important to understand such modes of variation
that are orders of magnitude smaller, a log transformation of the scree plot is useful
(the same graphical principle illustrated in Figure 1.1).
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Figure 3.5 Scree plots, showing how variation is apportioned among PC modes of vari-
ation for the 2-d Toy data from Figures 3.1 - 3.4 (upper left), the Spanish Mortality data
from Figures 1.1 - 1.6 (upper right), the 10-d toy data from Figures 4.1 and 4.2 (lower left),
and the cancer gene expression data set from Figures 4.9 - 4.11. Solid red curve shows
individual proportions of variance and blue dotted curve is the corresponding cumulative.

The bottom left panel of Figure 3.5 is the scree plot for the Tilted Parabolas 10-d
toy data which will be studied in Figures 4.1 and 4.2. This shows a couple of large
modes, followed by a number of smaller ones. The large modes are classically
thought of as “signal”, and the smaller ones as “noise”. That conceptual ideal is
the basis of the use of the term “scree” here (apparently coined by Cattell (1966)).
In the natural world, as steep cliffs erode, rocky rubble called scree tends to collect
at their base. The idea of the graphic is that the signal appears as a steep cliff,
while the noise is the scree collected next to it. It has been proposed to try to
find “elbows” (some say “knees”) in the scree plot to select the “right” number of
principal components, but this can be a very slippery operation. For example, the
visual impression of knees in graphics can change completely when transforming
the data, e.g. by looking at the log proportions. The lower left panel of Figure 3.5
also serves to illustrate problems with this approach, as most would say that it
suggests one signal mode of variation, yet the analysis in Figure 4.1 shows two
modes of variation representing clear underlying population structure.

To make the point that not all scree plots have a large first mode, the scree plot
for the Pan Cancer gene expression data set which will be studied in Figures 4.9 -
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4.11 is shown in the bottom right panel. This time the first mode only explains less
than 20% of the variation, and many components are substantial players. Here the
cumulative dashed blue curve shows that the first 20 components together explain
only around 60% of the variation. This is because gene expression is associated
with very many diverse biological processes in living cells, so its overall variation
is intrinsically high dimensional.

3.1.4 Formalization of Modes of Variation

Figure 3.4 uses the 2-d Toy data to highlight the usefulness of the concept of modes
of variation in OODA, which has been informally used in the above discussion and
also in Chapters 1 and 2. One candidate for a more formal definition is a direction
in feature space, such as that shown as a red line in the right panel of Figure 3.2
and a yellow line in the right panel of Figure 3.3. These directions are the loadings
vectors whose entries determine the shape of the colored curves in the left panels
of those figures. However, the variation shown in these examples involves more
than just the direction in which it occurs. In particular, another important aspect of
that variation is the two cluster population structure, which shows up in the PC1
scores (red plus signs) in the right panel of Figure 3.2. That also determines the
clear cluster structure in the curves in the left panel. This suggests that a more
useful definition of mode of variation could be the union of the loadings and the
scores. However, consideration of the amplitude and phase variation through the
Bimodal Phase Shift data in Figure 2.2, as well as the shape variation illustrated in
Figure 1.11, suggest that in general such linear summaries of loadings and scores
are not sufficiently general. Instead the needed intuition comes more generally
from consideration of some type of one dimensional set of objects in the object
space. This motivates:
Definition: A mode of variation of a sample of data objects is a set of potential

members of the object space that provides a simple summary of one compo-
nent of the variation. This summary is in some sense one dimensional, e.g.
reasonably representable by a single real valued parameter.

Such summarizing sets are bundles of curves representing two modes of variation
of the Spanish Mortality data in the left panels of Figures 1.4 and 1.5. Summariz-
ing sets, representing modes of variation using the center and two extreme shapes
are shown for the Bladder-Prostate-Rectum data in Figure 1.11. Examples of non-
linear modes of variation again displayed using bundles of curves approximating
the Bimodal Phase Shift data appear in Figure 2.2. A summarizing set illustrating
a mode of variation connecting females to males in image space appears for the
Faces data in the top part of Figure 2.9. The notion of mode of variation is revis-
ited at several points in the following, perhaps most notably in Chapters 6, 9 and
17.

3.2 Mathematical Notation

Notation that is useful in the next section, as well as at many later points includes:
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• The set of real numbers, R.
• The standard d dimensional Euclidean space of column vectors (denoted as

lower case bold letters),

Rd =
{
x : x =

(
x1 · · · xd

)t
, x1, · · · , xd ∈ R

}
. (3.1)

.
• Matrix transpose indicated by a superscript t.
• The sphere whose surface dimension is d (essentially points on the surface of

the solid unit ball in Rd+1),

Sd =
{
u ∈ Rd+1 : ‖u‖2 = 1

}
. (3.2)

• The Lp norm on Rd,

‖x‖p =

 d∑
j=1

|xj |p
1/p

. (3.3)

• The Cartesian product, ×.
• The set of d× n matrices (using bold capital letter notation),

Rd×n =

X : X =

 x1,1 · · · x1,n

...
. . .

...
xd,1 · · · xd,n

 , x11, · · · , xdn ∈ R

 . (3.4)

• Given a d×n data matrixX , the sample covariance matrix (using the notation
v̂ari and ĉovi,i′ to denote the sample variance and covariance of the i-th and
i′-th rows ofX formally defined at (17.18) and (17.19)),

Σ̂ =


v̂ar1 ĉov1,2 · · · ĉov1,d

ĉov2,1 v̂ar2
. . .

...
...

. . . . . . ĉovd−1,d

ĉovd,1 · · · ĉovd,d−1 v̂ard

 . (3.5)

3.3 Overview of Object and Feature Spaces

Figures 3.1-3.4 and many others focus on the display of curves as data objects
which can be thought of as visual representations of vectors. The relevant plots
are all piece-wise linear plots, where the heights of the vertices are the entries
of the vectors. Such plots have been called parallel coordinate plots by Inselberg
(1985, 2009), who advocated them as a general multivariate analysis visualization
tool.

In FDA, other representations of curves besides digitization are also commonly
used, often based on mathematical basis ideas. These include:
• Fourier. This orthogonal basis is very useful for curves which are smooth and

periodic. Insightful discussion of Fourier methods in the context of time series
analysis can be found in Bloomfield (2000) and Brillinger (1981).
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• Orthogonal Polynomials. There are many such orthogonal bases for curve
space. Many useful facts can be found in the classical book by Szegő (1975).
A very useful, and easily accessible summary of many important aspects can
be found in Gradshteyn and Ryzhik (2015). A specific example of orthogonal
basis data object representation, using a tensor product of polynomials and a
Fourier basis, to analyze the Cornea Curvature data set is in Section 16.2.1.

• B-splines. There are many variants of these typically smooth curves, which
provide flexible and effective representations of smooth data objects. See Eil-
ers and Marx (1996), Stone et al. (1997) and Ruppert et al. (2003) for good
overviews of statistical aspects of this area. An important classical B-spline
reference is de Boor (2001).

• Wavelets. This orthonormal basis can give efficient data object representation
for curves with varying amounts of smoothness in different locations. See the
book Frazier (2006) for introduction to this area. Other important references
include Mallat (1989), Daubechies (1992), Donoho and Johnstone (1994) and
Donoho et al. (1995). As discussed in Mallat (2009), a combination of sparsity
ideas and wavelets has been particularly useful in image denoising. Different
types of useful insights into wavelet curve estimation come from exact risk
calculation in Marron et al. (1998), and using spectral ideas in Marron (1999).

The object - feature space concept is also useful for these curve representations,
where again the object space consists of curves, but now the feature space is
the space of basis coefficients. Data analysis methods such as PCA still tend to
work quite well when performed on the vectors of basis coefficients in that fea-
ture space, together with insightful visualization of modes of variation seen in
the object space, in the spirit illustrated in Figures 3.1 - 3.4. As noted above, a
particularly deep example of this type, where cornea curvature images on a disk
are represented by a carefully chosen orthonormal basis is discussed in Section
16.2.1.

Another very important aspect of data object representation is transformation.
The utility of this was illustrated in Figure 1.1, where it was seen that log10 mor-
tality gave much clearer insights than were available from the raw mortality. Data
transformation is further studied in Section 5.3.

Sangalli et al. (2014b) gave an interesting discussion of the importance of suf-
ficiency in data object choice. A related issue, very important to mathematical
statistical analysis of OODA is the choice of data object space, which includes an
appropriate metric. For example, in FDA, there are many ways to measure dis-
tance between curves, e.g. there is the whole family of Lp norms. Much of the
literature has been dominated by the choice p = 2 because of its close relation-
ship with classical least squares, and its tractability. However, when robustness
issues (discussed in Chapters 7 and 16) are important p = 1 can be very useful.
Furthermore Devroye and Györfi (1985) offer good reasons why L1 is more nat-
ural in the case of probability densities as data objects. In some cases, such as
the occasional need to strongly penalize thin spike departures, the choice p = ∞
can be more useful. In other situations performance of derivatives are critical, so
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Sobolev type norms are the most sensible choice. Marron and Tsybakov (1995)
explored error criteria that correspond to human visual impression. Panaretos and
Zemel (2019); Zemel and Panaretos (2019); Panaretos and Zemel (2020) show
that the Wasserstein metric provides those good visual properties in a natural way,
using optimal transport ideas. More discussion of these error criteria can be found
in Sections 7.3 and 15.2. However, these OODA object space issues run deeper
than just the mathematical statistics. In particular, as seen in Chapter 7, even sim-
ple data analytic notions such as population center can depend critically on such
choices. Piercesare Secchi nicely summarized this set of ideas as: “Experimental
units only become data objects after embedding in an appropriate space”, which
is the role of the object space.

Table 3.2 revisits the examples in Sections 1.1 - 2.4 and above, with the goal of
clarifying the “data object” terminology and the respective roles of the conceptual
object and feature spaces.

Example Choice of data objects Appropriate? Object space Feature space Methods used Results

Mortality Raw Mortality vs Age curve × Obscures detail Curve space R99
+

log10 Mortality vs Age curve X Reveals detail Curve space R99 Mean & PCA Figs. 1.1-1.6

Prostate Skeletal shapes X 3-d S-rep models Rk × Rl+ × (S2)m PGA Fig. 1.11

Proteomics Raw curves × Obscures detail Curve space R2001

Aligned curves X Curve space R2001

Warp functions X 1-d Diffeomorphisms S2000 Align true markers Fig. 2.1
Aligned & warps X Curve× Diffeomorphisms R2001 × S2000

Juggling Warping of acceleration X 1-d Diffeomorphisms Sd−1 PNS Fig. 2.3

Speech Sound recording × Obscures detail
Spectrogram × Obscures detail

Covariance of spectrogram X Covariance functions PSDm Group means & test Fig. 2.8

Faces Unregistered faces × Too blurred Set of all 2-d images R248×186

Registered faces X Set of all 2-d images R248×186 DWD Fig. 2.9

2-d toy example Curves X Curves R2 Mean & PCA Fig. 3.1-3.4

Table 3.2 Specifics illustrating choices of conceptual object and feature spaces.

This table emphasizes the respective roles of the object and feature space. For
example
• Mortality Example (Section 1.1). Each object curve is represented by a 99 di-

mensional feature vector (in R99) for the 99 ages 0-98. As observed in Figure
1.1, the log10 variable choice reveals more useful data structure.
• Proteomics Example (Section 2.1). Here there are multiple reasonable choices

of data objects, which are curves or warps (i.e. diffeomorphisms, see Section
9.1.2 for further discussion). The curves are represented as 2001 dimensional
feature vectors, while the Fisher-Rao warping functions are usefully repre-
sented in the feature space as points on the high dimensional sphere S2000.
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• Speech Example (Section 2.3). Choices of conceptual data objects here include
digital sound intensities as shown in the top panel of Figure 2.7, spectrograms
in the bottom panel, and covariance functions of frequencies. As noted in Sec-
tion 2.3 the latter is the best choice for revealing important aspects of human
speech. Their discretization results in the set ofm×m symmetric positive semi-
definite (also called nonnegative definite) matrices, PSDm, being the natural
feature space.

• Faces Example (Section 2.4). The conceptual data objects are the 248 × 186
two dimensional images. The feature representation came from reorganizing
each image matrix into a (248× 186) = 46, 128 dimensional feature vector.

3.3.1 Example: Probability Distributions as Data Objects

Another data object representation issue arises in the case of probability distri-
butions as data objects. Some commonly used representations of distributions in
probability theory are shown in Figure 3.6, for the bimodal mixture distribution
1
3N (120, 1200) + 2

3N (280, 1200). The left panel shows the probability density
function representation. This form is most useful for highlighting important distri-
butional aspects such as modality, as pointed out for example by Silverman (1986)
and Scott (2015) and also as is clear from this figure. The center panel shows the
cumulative distribution function of the same distribution, which is computed by
integrating the density, and has strong utility for the task of calculating proba-
bilities such as p-values. The right panel shows the corresponding quantile func-
tion, which is just the inverse function of the cumulative distribution function. See
Parzen (2004) for discussion of many appealing properties of the quantile func-
tion.
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Figure 3.6 Different representations of the same bimodal normal mixture distribution. Left
panel is the probability density, center is the corresponding cumulative, right is the quantile
i.e. inverse cumulative.

Which representation is preferable strongly depends on the context. A perhaps
not well understood point, illustrated in Figures 3.7 and 3.8, is that for sets of
distributions where variation in the mean and/or variance are important modes,
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the quantile function representation can easily give the most efficient and insight-
ful PCA decomposition. The upper left panel of Figure 3.7 shows a data set of
n = 100 curve data objects, each of which is a Gaussian density, with a wide
range of means and variances. The data objects are colored, with more blue col-
ors coding larger means, and more red representing larger variances (thus lower
curves). Hence the small mean and variance densities (upper left) are black, with
the large mean and variance curves colored magenta (lower right). The top right
panel of Figure 3.7 shows the scree plot for the PCA of these curves, which in-
dicates quite poor signal compression, in the sense that the first few modes of
variation contain a fairly small fraction of the variation, i.e. the signal power of
this data set is spread widely across the PCA spectrum. This is disappointing as
there are in some sense only two modes of variation (only differing means and
variances). The reason for this appears in the other left panels, which show the
PCA loadings plots as introduced in the left panels of Figures 1.4 and 1.5. Unlike
the analysis of the mortality data shown in Section 1.1 this decomposition does
not provide a very intuitive view of the variation in this data set. In particular, nei-
ther of the first two modes reflect the two intuitively obvious modes of variation
(means and variances).
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Figure 3.7 Raw data (upper left panel) and PCA of a family of Gaussian densities. Colors
more blue for larger mean, and more red for larger variance. Scree plot in the upper left
panel, and the modes of variation (2 lower right panels), show very poor PCA summariza-
tion of this data set.

As shown in Figure 3.8, the quantile representation of this set of probability
distributions is far more amenable to PCA. The upper left plot in Figure 3.8 shows
the quantile representations of the densities in the top left panel of Figure 3.7,
using the same colors. The PCA scree plot of these curves, shown in the upper
right panel shows that the full data set is described completely by only the first
two PC components, which is a stark contrast to the poor PCA signal compression
seen for the density representation of these data in Figure 3.7. Furthermore the first
component contains well over 95% of the variation.
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Figure 3.8 PCA of the quantile representations of the same set of distributions as in Figure
3.7. Shows much more efficient PCA summarization of variation in this data set, as well as
more interpretable modes of variation, using this improved choice of data objects.

Note that the PCA loading plots shown in the remaining left panels of Figure
3.8 are quite interpretable. PC1 is clearly a vertical shift mode of variation, which
nicely captures the shifting mean component of variation. That follows from the
fact that the vertical axis in the right (quantile) panel of Figure 3.6 is the same
as the horizontal axes in the center (cumulative) and left (density) panels. PC2 in
Figure 3.8 captures the variation in variances by reflecting differing slopes which
correspond to differing widths of the densities. The scores distribution plots in
the middle and lower right panels of Figure 3.8 cast additional insights into these
modes of variation. Note that the PC1 scores show increasing blue towards the
right, with black and red on the left, and blue and magenta on the right, corre-
sponding to the left to right colors in the upper right panel of Figure 3.7. Also, the
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PC2 scores show increasing red towards the right, going from black and blue to
red and magenta, similar to the downward coloring in the density representations
for increasing variance.

Another approach to the dominant mean shift variation in this example is the
use of variation in warping functions to explicitly target phase variation, as seen
in Section 2.1, and discussed in detail in Chapter 9. Hron et al. (2016) and
Menafoglio et al. (2018) propose other promising approaches to the analysis of
probability distributions as data objects, which similarly result in modes of varia-
tion that are more insightful than those captured by PCA.

There are situations where explicit feature representation of data objects can be
side-stepped. An example is when only distances between data objects are mea-
sured. There are many methods for handling such situations, discussed in Chapter
7.





CHAPTER 4

Exploratory and Confirmatory Analyses

This chapter discusses the second and third phases of OODA (exploratory analysis
and confirmatory analysis) that were introduced at the beginning of Chapter 3.

4.1 Exploratory Analysis - Discover Structure in Data

Data visualization, as illustrated for example using the Spanish Mortality data in
Figures 1.1-1.6, is a very important part of exploratory data analysis. A personal
opinion is that it should represent a larger part of statistical training, and of funded
research, than it currently does. The present state seems to be driven by statisti-
cal models and goals (for example analyzing causality) becoming increasingly
complex, which led to a tendency to co-opt a large share of attention in the field.
However visualization is not only important for exploratory analysis and under-
standing how data objects relate to each other as demonstrated in Figures 1.1-1.6,
it is frequently also important for the effective choice of data object (e.g. whether
or not to transform), and further provides important reality checks.

Important references on data visualization include Tufte (1983), Cleveland et al.
(1985); Cleveland (1993) and Tukey (1990). These works contain many useful
ideas and discussion of what comprises good graphics, although they can some-
times be overly prescriptive. The rest of this section considers two specific types
of data visualization that are critical to OODA.

A perhaps too often ignored, but frequently critical, step in OODA is the study
of marginal distributions. Visualizations of marginal distributions, e.g. by his-
tograms or QQ plots, are common when there is time for careful analysis of clas-
sical small scale data sets. This often proves very useful in handling variables
with strong natural skewness, indicating a potential benefit from transformation
(see Section 5.3 for much more on this), and also in the case of strong outliers,
which depending on the context can either be deleted or handled through the use
of robust methods (see Chapter 16).

A reason that this step seems challenging in high dimensional contexts is that
there are generally just too many variables (i.e. features or traits) to humanly com-
prehend the population structure of all of them. A careful analyst will try to look at
some representatives, but it may not be obvious how to choose those. This problem
is addressed using the graphical device of marginal distribution plots in Section
5.1, where case studies on the Spanish Mortality data (from Section 1.1) and the
Drug Discovery data set are provided.

As illustrated in Section 1.1, PCA is an effective and commonly used tool for
exploring modes of variation. These give insights into how data objects relate to

49
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each other, such as exploring potential clusters. Ramsay and Silverman (2002,
2005) made it clear that PCA is a powerful tool for understanding variation in
FDA, i.e. curves as data object contexts. Less well known is that this insightful
idea was first published in Rao (1958), in the context of analysis of growth curves.
Basics of PCA are described in Chapter 17. Important ideas discussed there in-
clude the fact that the good idea of PCA has been rediscovered (and generally
given different names) a number of times, and that the misconception that PCA is
only useful for Gaussian data sets (because one motivation of it is via Gaussian
likelihood ideas) is seriously misleading. The latter point is also clear from several
of the examples given in this section.

4.1.1 Example: Tilted Parabolas FDA

Figure 4.1 shows an FDA toy example to illustrate the concept of decomposition
into modes of variation, in the spirit of Figure 3.4. The n = 50 input raw data
curves are shown in the top left panel. These are simulated to have an approxi-
mately parabolic shape, but variation of several types is included as well, hence
the name Tilted Parabolas. Each curve is really just a parallel coordinates plot (as
discussed in Section 3.1) of a collection of 10 dimensional vectors, but conceptu-
ally it makes sense to think of a bundle of smooth curves.
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Figure 4.1 Tilted Parabolas 10-d toy example to illustrate concept of modes of variation
in FDA. Top row has the raw data curves on the left, mean curve in the center and mean
residuals on the right. Remaining rows show PC components, with mode of variation plots
(projections) on the left, residuals center and distribution of scores (projection coefficients)
on the right. This demonstrates insights available by decomposing data into modes of vari-
ation.

The object space - feature space concept illustrated in Figures 3.1 - 3.3 is useful
here, except that explicit visualization of the feature space is not done because
that space is R10 for this data. Nonetheless, it is still useful to think of statistical
analysis as being done in that space on the cloud of points that represents the
bundle of curves, while looking at the corresponding object space (i.e. curves)
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view. Colors are based on the Matlab default rotating color palette, with the same
colors used in the other panels for visual correspondence.

The top center panel of Figure 4.1 shows the first natural statistical summary:
the sample mean. Again, it is useful to think of that curve as the object space
representation of the mean of the cloud of points in the feature space (R10). The
mean curve can also be considered as the point-wise mean of the curves in the top
left panel. The top right panel shows the mean residuals, which are a visualization
of the curves that correspond to shifting the point cloud in R10 so that it is mean
centered at the origin. These residuals already highlight an interesting aspect of
the data: the parabolic shape of the curves is driven entirely by the mean, and not
the variability about the mean.

The next three rows show the results of a PCA decomposition into modes of
variation, of the same type shown in Figures 1.4 - 1.5 and 3.2 - 3.3.

The first mode of variation is the left plot in the second row. As discussed in
Section 1.1, this is based on finding the direction in the feature space (R10) that
maximizes the projected variation (in the sense illustrated in Figure 3.2), project-
ing each mean residual curve onto that direction, and then showing the resulting
set of curves (as the projection coefficient multiplied by the direction vector). Re-
call that this set of curves are columns of a rank one matrix. In particular, they are
all multiples of the same curve (which is the curve representation of the direction
vector in the feature space). This clearly shows that the first mode of variation is
essentially a vertical shift. With this knowledge in hand, that mode can clearly be
seen also in the mean residuals on the top right, as well as in the raw data on the
left.

The right panel in the second row, shows the distribution of the projection co-
efficients, i.e. the scores, again with corresponding colors (e.g. the gold followed
by gold and red on the right correspond to the same colored curves on the bottom
of the left hand panel). The format of these scores distribution plots is the same
as that used in Figures 1.4, 1.5, 5.1 and 5.2, where each score is represented with
a symbol, and the black curve is a smooth histogram. Because there is no special
ordering in this data set, the height of the points in the PC scores plots can be
considered to be random. Using such displays with simulated random heights is
the jitter plot idea proposed by Tukey and Tukey (1990) as a device for visual-
izing one dimensional data sets. In many displays here (also called jitter plots)
order in the data is used for heights as that can reveal aspects of the data which
would disappear using random heights. Specific examples of this include Section
5.1.1 and the discussion of Figure 11.3. The center panel shows the correspond-
ing PC1 residual curves, each of which is just the centered residual minus its PC1
projection. Note that these are also the projections of the mean residuals onto the
hyperplane orthogonal to the PC1 direction.

The third row shows the second mode of variation. The left hand panel is the
object space representation of the projections of the PC1 residuals (2nd row mid-
dle panel) onto the 2nd PC direction in R10. Note that this also shows a very
interpretable mode of variation, a random tilt. This mode is much harder to see in
either the raw data curves, or the mean residuals, demonstrating the ability of PCA
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to find interesting modes that are not visually apparent in the raw data. The PC2
scores (i.e. the projection coefficients) in the right panel show much less variation
than for PC1, and the PC2 residuals in the center panel also show relatively less
variation.

The fourth row shows PC3, i.e. third mode of variation. The loadings plot in the
left panel looks rather random. This is because the data were simulated as

(x− 6)
2

+ 4Z1,j + 0.5Z2,j (x− 5) + Zx,j , (4.1)

for j = 1, · · · , 50, where x = 0.5, 1.5, · · · , 9.5, and where the Zx,j are indepen-
dent standard Gaussian random variables. Note the coefficients are deliberately
chosen to make these components correctly ordered in PCs 1,2,3. Since the noise
terms (Z0.5,j , · · · , Z9.5,j)

t ∈ R10 follow an isotropic Gaussian distribution, the
PC3 direction is random. The relatively small scale of the noise is also clear from
the tightness of the PC3 scores shown in the right panel. Also the PC3 residuals in
the center panel show that PC3 explains relatively little of the variation in the PC2
residuals above, again because the noise is isotropic, and thus evenly distributed
among the remaining directions in R10. Again these PC3 residuals are the PC2
residuals above minus the PC3 projections to the left.

As discussed in Section 3.1.3, a useful viewpoint on these issues comes from
various sums of squares (in the spirit of Analysis of Variance). The fact that the
PC1 projections explain most of the variance is quantified by the sum of squares
of the PC1 projections (left, 2nd row) representing 86% of the sum of the mean
residual sum of squares. The visual impression that the PC2 projections (left, 3rd
row) contain less variation is clear from the sum of squares being only 10.4%. The
remaining sum of squares (i.e. summed over all remaining PC components, which
is also the sum of the residuals shown center, 4th row) is only 3.6%, confirming
that all of the remaining variation is quite small. The spherical nature of the re-
maining variation is confirmed by the PC3 variation explained being only 0.7%.
Graphical comparison of these numbers is provided by the scree plot in the lower
left panel of Figure 3.5.

Figure 4.1 also provides an additive decomposition of variation as highlighted
in Figure 3.4. In particular, the raw data in the top left panel is the sum of the
mean in the top center, the modes of variation in the remaining left panels, plus
the residuals in the bottom center panel.

As discussed in detail in Section 17.1.2, the PC direction vectors used in the
above data decomposition are easily computed, using either an eigen analysis
of the covariance matrix, or equivalently a Singular Value Decomposition of the
mean residual matrix.

A graphical point worth discussion here is the axes used in Figure 4.1. In par-
ticular (except for the first row) the vertical axes in the first two columns, as well
as the horizontal axes in the third column, are deliberately taken to be the same
(even across the rows). Such a view is quite nonstandard for most graphics pack-
ages, which generally adhere to the goal of trying to use as much of the graphics
space as efficiently as possible, in particular minimizing white space. While the
minimization of white space is generally a sensible default, in this context it does
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have an intuitive cost as demonstrated in Figure 4.2, which is a replotting of the
bottom 3 rows of Figure 4.1, but this time using axes that minimize white space.
The difference between these two figures is perhaps most strong in the bottom
row, which is easily understood as small scale noise artifacts in Figure 4.1, but
visually appear to be equal players in Figure 4.2. In particular the important de-
crease in variation for the higher PC components become much harder to see (only
discernible by carefully studying the axis labels). The relative shapes (horizontal
shift in the first mode, tilt in the second, noise in the third) are now highlighted,
at the cost of it being harder to interpret relative variation. However, this effect
can be easily mitigated by also including a scree plot, as introduced in Figure 3.5,
which includes this data set in its lower left panel. Understanding variation using
a scree plot has already been illustrated in Figures 3.2 and 3.6.
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Figure 4.2 Same FDA of Tilted Parabolas data as in Figure 4.1, showing more typical axis
choice to minimize white space. Note this loses the intuitive illustration of relative amount
of variation in the modes.

One more issue about white space, is that when trying to put a number of plots
on a single page, it can make sense to also eliminate the white space between plots.
The trellis graphic ideas of Becker et al. (1996) provide appropriate ways to do
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this. Examples appear in Figure 8.10, in the context of the DNA Molecule data,
and in Figures 16.8-16.10 for the Cystic Fibrosis GWAS data.

4.1.2 Example: Twin Arches FDA

Another FDA toy example is the Twin Arches data shown in Figure 4.3, whose
format is very similar to Figure 4.1. This time the n = 50 data curves shown in
the upper left panel, are parallel coordinate plots of vectors in R50. Details of the
construction are given below, but at this point consider the data in an exploratory
spirit. Apparent is a somewhat higher background noise level than for the Twin
Arches data, and also some strong structure in the data. The center panel shows
the sample mean which this time is essentially constant, so the mean residuals in
the left panel are very similar to the original data curves (again using the same
axes makes this visually apparent, which would be much harder to see with white
space minimizing axes, as in Figure 4.2).

Again the second row shows the PC1 mode of variation. The PC1 loadings plot
on the left seems to capture the main twin arch structure, but note that some of
these projection coefficients are essentially zero. The PC1 scores in the right panel
makes it clear that there are actually three strong clusters in the PC1 direction, i.e.
this is a very non-Gaussian mode of variation. Perhaps more surprising is the
object space representation of the PC1 residuals in the center panel. While some
of the residual curves seem to be 0 plus noise, others seem to retain the same
arched structure, for reasons discussed below.
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Figure 4.3 Twin Arches toy FDA example in 50-d, illustrating ability of PCA to find insight-
ful modes of variation. This time the mean is negligible and the strong arched structure are
artifacts of clustering, i.e. non-Gaussian structure in the data.

The PC2 mode of variation plot, on the left in the third row, may also at first
be surprising. This is because it looks similar to the PC1 mode just above. But
they cannot be similar since these direction vectors in R50 (recall each such plot
consists of multiples of a single vector) must be orthogonal. A careful look at the
colors reveals what is happening. Notice for PC1, the generally gold color goes up
at the first arch and down at the second. Suggesting this function is roughly a sine
wave. In PC2 the mostly blue color goes upwards for both arches, while the more
red curves go downwards for each, which is a direction orthogonal to the PC1
eigenvector. By the way, these colors have not been deliberately assigned, but are
just artifacts of the random generation of the curves, together with over-plotting
effects, where the color tends to be dominated by the last plotted curves.

As suggested by the PC2 residual curves, the next components are pure Gaus-
sian noise, with PC directions looking quite random, which thus are not shown
here.
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As noted in the survey paper by Febrero-Bande and Oviedo de la Fuente (2012),
a number of FDA software packages aim to integrate PCA with noise reduction
in a single step, as pioneered by Rice and Silverman (1991). These include per-
haps most notably the FDA package accompanying Ramsay and Silverman (2002,
2005), and the PACE package started by Yao et al. (2005). While this process is
critically important in many high noise cases, as well as in the case of uneven
and sparse sampling (of the horizontal coordinates of the curves), in perhaps sur-
prisingly many cases such as these two examples, it can be enough to simply do
naive PCA on the data. The reason seems to be that when the true underlying di-
rection is smooth, the noise is averaged out by PCA. In Gaydos et al. (2013) a
variation of PCA, which maximizes smoothness instead of variation, is proposed
and integrated with PCA in an interesting way.

An important principle of multivariate analysis is that joint distributions can
contain much richer structure than is apparent from the marginals. This concept
can be used for a more clear understanding of the structure of the Twin Arches
toy data illustrated in Figure 4.3 by studying bivariate projections in addition to
the univariate scores distributions shown in the right hand column. Such a view is
the scatterplot matrix shown in Figure 4.4, which is in the same format as shown
in Figure 1.6 for the Spanish Mortality data. This view shows the distributions of
the 1-d projection coefficients (PC scores) along the diagonal, with in particular
the first two being the same as the lower two in the right column of Figure 4.3.
The off diagonal plots show corresponding two dimensional plots. For example,
the top center panel is the scatterplot of the PC1 versus PC2 scores. Note this is
closely linked with the panel below (the horizontal axes are the same, so e.g. the
left cluster in the PC2 scores is the same as the left cluster in the scatterplot), and
with the plot to the left (where the PC1 score axis becomes the vertical axis so the
left cluster in the PC1 scores is the bottom cluster in the scatterplot). This PC1
versus PC2 scatterplot gives a clear view of the underlying structure in this case,
there are actually 4 clusters, which project down to 3 clusters in each of the PC1
and PC2 directions. Note that the center left plot is just the transpose of the top
center plot. Since this does not convey much new information, the below diagonal
plots are sometimes replaced by other graphics.

The remaining column and row all show the 3rd component. The univariate PC3
scores distributions appear to be Gaussian, which is consistent with how the data
were generated. Note that a more conventional white space minimizing choice of
axes is used this time, so a careful look at the axis labels is helpful to see that this
mode contains much less variation than PC1 and PC2. Again the scatterplots in
the right column share the same horizontal axis, so the actually spherical clusters
have been strongly stretched by this axis choice. Similarly, for the scatterplots in
the bottom row, which are just transposes.
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Figure 4.4 Scatterplot matrix view of the Twin Arches data from Figure 4.3. Shows clus-
ters apparent in 1-d marginal scores distribution plots come from marginalizing 4 actual
clusters.

Scatterplot matrix views tend to be very insightful, and are recommended for
most situations where relationships between data objects are relevant. A natural
question is: if 2-d projections show more than 1-d projections, why not also con-
sider higher dimensional projections? While potential improvements appear to be
obvious, and implementation is fairly straightforward for 3-d, it does come with
substantial overhead, such as the need for dynamic graphics. These take substan-
tial energy to both implement and to visually explore, which can be a large draw-
back for routine data analysis tasks. For projections of dimension higher than 3,
visualization becomes much more challenging, and is thus not frequently done.

4.1.3 Case Study: Lung Cancer Data

While toy examples, such as those in Figures 4.1 - 4.4 can give many insights, it
is also important to consider real data sets. An interesting example is the set of
curves (called the Lung Cancer RNAseq data) shown in Figure 4.5. These come
from a study of lung cancer, and in particular was an early data set collected as
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part of The Cancer Genome Atlas (TCGA), Weinstein et al. (2013). The focus
here is on the gene CDKN2A, which has long been known to be involved in many
types of cancer. The horizontal axis represents the region on the chromosome
that is used to produce the RNA measured here (using the RNAseq technology
described in Wang et al. (2009)). For each of the d = 1709 locations, the vertical
axis shows the counts (on the log10(·+ 1) scale) of pieces of amplified RNA
molecules that match the chromosome at this location. There are n = 180 such
curves. The log10 scale is useful, and is the data object representation choice used
in the rest of this section, since these counts range over 3 orders of magnitude. An
artifact of this log10 scaling for this data set is that very small counts, such as 1
and 2 occupy a large chunk of the bottom of the plot, since log10 (1 + 1) ≈ 0.301
and log10 (2 + 1) ≈ 0.477. The same rotating palette of seven colors used in
Figures 4.1 - 4.4 is used here as well. The curves seem somewhat chunky in nature,
in particular being substantially lower over some intervals, because these coding
regions do not appear in a contiguous region on the chromosome, but instead are
separated into intervals called exons. The union of these exonic regions are used
as the horizontal axis in Figure 4.5.
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Figure 4.5 Raw log10 count curves of Lung Cancer RNAseq data. Colors are standard ro-
tating palette used for good contrast of curves. It is not easy to discern population structure.

While there is a lot of variation in these curves, it is hard to discern much struc-
ture, although they vary over several orders of magnitude. As illustrated above a
PCA scores scatterplot, shown for the Twin Arches data in Figure 4.6, is useful
for understanding relationships between data objects. Even the 1-d scores distribu-
tions on the diagonal already show multi-modal structure, which is quite apparent
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in the black smooth histograms. But, as illustrated in Figure 4.4, the 2-d off di-
agonal scatterplots do a much better job of highlighting the multi-modal structure
of the data, where three clusters are immediately apparent. Statistical significance
of these clusters is formally explored in Section 13.2.1. Note that in the spirit of
the phenomenon illustrated in Figure 4.4 the top two clusters are combined in the
PC1 scores, and the right two clusters combine in the PC2 scores. Only the first
2 components are shown in Figure 4.6, because the 3rd and 4th components are
driven by a few outlying cases, which are not further studied here. In particular,
the first two components explain 82% and 8% respectively, while the 3rd and 4th
explain 3% and 2%. Another interesting pattern is the points in the second through
fourth quadrants appear to be bounded below by a line. An open question is what
generates this apparent structure in the data.
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Figure 4.6 Lung Cancer RNAseq PCA scatterplot matrix. Colored circles represent feature
space view of corresponding curves in Figure 4.5. Shows three clear clusters in the data.

Insight into the drivers of these clusters comes from a technique called brushing
in Becker and Cleveland (1987). The idea is to use colors to keep track of subsets
of the data in multiple graphics. This is illustrated in Figure 4.7, which shows
the same distribution of points as in Figure 4.6, with colors that have now been
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manually chosen to highlight the three clusters. Automatic versions of clustering
can also be done using a variety of methods as discussed in Chapter 12.

Note that the visual impression of these clusters in the 1-d distributions shown
on the diagonal is now enhanced with appropriately colored versions of the smooth
histogram which focus on each cluster. These are sub-densities in the sense that
the area under the main black curve is 1, and the areas under each colored curve,
which are proportional to the cluster sizes, sum to 1. Note that in regions where
one cluster is dominant, the colored sub-density is the same as the black overall
density, and thus overplots it (e.g. red on the left side of the PC1 scores and blue
on the left side of the PC2 scores). In other regions, the relative curve heights give
a clear visual impression of the corresponding cluster proportions.
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Figure 4.7 Brushed PCA scatterplot matrix of Lung Cancer RNAseq data, using colors to
highlight the three clusters. Also shows sub-density estimates, for visual separation, in the
1-d distributions on the diagonal.

This brushing technique is often especially insightful when used across a vari-
ety of graphical displays. An example of this appears in Figure 4.8. These are the
same curves shown in Figure 4.5, but now the color scheme developed in Figure
4.7 is used. Note that the red curves are all substantially lower than the others.
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In the early days of gene expression these cases would have been labeled as un-
expressed (which actually means expression at a much lower level, recall the log
scale on the vertical axis). Note that for most exons the blue and brown curves
both have high expression values. There is an exon to the left of center where
all cases seem unexpressed, which is reasonably labeled an annotation error (an
on-going issue with such biological data sets). The most interesting issue is the
exon right of center, where the brown cases are high, but the blue cases are es-
sentially unexpressed. This is an event called alternate splicing where actually
different versions of mRNA are produced from this chromosome region by dif-
ferent people. This is very important to the development of new treatments for
cancer, because such phenomena can be targeted by appropriate drugs.
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Figure 4.8 Same Lung Cancer RNAseq curves as in Figure 4.5, now using brushed colors
from Figure 4.7. Shows clusters are very important, in particular representing alternate
splicing.

While the alternate splicing present in this gene CDKN2A has been well known
for some time, the success in finding it with this type of visualization motivated
Kimes et al. (2014) to use this type of idea to scan the whole genome in search
of unknown alternate splices. A key challenge was that, as noted in Chapter 12,
most automatic clustering methods always find many clusters, whether they rep-
resent important biological structure as in Figure 4.8, or not. Hence confirmatory
analysis, as discussed in Section 4.2 and Chapter 13 is essential, and was key to
the SigFuge method developed in Kimes et al. (2014).

Another important aspect of data representation is scale and normalization is-
sues. These important parts of OODA preprocessing are discussed in detail in
Section 5.2. As seen in several examples above PCA can be a powerful visual-
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ization device for finding interesting structure in data. But because PCA is driven
by finding directions of maximal variation, it can lose effectiveness in situations
where differing variables (i.e. features or traits) have different scalings. In particu-
lar, PCA will tend to be driven by those variables with the most variation, while ig-
noring those with smaller scale variation. This challenge can be particularly acute
in situations where different variables even measure non-commensurate quanti-
ties, such as having different units. Approaches to standardization are discussed
in Section 5.2.

Another useful response to the tendency of PCA to focus on variation is to re-
place PCA directions in high dimensional space with directions aimed at other
aspects of the data. The case of directions highlighting differences between sub-
groups is studied in Section 4.1.4.

4.1.4 Case Study: Pan Cancer Data

Figure 4.9 shows a PCA scatterplot view of part of the Pan Cancer data set,
from Hoadley et al. (2014), who explored many contrasts between 12 cancer
types, based on a variety of measurements. That data set was another product of
TCGA discussed in Section 4.1.3. The raw data are counts indicating expression of
d = 12478 genes, again measured using RNAseq. Substantial preprocessing, in-
cluding log transformation as discussed in Section 5.3 have been done by Hoadley
et al. (2014). Studied here is a subset of n = 300 cases (this number gives clear
visualization of the main point about the limitations of PCA) with 50 from each of
the cancer types Bladder Cancer (BLCA, magenta), Kidney Renal Cancer (KIRC,
blue), Ovarian Cancer (OV, cyan), Head and Neck Squamous Cell Cancer (HNSC,
green), Colon Adenocarcinoma (COAD, yellow) and Breast Cancer (BRCA, red).
While each of the six cancer types can be clearly seen, there is substantial over-
lap of the classes in this view. This is because the PCA directions only maximize
variance, and they ignore class labels.
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Figure 4.9 PCA scatterplot matrix view of the Pan Cancer gene expression data, symbols
are tissue samples, colored according to cancer type. Note substantial overlap of several
cancer types.

Figure 4.10 shows an alternate scatterplot view of the same Pan Cancer gene
expression data shown in Figure 4.9. The symbols and colors are the same, but in-
stead of using PC directions for the axes, the directions used in the projections are
designed to deliberately separate pairs of cancer types. Each direction is based on
the DWD (Distance Weighted Discrimination) method, trained on pairs of cancer
types. DWD was also used in Section 2.4 to visually separate the male and female
faces, and is discussed in more detail in Section 11.4. The projection direction
used in the first row and column is DWD trained on only the Kidney (blue) versus
the Head and Neck (green) cancer types. The projections of the full data set onto
that direction (although DWD was trained on just those two) are shown in the up-
per left and on the same horizontal axis in the other first column plots, as well as
the vertical axis of the other plots in the top row. Note that both cancer types stand
out as distinct clusters in these views, so DWD has succeeded in separating out
the expected biological differences.

Similar excellent separation happens for Colon Cancer (yellow) in the second
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DWD direction in Figure 4.10, although the Bladder Cancer (magenta) stands out
less well. In the third DWD direction the Ovarian Cancer (cyan) stands out clearly,
while Breast Cancer does not. The latter is not surprising because Breast Cancer is
well known, see e.g. Perou et al. (2000), to have several subtypes which are quite
distinct from each other. Presumably each of these would be clearly different from
the others, but because of their diversity the union fails to be very distinct in this
sense.
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Figure 4.10 Same Pan Cancer data from Figure 4.9, with PC directions replaced by direc-
tions deliberately aimed at separation of types (highlighted with colors). Shows much better
distinction of cancer types, demonstrating that PCA directions may not find all interesting
structure in data.

In earlier scatterplot matrix views the axes were orthogonal, as that is a conse-
quence of PCA. However, there is no guarantee of orthogonality otherwise, as can
be seen in several off-diagonal panels of Figure 4.10. These views should be con-
sidered as projections onto the two dimensional subspaces generated by the pair
of non-orthogonal directions. In each case the horizontal axis shows that direc-
tion, and the vertical axis is just its orthogonal complement (in the 2-d subspace).
The other line shows the second direction in that subspace. For example, in the
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first row second column, the nearly vertical line is approximately a transport of
the line between the means of the dark blue (KIRC) and green (HNSC) clusters.
More detail of this type of visualization appears around Figure 6.14.

One might wonder how these particular pairings of cancer types (on which the
DWD directions were trained) were chosen. This was done by considering all pair-
ings and deliberately choosing a set of three on the basis of good visual distinction
of types. But the main point of these figures is that there can be visualization di-
rections giving much different visual insights than those available from PCA.

Another striking example of PCA providing not the best separation of cancer
classes can be found in Liu et al. (2009).

The methods and examples studied in this section provide a somewhat non-
standard way of thinking about high dimensional data. The currently fashionable
notion in much of statistics is that when faced with high dimensional data, one
must use approaches such as sparsity, i.e. treating most variables as negligible,
to reduce the data to a “manageable dimensionality”. While sparsity is a useful
approach in some cases and has been tackled effectively using a very large range
of methods starting with the LASSO approach of Tibshirani (1996), there seem to
be many more OODA contexts where the fundamental sparsity assumptions are
far from being reasonably well satisfied. These include almost all of the examples
discussed in Chapter 2, and also the rich genetic data discussed in Figures 4.5 -
4.8. Yet sparsity ideas seem to be currently both over used and over studied in the
statistics literature, perhaps because most statisticians tend to think about high di-
mensional data in a too variable centric way. The OODA viewpoint demonstrated
in this section allows taking a more object centric approach, where the primary fo-
cus is more usefully placed on the data objects and the relationships between them,
not the variables. Of course variables are important, but they should be playing the
role of representers of the objects, as opposed to being the focus of the analysis.

However variables often contain useful insights about the drivers of the rela-
tionships displayed in the above object oriented views. This is often usefully done
through visualization of loadings, i.e. the entries of the direction vectors of each
mode of variation. One type of loading visualization was done in the left panels of
Figures 1.4 and 1.5, where the curves are multiples of the direction vectors. That
curve visualization is less useful in other settings, such as the gene expression data
shown in Figures 4.9 and 4.10, where there is no natural insightful ordering of the
variables (critical to the display of curves) and often simply too many variables
(d = 12478 in the present case) for a useful curve display. Some solutions to this
are demonstrated in Figure 4.11. The top panel shows indices (horizontal axis) of
the sorted loadings (vertical axis) from the DWD direction vectors trained to sepa-
rate the KIdney Renal clear cell Carcinoma (KIRC) patients from those with Head
and Neck Squamous cell Carcinoma (HNSC). Note there are just a few very large
both positive and negative values. Those strong loadings are studied in the bot-
tom panel, with bars showing the top twenty (in absolute value) variables that are
labeled with gene names. Validation of the relevance of these genes comes from
the National Center for Biotechnology Information (2019) website. In particular,
the most strongly expressed (in the HNSC direction) gene LYPD3 is commonly
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expressed in esophagus and skin, while the genes that are strongest in the KIRC
direction, CUBN and RBP5, are involved in activity in the intestine and kidney,
and kidney and liver, respectively.
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Figure 4.11 Loadings of first DWD direction (KIRC vs. HNSC) of cancer data in Figure
4.10. Top panel shows sorted loadings for all d = 12478 genes, bottom panel zooms in on
top 20 (absolute value) gene names.

Further discussion of various roles played by loadings, especially for PCA, can
be found in Section 17.1.2.

4.2 Confirmatory Analysis - Is It Really There?

The visualization methods discussed in Section 4.1 are very good at providing use-
ful insights and at finding population level structure in data. However an important
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aspect to keep in mind is that they also have the potential for finding useless arti-
facts of sampling variation.

This point is illustrated using the Overlapping Classes simulated data sets in
Figure 4.12. Here two classes of data were generated in d = 1000 dimensions,
with n1 = n2 = 50 data points in each class. It is hard to see much difference
between the red class (shown as circles) and the blue class (shown as plus signs)
in the PCA scatterplot view shown in Figure 4.12. However, an important lesson
from the Section 4.1 is that for high dimensional data, PCA may not find all in-
teresting aspects of the overall distribution because it focuses only on variation in
the data.
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Figure 4.12 PCA scatterplot view of the Overlapping Classes data in 1000 dimensions.
Shows no apparent difference between classes.

Figure 4.13 more deliberately targets the class difference between the red plus
signs and the blue circles, using the DWD direction which was previously used in
Figures 2.9 and 4.10. Projections on this DWD direction appear in the upper left
panel. Note that this shows a very clear and distinct separation of the two classes
which is visually comparable to some of those seen for the Pan Can data in Figure
4.10. The other two directions are orthogonal PC directions, which are computed
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using PCA based on the projection of the data onto the d = 999 dimensional
subspace orthogonal to the DWD direction. This is useful because it allows the
directions used in the scatterplot matrix to be orthogonal, which generally makes
the view more interpretable. These issues are discussed in more detail in Chapter
6.
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Figure 4.13 DWD and Orthogonal PC view of the Overlapping Classes data from Figure
4.12. Now shows strong inter-class difference.

While the DWD separation looks very seductive, it is important to keep in mind
that DWD is very efficient at finding directions which separate groups of data in
high dimensions. But there is another side to this, which is that DWD can be in
some sense too good. That is an issue in the Overlapping Classes example, because
both the red and blue classes were simulated from the d = 1000 dimensional
standard normal distribution, Nd (0d,1, Id), where

0d,n =

 0 · · · 0
...

. . .
...

0 · · · 0

 , (4.2)
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denotes the d× n matrix of zeros, and where

Id =


1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

 (4.3)

is the d × d identity matrix. This highlights a fact which is discussed in detail
in Chapter 14: high dimensional data can frequently exhibit perhaps surprising
behavior. Actually, the specific behavior observed here, and even the amount of
visual separation apparent in the DWD direction will be directly explained and
even predicted using considerations developed in Section 14.2. Another perhaps
surprising aspect of Figure 4.13 is the large standard deviations of the PC scores,
clearly far larger than the standard normal value of 1. This will also be explic-
itly studied and quantified in Section 14.1. The fact that this apparent difference
between the red and blue classes is spurious is confirmed in Section 13.1, where
it is seen that the DiProPerm hypothesis test (described below) for the difference
of the means between these two datasets gives a quite non-significant p-value of
0.82.

Figure 4.13 makes a very important point about data visualization in general.
While it can be very useful at finding important population structure in data, it is
also quite capable of finding things which are just natural artifacts of the sampling
variation (which can appear in unexpected ways). For this reason it is critical to
combine any exploratory visual analysis with confirmatory analysis, as introduced
here and studied more deeply in Chapter 13.

In the more complicated areas of OODA, e.g. many of those illustrated in Chap-
ter 2, confirmatory analysis is still in a relative state of infancy (compared to other
parts of statistics). One reason for this is that in some of those areas, such as
tree-structured or manifold data objects, it can be quite challenging to develop
appropriate null probability distributions, which underlie much of classical statis-
tical inference. This has motivated permutation and bootstrap solutions, although
careful investigation of their properties remains as a wide open research area in
mathematical statistics.

Some existing confirmatory analysis methods for OODA are discussed in Chap-
ter 13. Section 13.1 discusses a generally useful high dimensional permutation
type of test, called DiProPerm. The key steps are:
• Find a DIrection in the data space, such as the DWD direction used in Figures

2.9, 4.10 and 4.13, although any other systematic direction can used as well.
• PROject the data onto that direction to focus on representative univariate com-

ponents, e.g. the numbers whose distribution is shown in the top left panel
of Figure 4.13. Then summarize the projections with an appropriate summary
statistic. A natural choice might be the 2 sample t-statistic. However a surpris-
ing result of the careful mathematical analysis of Wei et al. (2016) is that the
simple difference of sample means provides a more stable hypothesis test in
high dimensions.
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• PERMute the data to assess statistical significance. In particular randomly re-
assign the group labels (e.g. red and blue for the data in Figures 4.12 and 4.13),
recompute the separating direction, the projections and the summary statistic,
to generate one element of a simulated null distribution. Repetition generates a
simulated null population and comparison with the original summary statistic
provides statistical inference such as p-values.

In Section 13.1 it is seen that while it may not always be the most powerful mean
hypothesis test, the DiProPerm test is generally useful because it provides direct
confirmation (or not) of visually observed effects, such as the difference between
the red and blue groups in Figure 4.13. Further examples exploring these issues,
together with real data examples highlighting the importance of this type of con-
firmatory analysis appear in Section 13.1.

While the DiProPerm test provides a very useful reality check for confirming
visualized differences between previously defined groups, care must be taken in
the comparison of groups discovered say by clustering. The useful operation of
clustering can be done in an informal visual way, as for the Lung Cancer RNAseq
data in Figure 4.7. It can also be carried out in many more mathematically moti-
vated ways, as discussed in Chapter 12. It is seen in Section 13.2 that application
of DiProPerm in clustering contexts can be seriously misleading. Yet the method
of clustering has led to many important discoveries in data, so it will continue
to be an important tool. In parallel to the challenge of spurious visualization il-
lustrated in Figure 4.13, is the question of “which clusters are really there?” as
opposed to being spurious artifacts of the sampling variation. An answer to this
question, which becomes particularly challenging in the high dimensional case is
the SigClust approach motivated in Section 13.2.

There is one more important aspect of confirmatory analysis in OODA. This is
that carefully working from the OODA viewpoint can yield much more powerful
and insightful analyses than are available from naive implementation of classical
methods. An example of this is the study of osteoarthritis and its impact on knee
shape carried out in An et al. (2016). The shape data objects were represented
by a set of 60 two dimensional landmarks, collected from standard x-ray images,
analyzed using Procrustes methods as discussed in Section 8.4 and in Dryden and
Mardia (2016). Earlier work in this area, such as Gregory et al. (2007) and Nelson
et al. (2014), used PCA to summarize the population structure and then did 2
sample t-tests on the resulting sets of scores.

There are 2 ways in which OODA offers improvement over this approach. First
is the concept, illustrated in Figures 4.9 and 4.10, that important information in
terms of class differences may not show up strongly in any chosen low rank PCA
direction. The second is that the multiple testing requires some type of adjustment,
such as a Bonferroni correction or False Discovery Rate calculation, which entails
additional loss of power. This issue was shown to be serious in the relatively small
scale (n = 65) study of An et al. (2016), where an exploration of knee shape in
the development versus non-development of osteoarthritis in African American
females resulted in a DiProPerm p-value of 0.033, while the first 5 PC based p-
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PC no. 1 2 3 4 5

p-val 0.223 0.505 0.013 0.350 0.204

Bonferroni p-val 1.000 1.000 0.065 1.000 1.000

FDR p-val 0.372 0.505 0.065 0.437 0.372

Table 4.1 Naive and Bonferroni adjusted p-values for the osteoarthritis data. Shows ad-
justed results are not significant in contrast to the significant p-value of 0.033 from DiProP-
erm.

values are reported in the first row of Table 4.1. In this case PC3 happens to give
a significant result at the 5% level.

However, since multiple tests are considered some adjustment is needed. The
second row shows a Bonferroni adjustment based upon the 5 components shown,
and the third component no longer gives a significant result. Parallel conclusions
follow using the more sophisticated False Discovery Rate adjustment, Benjamini
and Hochberg (1995), in the bottom row. Of course the number 5 (of components)
is arbitrary, but consideration of more components will result in a less significant
result. Also, the separation in the 3rd component of these data may be something
of a fluke, as demonstrated by some of the strong cancer type separations shown
in Figure 4.10 being clearly not available in the PCA of the same data shown in
Figure 4.9. The main lesson here is that thinking in an object oriented way, i.e.
developing the inference in terms of the data objects, instead of doing a naive
piecemeal inference on the components (that had been standard in this area), re-
sults in a more powerful statistical inference. See Nelson et al. (2017) for related
applications.

4.3 Further Major Statistical Tasks

While data visualization, as illustrated in Section 4.1, and confirmatory analysis
as discussed in Section 4.2 are important components of OODA, there are also a
number of important analytic methods that are used as well. These include:
• Distance based analysis. A number of OODA situations involve data objects

which lie in spaces where statistical analysis can be challenging. A straight-
forward general strategy is to first find a metric on the space and then to com-
pute the matrix of pairwise distances. Chapter 7 discusses various methods
for data analysis whose input is only a matrix of distances between data ob-
jects. Perhaps most important among these is an analog of PCA called Multi-
Dimensional Scaling, studied in Section 7.2. A crucial issue in metric based
analysis is choice of metric, which is essentially a data object representation
issue, that is explored in Section 7.3 and other places.
• Statistics on manifolds. Chapter 8 discusses data objects lying in manifolds,

essentially smooth curved surfaces. Relatively simple examples of data objects
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that are usefully thought of as lying on a manifold include directional data,
where angles (e.g. wind or magnetic field directions) are the data objects, see
Mardia and Jupp (2000) and Fisher et al. (1993); Fisher (1993). More compli-
cated manifold data objects arise in the study of shape, for example the various
type of shape data objects representation discussed in Section 1.2. Statistical
analysis of data objects lying on a manifold remains a controversial topic, as
there are a number of ways to approach it, with no clear consensus on issues
even as to how population centers should be computed.

• Tree structured data objects. Even more challenging than manifold data are
data objects having a tree structure, in the sense of mathematical graph theory.
This area is studied in Chapter 10, motivated by a data set where each data
object is a representation of the arteries in a human brain that was introduced in
Section 2.2. As for manifold data, a number of different analytic methods have
been proposed, and it is even less clear which approaches are most natural.
A perhaps exotic, but quite successful approach has been Topological Data
Analysis, done in Bendich et al. (2016).

• Classification (also sometimes called discrimination or pattern recognition).
This is a large field and in fact has become a very important component of
the field called machine learning. A good overview is available in Duda et al.
(2001) and Hastie et al. (2009). This area is reviewed briefly in Chapter 11.

• Clustering. This is another very large field, with again just some discussion in
Chapter 12. A classic reference in this field is Hartigan (1975). Another good
source is Kaufman and Rousseeuw (2009). In machine learning clustering is
often called unsupervised learning, to provide useful contrast with classifica-
tion being called supervised learning, since the goals are related, although in
the latter class labels are given, while in the former they are derived from the
data.

• Statistical smoothing. This is one more field with a large literature and many
proposed approaches, often with substantial controversy, as reviewed in Chap-
ter 15. It includes density estimation, essentially a smoothed version of his-
tograms, and nonparametric regression which is essentially scatterplot smooth-
ing. While smoothing methods are commonly used in exploratory data analy-
sis, less well known is the confirmatory method SiZer, proposed by Chaudhuri
and Marron (1999).

• Robust Methods. Once again this is a very widely studied area of statistics.
The main idea is to develop statistical methodologies which focus on methods
with reduced sensitivity to violation of assumptions. Much of that effort has
gone towards dealing with outliers, which can be very important in OODA,
as discussed in Chapter 16. Major references in this area include Huber and
Ronchetti (2009), Hampel et al. (2011) and Staudte and Sheather (1990). See
Clarke (2018) for a more recent overview of this area.

• Data Integration. This relatively new statistical area is driven by the desire in
many research areas to make multiple types of measurements and to integrate



74 EXPLORATORY AND CONFIRMATORY ANALYSES

those in a meaningful way in statistical analyses. In OODA terms, the data
objects are typically multiple vectors, which could be merely concatenated into
a single vector, but there is often interest in understanding how these relate to
each other. This is commonly done using regression methods, which makes
sense when the goal is prediction, but not when the goal is a non-directional
understanding of the relationship. The latter is accomplished by methods such
as Canonical Correlation Analysis, Partial Least Squares and the more general
JIVE approach discussed in Sections 17.2.1 - 17.2.3.



CHAPTER 5

OODA Preprocessing

An acronym going back at least to the early days of computer programming was
GIGO for “Garbage In - Garbage Out”. That principle certainly applies to mod-
ern data analysis, yet seems to be all too frequently ignored. This chapter on
OODA preprocessing describes some useful ways for understanding sometimes
hidden data problems and some remedies, that scale in a reasonable way to larger
data sets, even those with many variables (i.e. traits). Section 5.1 gives examples
demonstrating the importance of a careful study of marginal distributions and how
they can be used to guide data object choice. The often useful approach of nor-
malization (usually shifting and scaling of variables, but with some perhaps non-
obvious variations) is discussed in Section 5.2. Another data representation point
is transformation of variables which is considered in Section 5.3. Finally Section
5.4 studies registration, which is one more data object representation issue that is
relevant to image and shape analysis, as well as to phase variation in Functional
Data Analysis.

A general term that encompasses all of these issues is data provenance, which
includes information about the sources and processes that lead to the creation and
representation of data, Glavic and Dittrich (2007).

5.1 Visualization of Marginal Distributions

As noted in Section 4.1 an important OODA pre-processing step, which can often
help to avoid unpleasant surprises of many types is visualization of marginal dis-
tributions. This section recommends use of marginal distribution plots to address
the challenge of doing this for a large number of variables (i.e. traits or features) in
a given data set. The key idea is to select a representative subset of the variables to
actually look at. The idea of sorting on a one dimensional summary statistic (e.g.
the mean of each variable as in Figures 5.1 and 5.2), is essentially that of Tukey’s
scagnostics, see Wilkinson et al. (2005); Wilkinson and Wills (2008) for good
overview and discussion. The difference is that scagnostics use numerical sum-
maries (e.g. correlation) to find interesting scatterplots (two dimensional views)
from a large collection, while in contrast these marginal distribution plots simi-
larly use summaries to understand a large collection of one dimensional marginal
distributions.

75
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5.1.1 Case Study: Spanish Mortality Data

An example of a marginal distribution plot is shown in Figure 5.1, for the Spanish
Mortality data studied in Section 1.1. This is based on the same data matrix that
was used in the left panel of Figure 1.1. Recall that the columns of that matrix
(the data objects studied there) were indexed by years. The rows of that matrix
are viewed as variables (i.e. features or traits) and correspond to ages. The up-
per left panel in the marginal distribution plot shows the mean mortality of ages,
sorted into increasing order. Note that the first half of these averages all appear to
be quite small, with much larger values appearing among the second half. This is
consistent with the visual impression from the left half of Figure 1.1 that around
half of the ages have mortality orders of magnitude smaller than the rest. This set
of sorted variable means is also the key to finding a representative set of variables
(ages in this case) to actually visualize. One notion of representative is to look
at an equally spaced subset (among the sorted mean ages), as indicated by the
vertical dashed lines. The remaining panels show the 8 marginal distributions of
ages corresponding to those 8 lines, using the same format as in the right panels
of Figures 1.4 and 1.5. In particular, the circles correspond to the years (i.e. the
data objects, colored using the same year rainbow pattern from Figure 1.2) us-
ing mortality as the horizontal coordinate, with the vertical coordinate (and color,
magenta 1908 - red 2002) indicating order in the data set (thus the year). An im-
portant point is that this use of order in the data set as vertical coordinates reveals
far more structure than would be available from the random ordering of the origi-
nal jitter plots as discussed in Section 4.1. The black curve is a smooth histogram,
i.e. kernel density estimate, as discussed in Chapter 15.

Note that the first two shown ages, 11 and 19, all have very small mortalities
on the order of 10−3. The ages in the middle row, 32, 40 and 59, have medium
mortalities on the order of 10−2. On the bottom row, all mortalities are larger. An
important issue is that data sets having variables with such diverse scales can be
problematic for many forms of statistical analysis. This motivates using one of a
number of approaches to data adjustment, discussed in detail in this chapter.
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Figure 5.1 Marginal distribution plot of the Spanish Mortality data from Section 1.1. Vari-
able (trait) means are the blue curve in the upper left panel. Marginal distributions of a
representative (equally spaced) set of variables, indicated as vertical dashed lines, appear
in the remaining panels. As in Figure 1.2 colors indicate years using a rainbow from 1908
(magenta) to 2002 (red). Shows large variation in variable scaling and many variables
have strong skewness and presence of outliers.

These marginal distribution plots show additional challenges to classical anal-
ysis methods, such as skewness appearing in most plots, and also the presence
of one or more outliers, usually the violet pandemic year 1918 discussed above.
These challenges can also be addressed using methods discussed in Chapter 5 on
preprocessing.

Given the above described variation across orders of magnitude, log transfor-
mation is a natural type of data adjustment to consider for the present data set.
Figure 5.2 shows the variable mean sorted marginal distribution plots for the log
transformed mortalities. While there is still natural variation in the means, it no
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longer spans over several orders of magnitude. This is the reason that the visual
impression of variation in the right panel of Figure 1.1 is much more insightful
than in the left panel. An added benefit of this transformation is that the skewed
distributions above are now transformed into mostly bimodal distributions, which
is again very consistent with the fairly rapid overall improvement in mortality, ob-
served in the discussion of Figure 1.4. Note that the impact of the outlying year
1918 is also substantially diminished.
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Figure 5.2 Marginal distributions similar to those shown in Figure 5.1, but for log10 Span-
ish Mortalities. Shows strong beneficial effects of log transformation.

Finding a representative set of variables (ages) by sorting on the variable means
was very effective for understanding critical aspects of this mortality data set,
as shown in Figures 5.1 and 5.2. As demonstrated in the following chemomet-
ric example, other summary statistics can highlight different, and very insightful,
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notions of representative variables as well. An issue is the number 8, of represen-
tative variables shown in Figures 5.1 and 5.2. This was chosen purely for graphical
convenience, in the present format. In other situations 15 = (4× 4) − 1 allows
simultaneous viewing of more representatives. A much larger number results in
each marginal distribution being too small for easy viewing.

5.1.2 Case Study: Drug Discovery Data

The next example comes from the area of drug discovery, or more precisely Quan-
titative Structure Activity Relationships as discussed in Cherkasov et al. (2014).
This particular Drug Discovery data set is from Borysov et al. (2016). There are
n = 262 chemical compounds, that are represented by d = 2489 chemical fea-
tures (i.e. variables or traits). The primary goal is to distinguish inactive com-
pounds shown as blue circles, from active ones shown as red plus signs in the
coming graphics.

Visualizing the data as curves, e.g. for the Spanish mortality data in Figures 1.1
and 1.2, is not insightful as there is no natural ordering of the variables. A PCA
scatterplot matrix, using the same format as Figures 4.4, 4.6, 4.7 and 4.9, is shown
in Figure 5.3. This view of the data is dominated by relatively few of the data ob-
jects. Almost all of the n = 262 data points are tightly clustered near the origin,
which seems to be where any meaningful differences between the actives and in-
actives may be found. However, as indicated in Figures 4.9 and 4.10, there can be
a large amount of interesting structure in data which is not apparent from merely
looking at PC scores. There are many potential causes of such behavior. One of
these, that is frequently worth checking, is the behavior of the marginal distribu-
tions. For example highly skewed marginal distributions (such the log normal) can
frequently generate such data views.
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Figure 5.3 PCA scatterplot of raw Drug Discovery data. This view is driven by a few
outliers and gives very poor separation of the active (red) and inactive (blue) compounds.

A number of marginal distribution analyses (based on various sorts of trait sum-
mary statistics) for this Drug Discovery data will now be presented to demonstrate
the usefulness of that approach. As in Figure 5.1, a reasonable starting point is
based on a sort of the sample means, with visualization of an equally spaced set
of distributions. The upper left panel shows the sorted variable means as a blue
curve. Note that most of the means appear to be around 0 with a few relatively
huge values on the far right. Because PCA finds directions of maximal variation,
these very few variables are potential drivers of the unfortunate population struc-
ture observed in Figure 5.3, and there may yet be useful population structure that
will emerge when those variables are properly handled. Note also the rather small
downturn in the blue variable mean curve on the far left.

As above, eight representative marginal distributions (that number again chosen
merely for convenience of plotting) corresponding to the vertical dashed lines are
shown in the remaining panels. These show huge heterogeneity in the variables
present in this data set. The first few show no variation at all, i.e. all values are
exactly the same. In the first marginal distribution, they are all equal to -999 (this
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perhaps surprising value is explained below). For the next three variables, all val-
ues are 0. The center right variable is all 0’s except for a single 1. The variables on
the bottom row are also wildly different from each other, with a discrete distribu-
tion on the left, and a clearly skewed distribution, with values that are four orders
of magnitude larger, on the right.

That value of -999 is sometimes used to code missing values (in fact this is the
case here), perhaps with the idea that it is so different from all the others that it
would be easily noticed and properly dealt with during an analysis. However, that
idea failed in this data set, because there are some variables that are so much bigger
in magnitude (which may have been added to this combined data set by a different
analyst). In particular, because -999 is a number, it would be easy to make the big
mistake of treating them as meaningful data. This type of effect easily arises in
Big Data contexts where there is a lot of merging of diverse data sets in contexts
for which no individual has a complete understanding of all aspects. This marginal
distribution type of visualization is often effective in discovering such anomalies.

Figure 5.4 makes it clear that a number of variables with no variation (and
thus no information about active vs. inactive compounds) can be deleted from the
data set with no loss of information. It also indicates that careful attention should
be paid to the missing values, coded as -999, and finally that both the relative
magnitude and skewness of other variables will need careful consideration.
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Figure 5.4 Marginal distribution plot view of the Drug Discovery data, sorted on sample
means. Shows great diversity of variation over variables. Many have no variation and a
very few are orders of magnitude bigger.

Figure 5.5 shows the marginal distributions, this time sorted on the variables
sample standard deviation (SD). This summary statistic gives a more clear focus
on those variables with no variation, revealing that they are nearly half of the
d = 2489 variables. This also sustains several important lessons from Figure 5.4
such as there are a few variables that are several orders of magnitude larger, and
the distributional shapes are very heterogeneous.

An aspect not yet discussed is that the text below each distributional subplot
is the name of the variable (i.e. chemical feature). This can be very useful for
identification of important features in data. Note that the variable with largest SD,
labeled ww, is different from the variable SRW10, which has the largest mean
(bottom right in Figure 5.4). In addition the variable nHBonds, which was seen to
have the smallest mean (with each value being -999) in Figure 5.4, does not appear
in Figure 5.5. The reason is that in the latter graphics, there are a large number of
variables with SD = 0, and the large number of ties are broken by simply using
the original variable ordering.



VISUALIZATION OF MARGINAL DISTRIBUTIONS 83

0 1000 2000

0

1

2

3

x 10
4Summary Statistics

Sorted Variable Index

S
D

 s
u
m

m
a
ry

 s
ta

ti
s
ti
c
 v

a
lu

e

-1 0 1
0

1

2

3

4

nHM

SD = 0

-1 0 1
0

1

2

3

4

B04[Br-B]

SD = 0

-1 0 1
0

1

2

3

4

B10[Br-I]

SD = 0

-1 0 1
0

1

2

3

4

F06[B-B]

SD = 0

0 0.5 1
0

50

100

F03[N-S]

SD = 0.06178

-1 0 1
0

2

4

6

MATS1v

SD = 0.29939

2 4 6
0

0.2

0.4

VEm1

SD = 1.0122

0 1 2 3

x 10
5

0

0.5

1

1.5

x 10
-4

ww

SD = 34927.307

Figure 5.5 Standard deviation sorted marginal distribution view of the Drug Discovery
data. Reveals many variables with no variation.

As seen in Figures 5.4 and 5.5, much can be learned from marginal distribution
plots using equally spaced (with respect to the variable summary statistic) repre-
sentative distributions. However, in some situations it is very useful to focus in on
particular parts of the collection, often those with the smallest and/or the biggest
variable summary measures. For example, with the goal of taking a more careful
look into the missing values coded by -999 in the Drug Discovery data, Figure 5.6
again considers distributions sorted by variable mean, but now shows the 8 small-
est mean values. This is reflected by all eight of the vertical dashed lines being
on the far left (although very hard to see because they are so close to the vertical
axis). It reveals that there are six variables that are all missing (i.e. all values are
-999) and at least two more with some missings.
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Figure 5.6 Drug Discovery data explored using the eight smallest mean marginal distribu-
tions. Shows six variables are all -999 and others have a few -999s.

Figure 5.7 highlights a different set of variables, this time by sorting on the
minimum value of each marginal distribution. In this situation, this view is less
informative than those above, again because of how ties are handled in the sorting.
For example, instead of seeing all values at -999 as in several of the above plots,
the shown variable, IC4, only takes on -999 once (and does not appear in Figure
5.6). The next 6 variables all have a minimum of 0, so they appear in an arbitrary
order, which is not particularly useful for understanding specifics in this data set,
although it does happen to show the wide heterogeneity present here.
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Figure 5.7 Minimum value sorted marginal distributions for the Drug Discovery data.
Again shows wide range of variation, but less informative because of arbitrary handling of
many ties.

Based on the above insights, straightforward calculation verified that there were
1315 variables with no variation, and 16 that had at least one value of -999. Re-
moval of these variables resulted in a cleaned data set of d = 1164 variables,
which is further studied in the following. In other situations, much more care may
be needed to deal with missing values. A usually important issue is whether all
variables with missing values should be deleted (which is sensible here, since
there are so few missings), or else imputed in one of various ways. See Gelman
and Hill (2007) and Enders (2010) for good overview of many possible approaches
to data imputation. This type of data object choice can be very challenging, and
is often most effectively done in consultation with collaborators having domain
knowledge.

A PCA view of the cleaned data is not shown here because it looks exactly like
Figure 5.3 above. The reason is that both views are driven by the large magni-
tude variables, so of course eliminating those variables with no variation changes
nothing. Also removing the -999s has no visible impact on the PCA scores view
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because the larger variables are so much larger, as revealed by a careful look at
the axis labels in Figure 5.3.

Figure 5.8 studies SD for this cleaned data set. This shows that in addition to a
few variables with extremely large variation, there are also some with extremely
small variation and seems to indicate the presence of some binary variables (taking
on only the values 0 and 1). This very wide range of variation suggests that some
type of normalization, say rescaling each variable by its standard deviation, will
give a much different result, perhaps revealing other types of structure in the data,
as discussed in Section 5.2. Note that the lower right (maximal SD) variable, ww,
is the same as the lower right variable in Figure 5.5. The others are all different,
because they are equally spaced in a smaller set of variables.
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Figure 5.8 Drug Discovery data, after cleaning, viewed with marginal distribution plots
sorted on variable standard deviation. Shows widely differing variation.

Several of the above plots, e.g. those in the lower right panels of Figures 5.5,
5.7 and 5.8, suggest that skewness is a serious issue for at least some of these
variables. This is explicitly studied in Figure 5.9 by sorting the variables this time
on skewness. The upper left blue curve indicates more right variable skewness
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than left skewness, although both types are present. It also once again shows a
strong presence of binary variables.

Note in addition that the variables with strongest skewness (typified here by
F05|O-Ci| in the lower right panel) take on just a single value of 1, with all other
n−1 = 261 values being 0. The large flat spot on the upper right of the blue curve
shown in the upper left panel indicates that in fact there are around one hundred
such variables. Conventional wisdom is that those variables contain little useful
information and thus should also be eliminated from consideration. However, the
large number of them suggested this issue may be worth a second look. This was
done in Borysov et al. (2016) who showed that in this case, there actually is useful
information in these variables and incorporating them in data analyses actually
gave improved classification.
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Figure 5.9 Marginal distribution view sorted on skewness, for the clean Drug Discovery
data. Shows many variables with strong skewness, including binary distributions.

When there is a combination of discrete and continuous variables in a data set,
as suggested in the above analyses, there are other sortings of marginal distribu-
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tions that are also quite useful. One of these is the number of unique values for
each variable, as shown in Figure 5.10. This clearly highlights binary variables
(which have only two unique values) by putting them first, with the blue curve in
the upper left panel showing nearly 500 such. In addition to a number of clearly
quite discrete variables, there are variables such as ZM1 in the middle left that
appear to be continuous and yet contain a large number of exact replicates. The
upper right part of the blue curve reveals that there are very few truly continuous
variables, for which the number of uniques is n = 262, as for AEigp in the lower
right panel.
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Figure 5.10 Clean marginal distributions of Drug Discovery data, sorted on number of
uniques. Shows wide range, from binary (nearly 500 such) to completely continuous vari-
ables.

A different way to study discreteness versus continuity of variables is to sort on
number most frequent as in Figure 5.11. This measure counts the number of times
each value appears in the distribution and reports the largest count. This number
is 1 for continuous variables, because all values are different. Note that the shown
continuous variable, TIE, is different from the continuous variable AEgip shown



VISUALIZATION OF MARGINAL DISTRIBUTIONS 89

in the lower right panel of Figure 5.10. Hence there are at least two truly con-
tinuous variables (namely AEgip and TIE), which appear in different orders in
the two sorts. The question of how many continuous variables are present could
be more carefully studied by looking at the smallest variables in this sort, or the
largest number of uniques using the ordering in Figure 5.10. In this case there are
only 9 variables which are truly continuous in the sense of having nuniq = 262.
In this view, the binary variables appear on the right, in the order of how many
times the majority values appear. This is another way of seeing that hundreds of
variables have just a very few nonzero values. Because relatively few statistical
methods (with the important exception of zero inflated models, going back at least
to Lambert (1992)) are designed to handle such a mix of continuous and discrete
variables (i.e. traits), the need to use methods such as these visualizations is be-
coming increasingly important in Big Data contexts.
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Figure 5.11 Drug Discovery data, after cleaning. MargDistPlot sorted on number most
frequent. Another way of contrasting discrete and continuous variables, again showing a
wide range of both types.

Given the large number of binary variables, a question arises as to how much
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information for separating active versus inactive compounds is present in those
variables only. To study this, the data are reduced to only the d = 364 binary
variables, with the resulting PCA scatterplot shown in Figure 5.12. This shows
some perhaps surprisingly rich structure in this data with most of the active cases
focused in just a few regions and larger regions with essentially no active cases.
As noted above, Borysov et al. (2016) gives a more detailed analysis of this binary
data set. Improvements in statistical power available from the various versions of
this Drug Discovery data considered above (and some others below), for distin-
guishing the actives from inactives, are given using the DiProPerm hypothsis test
in Table 13.1.
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Figure 5.12 Drug Discovery data, after cleaning. PCA based on binary variables only.
Shows these variables contain red-blue separation information.

In the PCA in Figure 5.12 the binary data (0-1) are treated as real numbers. An
alternate analysis, that stays within the binary domain by using entirely Boolean
operations is Binary Matrix Factorization, proposed by Zhang et al. (2007b), and
further discussed in Section 6.5.

This case study has shown that marginal distribution plots can discover many
important aspects of data sets. In many situations, these can be essential in indicat-
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ing strategies such as variable deletion, scaling (as studied in Section 5.2) and/or
transformation (see Section 5.3) that can be very important to arriving at an effec-
tive data analysis. A few commonly used summary statistics have been demon-
strated here, but many others can be equally revealing in other situations. For ex-
ample small values of kurtosis can easily find variables with strong bimodal struc-
ture. Data sets with endemic outliers can adversely affect conventional moment
based summaries, in which case robust summaries, such as the robust skewness-
like measure of Bowley (1920) and the robust kurtosis-like measure of Ruppert
(1987), can be very useful. An (2017) developed some L-statistics based methods
that are quite effective at finding important genes in the context of cancer research.

5.2 Standardization - Appropriate Linear Scaling

The point from Section 4.1, that scaling and normalization issues can be very im-
portant in OODA, is explicitly illustrated in Figures 5.13 and 5.14 in this section.
As noted there, the need for scaling is obvious when different variables (i.e. traits
or features) are not commensurate, e.g. when they use different units. But it is also
critical when variables have scalings that are different by orders of magnitude (as
seen for the Drug Discovery data in Figure 5.5). Since PCA seeks directions of
maximal variation, this issue can have a very strong impact. As noted in many
classical texts, such as Mardia et al. (1979), Muirhead (1982), Jolliffe (2002) and
Anderson (2003), this can be handled by pre-whitening, i.e. standardizing each
variable by subtracting the mean and dividing by the standard deviation. That op-
eration followed by PCA is equivalent to replacing the usual sample covariance
matrix input with the sample correlation matrix in PCA.

5.2.1 Example: Two Scale Curve Data

A toy example designed to explore this issue is the Two Scale Curves data set
shown in Figure 5.13, whose format is quite similar to Figure 4.1. The n = 200
raw data curves in d = 100 dimensions appear in the upper left panel, using a
rainbow color scheme. Note that the first 20 variables (as indexed on the horizontal
axis) exhibit a much higher amount of variation than the remaining 80. The mean
in the top center panel is essentially 0, so the mean residuals in the top right are
nearly the same as the raw data. The first PC mode of variation in the second row
is clearly driven by the first 20 variables, and is a mode reflecting all 20 variables
moving up or down together. Similarly the second PC shown in the third row, has
a mode of variation which is a contrast between the first and second 10 variables,
which is orthogonal to the PC1 mode, and of course reflects less total variation.
The last row shows some remaining variation of much smaller scale.
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Figure 5.13 Two Scale Curves toy FDA example, illustrating challenge of differing vari-
able scaling. The first 20 variables have much more variation and thus drive the first two
principal components.



STANDARDIZATION - APPROPRIATE LINEAR SCALING 93

The same Two Scale Curves data set as in Figure 5.13 is re-analyzed in Figure
5.14, shown in the same format. This time the data are pre-whitened by standard-
izing each variable (mean subtracted, divided by standard deviation). The similar
variation of each variable is immediately clear in the input data plot in the upper
left. Unlike Figure 5.13 the last 80 variables are now as prominent. Very different
are the discovered modes of variation, as now the first two modes focus mostly
on structure in the second 80 variables, while the variation that dominated the
analysis in Figure 5.13 now shows up only in PC3 and its residuals (which would
thus show up in PC4 had that been plotted). The reason that variables 21-100 now
drive the analysis is that the per-variable magnitude of the signal is now compa-
rable with variables 1-20 and there are simply more of them, giving more overall
variation (and they are simulated to be independent, thus the variation goes in es-
sentially orthogonal directions) so these are now the dominant modes in the PCA.
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Figure 5.14 Two Scale Curves data set from Figure 5.13, with pre-whitening based on
correlations. Now the last 80 variables drive the variation, i.e. appear in the first two com-
ponents, leading to much different conclusions. This shows data scaling and normalization
have a critical impact on this type of analysis.
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Quantification of these ideas is given in Table 5.1, which contains the percent-
ages of sums of squares of each mode of variation (as illustrated in Figure 3.5),
with respect to the residuals about the mean. These are the numbers that are graph-
ically displayed in the scree plots of Figure 3.5. Because the raw data curves in
the upper left of Figure 5.13 have almost all their variability on the left side of the
range, it is not surprising that part of the range drives two very large PC compo-
nents explaining almost all the variation in the data (with the first having about 3
times the energy of the second), as seen in the top row. The bottom row shows a
more even spread of variation, which is consistent with the visual impression of
the standardized data in the top left of Figure 5.14. In particular, the table together
with the figure show that it is variation on the right part of the range which has
become dominant, containing about 80% of the variation. The remaining 20% is
split at the same 3:1 ratio between the third and fourth modes of variation.

PC 1 PC 2 PC 3 PC 4

Raw PCA 76% 24% 0.1% 0.03%

Standardized PCA 53% 27% 15% 5%

Table 5.1 Percent sum of squares explained by each PC component for the Two Scale
Curves data in Figures 5.13 and 5.14. Quantifies how raw data components focus on struc-
ture on the left, while standardization shifts the focus to the right.

5.2.2 Overview of Standardization

It is worth considering which of the two very divergent analyses in Figures 5.13
and 5.14 is more appropriate. As noted above, most classical texts on multivariate
analysis will recommend doing the analysis based on the correlation matrix (i.e.
pre-whitening as in Figure 5.14). This is often a sensible default, especially in
situations where different variables are measured in different units. However it is
important to realize that in other situations the original data scaling may be most
appropriate and thus should be preserved. For example, in the Lung Cancer data in
Figure 4.8 pre-whitening by standardization will result in the small exon starting
at exonic nt number 500 playing too large a role in the analysis. Clearly this is an
important data object choice, deserving careful consideration (and discussion with
knowledgeable collaborators) in data analysis. More discussion of the tendency of
PCA to focus on large scale variation can be found in Chapter 17.

The effect of pre-whitening on the cleaned Drug Discovery data from Section
5.1 is demonstrated in Figure 5.15. A quantitative measure of the impact is also
given in Table 13.1. Unlike the outlier driven PCA shown in Figure 5.3, this view
shows much more in the way of interesting relationships between the data ob-
jects, i.e. the chemical compounds. In particular, it is clear that there are now very
complex (e.g. highly nonlinear) relationships between the active (red pluses) and
inactive (blue circles) compounds, which is why Drug Discovery has been a chal-
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lenging problem over the years. Note for example an indication of small regions
where interesting comparisons can be made, which motivates the idea of activity
cliffs, (regions of abrupt transition between classes) as studied in Maggiora (2006).
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Figure 5.15 Drug Discovery data, after cleaning. PCA on non-binary variables only.
Shows these also contain red-blue separation information.

There are many other aspects of data normalization that should be kept in mind
as needed. For example, while standardization of the variables (i.e. of each row of
the data matrix) can be very sensible in some cases as illustrated using the Two
Scale Curves data in Figures 5.13 and 5.14, column standardization can be more
useful in others. A canonical example of this is genetic molecular measurements,
which are based on amplification of DNA or RNA in a way that is not easy to
calibrate, resulting in columns of the data matrix which tend to differ by scale
factors. For gene expression studies, e.g. Hoadley et al. (2014), this is commonly
handled by scaling each column appropriately. While averages could be used for
this, that would not allow for expected differing overall expression across cases,
so instead normalization to achieve a common third quartile is often used. That
choice is driven by the idea that the most actively different genes should not be
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involved, and the third quartile is sufficiently stable to properly represent overall
variation.

In other situations projection of each data object (column vector) to the unit
sphere, Sd (recall the notation (3.2)) can be appropriate. This projection is com-
puted as x

‖x‖2
, using the notation (3.3). It is useful in situations where vector

length contains only nuisance variation, and the interesting variation is in the an-
gles between vectors. See the discussion around Figure 12.6 for more in the con-
text of hierarchical clustering. In such cases, another option is projection to the
unit simplex, as discussed in Section 18.3. As noted in Section 18.3, Xiong et al.
(2015) found that (for virus detection using DNA data) projection to the simplex
gave better results than projecting to the sphere.

5.3 Transformation - Appropriate Nonlinear Scaling

As seen above relative magnitude of variables is an important consideration in
OODA. Similarly the distributional shape of the marginal distributions can also
have a major effect as seen using the Spanish Mortality data in Figures 5.1 and
5.2. Another example that illustrates this point is shown in Figure 5.16. This is a
different subset of the Pan Can data analyzed in Section 4.1.4. Here the focus is
on the cancer types Ovarian Cancer, which is labeled as OV in TCGA notation
and shown as magenta circles, and Uterine Cancer, labeled UCEC and indicated
using green plus signs. Only the 1000 most variable genes, among genes having
no missing values, are considered. The full data set (with a few hundred cases
of each type) shows a strongly statistically significant difference between these
two cancer types for almost any type of analysis, so for good contrast between
statistical methods, randomly chosen subsets of size n1 = n2 = 30 cancer patients
of each type are analyzed here for illustration.

The top row of Figure 5.16 shows PCA scatterplot views of the data. Unlike the
scatterplot matrices shown above, e.g. in Figures 5.3, 5.12 and 5.15, here each plot
shows only the PC2 vs. PC1 scores scatterplot (often the left plot in the second
row in matrix views). The upper left panel of Figure 5.16 studies the distribution of
raw counts. Note that PC1 is dominated by a single very large case (about an order
of magnitude bigger than all others). PC2 is driven by a handful of other cases, but
still only a relatively few. While one might hope to see a large difference between
the OV and UCEC cases, if it can be seen in this scatterplot, it can only be in the
lower left part of the plot, but is very hard to perceive due to over-plotting. For
a closer view of potential class differences, the top center panel shows a zoomed
in (on the lower left corner) version of that plot. This makes it even more clear
that this data set suffers from strong skewness (which can also be easily seen
using the Marginal Distribution views described in Section 5.1), with essentially
no OV-UCEC difference visible. This does not mean that there is no difference,
only that it does not appear in the 2 dimensional subspace of the first 2 principal
components.

For such strongly skewed data, a log transformation of each variable is often
very useful, as it tends to strongly reduce the influence of data points that are
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orders of magnitude larger than the others. The top right panel shows the result of
the log2 transformation applied to each variable. That transformation is usual in
this field, where the doubling interpretation of that log base is commonly desired.
Note that these two modes of variation highlight a clear and strong difference
between the cancer types, appearing as mostly the dominant mode of variation
(i.e. the PC 1 Scores).
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Figure 5.16 Contrast of Ovarian (magenta circles) and Uterine (green plus signs) Cancer
gene expression, for the Pan Can data. Top row shows PC1 vs. 2 scores, for raw count
data (left, with zoomed in version, center) and log2 transformed data on the right. Middle
row shows corresponding MD projected distributions. Bottom row is ROC curve analyses.
Shows log transformed analysis gives much better contrast between cancer types in all
ways.

Table 5.2 provides another way of seeing that the log2 transformation provides
a much better scale on which to analyze this data set. In particular, the outlier
in the upper left panel of Figure 5.16 is seen to dominate the raw data analysis,
with the first PC containing 88% of the total variation about the mean. In con-
trast, on the log2 scale the first PC explains 25% while the second explains 10%,
which are much more reasonable as there are a large number of diverse biological
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processes whose presence should be reasonably represented in gene expression
measurements.

PC1 PC2

Raw Data 88.2 4.7

log2 Data 24.8 9.9

Table 5.2 Percent of sums of squares about the mean explained by the first two principal
components, for the raw gene expression (top) and the log2 transformed version of the
same data. Shows that log transformation gives more sensible distribution of variation in
the data.

The middle row of Figure 5.16 more directly targets the OV vs. UCEC contrast
by showing the univariate distribution of projections onto the Mean Difference
(MD) direction vector, which is just the normalized (to have norm 1) difference
between the sample mean vectors. This direction vector is also called the centroid
classifier, see Tibshirani et al. (2002). See Section 11.1 for much more discus-
sion of the MD direction. The display format is the same as used several times
above, e.g. the marginal distribution plots in Section 5.1, using symbols whose
x-coordinate reflects the value with y-coordinates simply providing visual separa-
tion. Again, the black curve is a kernel density estimate, with the colored curves
representing proportional sub-densities for each of the two data types. The mid-
dle left panel shows this distribution for the raw counts data. As in the top left
panel, the difference is not easy to discern because the view is again dominated
by a single large outlier, which obscures how well separated the two groups are.
The zoomed view in the center panel shows that actually the MD direction pro-
vides decent separation of the classes, with the green plus UCEC cases tending to
lie more to the left of the OV magenta circles, although there is substantial over-
lap. This overlap is quantified using the Receiver Operating Characteristic (ROC)
curve of Hanley and McNeil (1982), in the lower left panel. This curve is gener-
ated by sliding a cutoff point along the horizontal axis of the left middle panel,
and for each such point displaying the proportion of UCEC (green) points that are
smaller on the vertical axis versus the proportion of smaller OV (magenta) points
on the horizontal axis. The fact that more UCEC points lie to the left is reflected
by the curve moving fairly steeply upwards. Once the cutoff point includes all
UCEC points the curve remains at height one. The fact that this curve lies mostly
towards the upper right of this plot shows that the two populations are relatively
well separated. A simple numerical summary of ROC behavior is the Area Under
the Curve (AUC), which in this case is 0.86.

The middle right panel studies the MD projections for the log2 transformed
version of the data. Given the obvious group separation in the PC 1-2 scatterplot
in the upper right panel, it is not surprising that there is a very strong separation
between UCEC and OV that is apparent in this projection. The strong visual im-
pression is confirmed in the lower right panel by the ROC plot in the lower right
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following first the vertical axis, then the top horizontal line, resulting in an AUC
of 1.

A related contrast between the raw count data and the log2 transformed version
is provided using the DiProPerm confirmatory method, described in Section 13.1.
That hypothesis test for exploring differences between the UCEC and OV cases,
using the mean difference direction and mean difference summary statistics, for
the raw counts gave a non-significant p-value of 0.24, while the log2 counts gave a
strongly significant p-value� 10−4. This is another way of seeing that analyzing
this data on the log2 scale is very well worthwhile.

An important variation of the log transformation is the shifted log transforma-
tion, of the form log (· − c), where the data are shifted by a constant amount c
before application of the logarithm. This is useful both for data which take on 0 or
negative values, and in the case of c < 0 is also useful as a typically less stringent
version of the log transformation, that is useful for data with relatively mild skew-
ness. This works in the same way as the skewness of the log normal distribution
is controlled by the mean parameter of the underlying normal distribution. Good
automatic choice of the shifted log transformation has been developed by Feng
et al. (2016). The usefulness of that method in the case of the Drug Discovery
data is explored in Table 13.1.

Another appealing and widely used family of transformations is the Box-Cox
family

f (x) =

{
xλ−1
λ

log x

for λ 6= 0

for λ = 0,

proposed by Box and Cox (1964). This is essentially a family of power transfor-
mations coupled with a linear transformation. Note that a careful calculation of the
limit as λ→ 0 shows that this is a continuous function of the tuning parameter λ.
Hence this provides a broad and flexible way of adapting to skewness in data. One
more important general family of transformations is described in Johnson (1949).

5.4 Registration - Appropriate Alignment

As noted in Section 2.1, registration, i.e. alignment issues, are often quite impor-
tant in many types of OODA. This point is illustrated using an FDA (curves as
data objects) toy example in Figure 5.17, which is similar to the Bimodal Phase
Shift data of Figure 2.2. The raw data are shown in the left hand panel. Each curve
has two peaks, but there is now substantial variation in both locations and heights
of the peaks. In contrast to Figure 2.2, this time the curves are color coded using
the height of the left peak, with a rainbow color scheme ranging from magenta
(tallest) through green and yellow to red (shortest) with the goal of highlighting
the amplitude variation in this case. The varying locations of the peaks create chal-
lenges for standard statistical analysis (which ignores the strong phase variation).
For example, the (point-wise) mean curve, shown as a thick black dashed line,
is not at all representative of the population. In particular, its peaks are substan-
tially lower than any peak in the data set, and the left peak actually appears as two
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modes. In addition, it will seen be in Chapter 9 that PCA (e.g. as in Figures 1.4,
1.5, 3.4, 4.1 and 4.3) of data sets with such strong phase variation also provides
very poor low rank representations.

The right panel of Figure 5.17 shows the results of a Fisher-Rao registration of
these curves as described in Section 9.1. The heights of each curve are the same
in both panels, but in the right panel the horizontal axis for each curve has been
appropriately warped (i.e. the horizontal axis has been appropriately stretched and
compressed separately for each curve) to make the curves align very well. Note
that the mean of this set of curves, again shown as a thick black dashed curve is
now a quite sensible notion of center, as it lies clearly in the middle of the data
set, as well as typifying the general shape of each. As seen in Chapter 9, PCA
of such aligned sets of curves similarly provides a quite intuitive and much more
compact representation (in particular, requiring only a single mode of variation)
of data sets with strong phase variation.
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Figure 5.17 Toy example, of functional data, each curve having two peaks, illustrating
usefulness of curve registration. Left panel shows original curves, using rainbow color
scheme on height of left hand peak to highlight amplitude variation. Right panel shows the
result of a careful curve alignment. Dashed curve in each case is the sample mean, which
is much more representative of the data curves after alignment.

For quite similar reasons, registration is also critical in image related tasks.
For example, while collecting the Faces data objects in Section 2.4, little attempt
was made during the initial photographs to ensure that each face was in the same
place in each picture, which presented a challenge that is quite similar in spirit to
what is seen in the left panel of Figure 5.17. In particular, various facial aspects
(such as eyes, nose, mouth) were seriously misaligned across images, resulting in
a far fuzzier analog of Figure 2.9 when the analysis was based on the unaligned
data. As noted in Section 2.4, great improvement was made by a simple affine
transformation based on landmarks at the center of each eye and the mouth.

Generally in image analysis this type of consideration motivates the study of
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shapes as data objects. The mathematics that allow convenient and rigorous defini-
tion and analysis of such data is discussed in more detail in Chapter 8. Essentially
that set of ideas is used to provide a fully automatic approach to curve registration
in Chapter 9.



CHAPTER 6

Data Visualization

This chapter considers OODA visualization concepts in more detail. Here the fo-
cus is on data objects having a Euclidean feature space representation, where the
entire data set is conveniently summarized by a matrix. For the reasons given in
Section 3.1, columns of the matrix are taken to represent data objects. A direct
and natural visualization of the structure of a matrix of data is a heat-map im-
age, whose application in OODA contexts is studied in Section 6.1. Curve and
scatterplot matrix views of data objects, both of which have been used repeatedly
in earlier chapters, are developed in further detail in Sections 6.2 and 6.4. Data
centering and combined views are considered in Section 6.3.

6.1 Heat-Map Views of Data Matrices

The main idea of a heat-map view of the structure of a data matrix is to construct
an image that represents each matrix entry with a colored (or gray level) patch in
a rectangular grid. Patterns in the perceived colors frequently give useful insights
about the data set represented by the matrix. The basic idea is related to that of dig-
ital photography (where the patches are called pixels from picture elements), and
has been used in many contexts. A good overview of the area, that includes some
interesting historical discussion, can be found in Wilkinson and Friendly (2009).
This approach to data visualization is commonly used in bioinformatics, where
it has proven to be very effective in finding biological insights and discoveries
from data, see for example Eisen et al. (1998) and Perou et al. (2000) where this
exploratory tool was used in the discovery of clinically relevant cancer subtypes,
that have since become key to realizing the improved treatments promised by pre-
cision medicine. However, heat-map visualization has also attracted skeptics such
as Rogowitz et al. (1996) and Borland and Taylor (2007), particularly over color
choices and how they relate to human visual perception. A different limitation of
heat-map data visualizations is shown in Figures 6.5 and 6.6, where it is hard to
see small signals in noisy data. For visualization of a matrix with nonnegative en-
tries a gray level plot, as shown in Figure 6.1 below, can be a good choice because
the ordering of colors is clear. A richer color scheme in the nonnegative case is the
topographical colors that are classically used in geographic maps: green, yellow,
orange, brown, gray and white. For entries that are both positive and negative, in
contexts where knowing which entries are 0 is important, two colors plots such as
blue and red are usually more useful, as discussed around Figure 6.5 below. The
topographic color scheme can also be extended to this case by including shades of
blue suggesting below sea level. In situations where location of the origin is not
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important, e.g. log scale data such as the Spanish Mortality data in Figures 1.1,
5.16 and a number of other places in this monograph, a rainbow color scheme can
also be useful.

It is usually important to keep in mind that ordering of the rows and columns
in heat-map visualizations has a major influence on what can be learned. This is
illustrated in the Two Clusters data toy example in Figure 6.1. All 3 panels are
based on a common set of values. At first sight the left hand panel appears to
be fairly random, with perhaps hard to interpret vertical and horizontal patterns.
In the center panel, a clustering algorithm (hierarchical clustering with Euclidean
distance and average linkage as discussed in Section 12.2) has been applied to
the columns, and they are correspondingly reordered. Despite the high noise level
this shows a clear propensity for lighter shades of gray in the right half. The right
hand panel shows the results of similarly clustering and reordering the rows as
well, which shows a related pattern between the top and right half of the plot.
The contrast between the left and right sides indicates two clusters in the data set
(columns) with different cluster mean structure evident in the reordered variables
(rows). This ability to show rich structure (even in the presence of very high noise)
seems to be why this type of view is commonly used in bioinformatic contexts,
where there tend to be strong underlying patterns often corrupted by a relatively
high noise level.
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Figure 6.1 Toy example demonstrating usefulness of hierarchical clustering rows and
columns in heat-map image views. Left panel shows a random ordering. Column clustering
has been applied in the center panel, and both column and row clustering were used in the
right panel, to reveal important systematic “Two Clusters” structure.

In some situations, the hierarchical clustering itself is of interest, beyond merely
enhancing the visualization. In such cases it is common to add dendrograms (as
shown in Figures 12.4 and 12.7), revealing the tree of nested clusters for both the
rows and columns of the heat-map.

Another issue that is critical to heat-map visualizations is scaling as illustrated
in Figures 6.2, 6.3 and 6.4. These are three different views of the same data matrix
demonstrating the impact of different gray scale choices on which aspects of the
data are highlighted. Figure 6.2 shows how the typical first choice of an equally
spaced color scale can obscure important structure in the data. In particular, the
only thing visible is one small white spot in the heat-map shown in the left panel.
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Insight into the cause of this behavior comes from studying the distribution of ma-
trix values, which is shown in the right panel. This uses the same format employed
for displaying one dimensional distributions in many other contexts above, start-
ing with the Spanish Mortality data in Figure 1.4. In particular, the matrix entries
lying in the interval [0, 20] are shown as (2500 = 50 × 50) circles. The curve
is a smooth histogram, i.e. kernel density estimate as discussed in Chapter 15.
The horizontal coordinate of each circle is the entry of the matrix and the verti-
cal coordinate is the order in the vectorized version of the data where the matrix
columns have been successively concatenated into a single long column. Both
the circles and the density estimate reveal a highly skewed distribution. The right
hand panel also contains vertical dotted lines which are the boundaries of the 20
equally spaced gray scale regions used in the heat-map in the left panel. The right
hand three quarters of the plot has very few circles, which reflects very few white
or gray pixels visible in the heat-map. But note that the shape of the distribution
of the circles suggests there may be additional structure that is not visible in the
heat-map because all those points appear in the essentially black region. While
equal spacing of color scales is a common default in heat-map software packages,
this example demonstrates how that choice may obscure important structure.

10 20 30 40 50

10

20

30

40

50

0 5 10 15 20
0

1

2

3

4

5

6

Figure 6.2 Toy example illustrating gray scale color scaling issues. Heat-map image is
shown in the left panel. Distribution of the matrix entries is shown in the right panel, with
vertical dotted lines indicating the boundaries of the gray color regions. The heavily skewed
distribution indicates poor use of the equally spaced gray levels, resulting in an ineffective
heat-map view.

A simple approach to making better use of the available gray scale is to trans-
form the distribution of matrix entries to have less skewness. The shape of the
distribution shown on the right of Figure 6.2 suggests a log transform could be
useful. The effect of this, for the data matrix in Figure 6.2, is shown in Figure 6.3.
Note that the heat-map image on the left still shows the same white spot as in Fig-
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ure 6.2, but now it also shows three distinct gray spots. The distribution of the log
matrix entries in the right panel clearly shows the impact of the log transforma-
tion. The bright spot in the image on the left is reflected by the larger, sparser peak
in the matrix values. The less bright but light gray spots in the image appear as the
peaks extending about halfway across the range (thus using only about half of the
gray levels). There are two such peaks because of the column reorganization oper-
ation used to order the matrix pixel values. A careful look at the heat-map reveals
additional interesting structure. In particular a regular grid of quite dark gray (ver-
sus the black background) points is visible. Because these small dark gray spots
appear all across the heat-map, their pixels form a thick band on the left side of
the right hand panel, itself indicating interesting structure in this data matrix.
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Figure 6.3 Different heat-map image view of the same data matrix from Figure 6.2 using
gray level scale (boundaries again shown using vertical lines in the right panel) based
on log of function values. Distribution of log function values shown in the right panel,
with vertical lines now showing better use of gray levels, so this color scale reveals more
structure in the image.

While this log scaled heat-map image reveals much more structure in the data
matrix than was available from the naive scaling shown in Figure 6.2, there is still
room for improvement. For example the entire brighter half of the range (thus the
bright half of the gray levels) is devoted to just the single tallest peak in the ma-
trix. An alternate approach, that can be very revealing in some contexts is quan-
tile scaling (also known as histogram equalization). That color scaling ensures
approximately equal numbers of pixels used at each gray level, by placing the
vertical lines in the right hand distribution plots at equally spaced quantiles of the
matrix values distribution, as shown in the right hand panel of Figure 6.4. Note
that the corresponding heat-map on the left now strongly reveals the regular back-
ground pattern. As with many choices among OODA methods, there is a trade-off
of which one should be aware: the clear view of the background comes at the cost
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of much less contrast between the heights of the major peak and the three other
large ones.
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Figure 6.4 Another heat-map visualization of the same data matrix from Figures 6.2 and
6.3. Highlights different structure in the data using the even spread of the gray scale colors
provided by quantile scaling.

Notice that quantile scaling is the same whether applied to the original data
or the log transformed version, because the log is a monotone transformation.
However the matrix value distributions in the right panels above are much easier
to understand on the log scale (used in Figures 6.3 and 6.4) than on the linear scale
of Figure 6.2.

When choosing a heat-map visualization tool, at least having the option for
some type of visualization of these heat-map gray level (or color) distributions
can be very useful. An attractive option is a histogram, where each bar represents
a gray level (or color) with each color used for its corresponding bar. Best insight
comes from taking the area of each bar to be proportional to the number of pixels
using that color. This is the same data display principle that underlies density
estimation as discussed in Section 15.1. Such visualizations of color distribution
appear in the lower right panels of Figures 6.9 - 6.12.

For data matrices taking both positive and negative values where it is impor-
tant to highlight 0, a common two color choice codes 0 as black, with shades of
red and green indicating magnitude and direction of departures from 0. This color
scheme has the disadvantage of being inaccessible to red-green color blind peo-
ple, which is nearly 10% of the male American and European populations. An
alternate choice illustrated in Figure 6.5, codes 0 as white with shades of red and
blue for magnitudes and directions. In some fields (e.g. economics or finance) red
is frequently used for negative values (suggesting financial loss), while in others
(e.g. climatology) it is more natural to use red for positive (corresponding to hotter
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temperatures). In Figure 6.5 the former scheme is used. Note that the actual coded
values are shown using a color bar on the right side of the heat-map.

The main point of Figure 6.5 is to show that while a heat map can provide very
useful insights in some situations, it can miss important structure in others. This
is done using the Two Class Gaussian data set, which is a matrix with n = 200
data object vectors of length d = 20, 000, which is common in bioinformatics.
To enhance visible structure as demonstrated in Figure 6.1, hierarchical clustering
using average linkage and Euclidean distance (a common choice for visualization
in bioinformatics as noted above) has been applied to both rows and columns. A
challenge to heat map visualization of data sets of this size is that the pixel capa-
bility of most types of displays tend to be in the very low thousands, which is very
inadequate in this case. Hence, most heat-map visualization software packages
provide convenient facilities for zooming in on appropriate parts of the display.
Here that is done by simply showing the first 200 rows of this much longer ma-
trix. Other subsets show similar apparent pure noise.
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Figure 6.5 Heat-map image view of Two Class Gaussian data set, taking on both positive
and negative values. White indicates matrix entries that are 0, with blue and red for positive
and negative values, respectively. It is hard to see much structure, even though rows and
columns have been clustered.

As suggested by the name, there actually is structure in this Two Class Gaussian
data matrix. In particular it was generated as the first n1 = 100 columns having
all entries distributed as independentN(0.04, 1), with the next n2 = 100 columns
drawn independently from theN(−0.04, 1) distribution. While this perhaps small
true underlying signal is dominated by the noise in Figure 6.5, it can be seen
in other types of visualizations, such as the PCA scatterplot matrix as shown in
Figure 6.6. Here the two subpopulations (labeled as magenta circles and green
plus signs) are visually distinct, showing that the PCA scatterplot matrix view can
reveal structure that is not apparent in the heat-map image.
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Figure 6.6 PCA scatterplot matrix view of Two Class Gaussian data set in Figure 6.5.
Two subpopulations, indicated with different colors and symbols, are visibly quite distinct,
despite the high noise level, in sharp contrast with the heat-map view.

However, as seen in Section 4.2, one should be skeptical as to whether such
visually apparent aspects of a scatterplot represent true underlying structure, or
are merely irreproducible sampling artifacts. In this case, the DiProPerm analysis
of this Two Class Gaussian data set in Figure 13.1 shows the difference between
these groups is strongly significant (p-value much less than 0.001), as it should
because there is a systematic difference between the subgroups.

In summary the heat-map visualization tool has proven to be very powerful
in the hands of experienced analysts. As discussed at the beginning of Section
6.1, it has a strong track record of finding clusters and their drivers in a single
visualization. But as seen in Figure 6.6, it can also miss important structure in
high noise situations. One more point to keep in mind is that apparent clusters in
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a heat-map may not represent reproducible discoveries. A hypothesis test that is
well suited for analyzing the statistical significance of clusters (especially in high
dimensional contexts) is SigClust, discussed in Section 13.2.

6.2 Curve Views of Matrices and Modes of Variation

Curve views (standard in FDA) reveal quite different aspects of variation in a
sample of data objects, as seen in many situations in earlier chapters. The value
of such views includes a clear display of modes of variation, as defined in Section
3.1.4. Some specific examples follow.
• Figure 1.1, Spanish Mortality data. These displays demonstrate the value of

the log transformation, in terms of making much of the variation in the data
available to the analysis.

• Figure 1.2, Spanish Mortality data. This curve view graphic, together with the
previous figure highlights the value of careful color coding for clear insights
about (for example) time structure in the data curves.

• Figure 1.3, Spanish Mortality data. Here the focus is on variation about the
mean, revealing that many of the age impacts on mortality have been constant
over time.

• Figure 1.4, Spanish Mortality data. The main mode of variation is an overall
improvement in mortality, which is most dramatic for the young, together with
an improvement in the keeping of records.

• Figure 1.5, Spanish Mortality data. The second mode of variation is a contrast
between the 20-45 year old males with the rest of the population. Recall this
mode reflected pandemic, war and automobile effects.

• Figure 2.1, TIC spectra. This curve view display shows that alignment can
be a challenging problem, that is very effectively addressed by the Fisher-Rao
approach to curve registration.

• Figure 2.2, Bimodal Phase Shift data. These curves demonstrate how appropri-
ately chosen warping functions can be used to align peaks in curve registration,
and to visually reflect phase variation (lower right panel).

• Figure 4.1, Tilted Parabolas data. There are a number of curve displays in
this analysis which give a clear indication of the variation in the full data, the
mean residuals, and several principal components together with their respective
residuals. The left plot in the second row shows that vertical shift is the domi-
nant mode of variation (a common aspect of many functional data sets that is
more deeply explored in Section 17.1.1). That on the third row reveals the less
obvious tilting mode of variation. The bottom row suggests that the remaining
variation is random.

• Figure 4.3, Twin Arches data. Here the curve view shows two non-obvious
modes of variation, with the first component reflecting a peak-valley versus
valley-peak mode, while the second mode is peak-peak versus valley-valley.

• Figures 4.5 and 4.8, Lung Cancer data. The first shows a large amount of
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variation that is hard to visually parse. The cluster based brushing (i.e. coloring)
of these curves shown in the second reveals important modes of variation as
discussed in Section 4.1.
• Figures 5.13 and 5.14, Two Scale Curves data. These views of the data demon-

strate the potential impact of data normalization (through standard deviation
scaling, as done in unit free correlation matrix approaches) on PCA. In partic-
ular this choice can highlight completely different modes of variation.
• Figure 5.17. Here studying curves that are mostly horizontally shifted clarifies

the impact of peak alignment on the pointwise mean of a bundle of curve data
objects.

These examples demonstrate the potential benefits of curve views when the data
objects are curves, especially when used in tandem with PCA, or some other ap-
proach to revealing modes of variation. However as with any OODA method, there
are situations where this approach is less useful, for example when there is a large
amount of noise present. This is illustrated using the Two Clusters toy data (shown
in the right panel of Figure 6.1 where both rows and columns have been hierar-
chically clustered) by a curve view in Figure 6.7. Following the convention in this
book, columns of the matrix are the (curve) data objects, so the horizontal axes in
Figure 6.7 show the indices of the rows. The structure visible in the heat-map in
the right panel of Figure 6.1 can also be seen in Figure 6.7, but the interpretation
takes more effort. In particular, the lighter top half of the former appears as higher
values of the mean curve on the left shown in the top center panel of the curve
view. The brighter gray levels on the right half of the heat-map (i.e. one cluster
of the column data objects) appear as the upper set of cyan curves in the lower
left panel of Figure 6.7, and as the cyan cluster in the scores shown in the lower
right panel. The lower central panel shows the mean plus and minus the extreme
curves, which contain all of the structure available in the heat-map. The top right
panel shows the scree plot (introduced in Figure 3.5), revealing that the noise level
is indeed quite high in this example. While both views distinguish the underlying
structure in the data set, in this case the heat-map is much easier to interpret.
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Figure 6.7 Curve view of the Two Clusters data set from Figure 6.1. Shows that curve view
may not be as useful as a heat-map view in high noise contexts.

In very high noise data sets, such as the Two Clusters data in Figures 6.1 and
6.7, the noise level can have a substantial impact on PCA, in terms of both loadings
and scores. This motivated a large amount of research in the FDA community on
integrating smoothing with analyses such as PCA. See Ramsay and Silverman
(2002, 2005) and Ferraty and Vieu (2006) for good overviews. Additional aspects
are treated in Zhang (2014) and Kokoszka and Reimherr (2017). A particularly
strong theoretical treatment of FDA can be found in Hsing and Eubank (2015). A
simple approach is to simply smooth the data object curves before doing PCA, see
Chapter 15 for further discussion of smoothing methods. One could also do PCA,
and then smooth the loadings curves. However generally better is to integrate the
smoothing with the PCA, which can be done by various methods as detailed in the
above references. Integration of smoothing methods with PCA is also very useful
for functional data sets with curves evaluated at sparsely sampled or irregular
points. An important method in such situations is the PACE algorithm introduced
in Yao et al. (2005). Delaigle and Hall (2016) propose an approach to handling a
surprisingly high level of sparse sampling.

Less well understood is that in standard low to moderate noise situations, there
is not much gained from explicitly integrating smoothing methods with PCA, be-
cause simple PCA frequently has an implicit smoothing effect. This can be seen
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in the Tilted Parabolas data in Figures 4.1 and 4.2, and in the Twin Arches data
in Figure 4.3, where the substantial level of noise visible in the raw data appears
in the residual, not in the main components. This appears to be caused by the
noise being mostly averaged out when the PCA calculation estimates the smooth
underlying loadings vectors.

6.3 Data Centering and Combined Views

The mean centering of data is an issue that is very frequently dismissed as trivial.
The impact of centering on an OODA seems fairly obvious and routine from a
curve viewpoint, as illustrated for example in Figure 1.3. However, when con-
templating heat-map views the effects can be surprisingly important and even
challenging to intuitively comprehend. In particular, that view motivates the con-
sideration of both horizontal and vertical mean centering of the data matrix. The
intuitive impact of these can be surprisingly elusive. That issue has been more
deeply investigated in Prothero et al. (2021).

The importance of doing a centering operation (before looking for modes of
variation), from the curves as data objects viewpoint (e.g. in FDA), is illustrated
in Figure 6.8. This contrasts PCA with a fully uncentered analysis based on a
direct Singular Value Decomposition (SVD) of the data matrix. Many aspects of
SVD and its relation to PCA are studied in detail in Section 17.1.2.

Figure 6.8 provides a comparison between uncentered SVD and PCA in the
context of the simple 2-d Toy data example from Section 3.1.2. Using the termi-
nology of Section 3.1, the data are shown in a feature space view as the black
circles in the top two panels. The top left panel is a view of the SVD approx-
imation of this data set. The red line is the one dimensional subspace (i.e. line
through the origin) that best fits the data. The magenta plus signs are the projec-
tions of the data onto that subspace, and are the best rank one approximation of
the data. In particular this direction minimizes the sum of squares of the projected
residuals (shown as cyan lines). The first SVD scores are the coefficients of these
projections, which appear on the horizontal axis in the left lower panel. The signed
lengths of the cyan lines are also the coefficients of the projections onto the sec-
ond singular vector, i.e. the second SVD scores, which are used on the vertical
axis in the lower left panel. Because SVD ignores the center of the data, it fails
to efficiently summarize and display the dominant mode of variation in this data
set (i.e. major axis of the ellipse of data which is essentially vertical). Instead that
notion of main variation is split between both of these modes.

The right hand panels of Figure 6.8 illustrate the PCA of the same 2-d Toy data
set. Recall the difference with SVD is the centering of the analysis at the mean
data object (shown as the green plus). This results in the best approximating line,
shown in red, being now chosen from direction vectors based at that point. The
rank 1 PCA approximations are shown as magenta plus signs, which clearly pro-
vide a much better summarization of the data than is provided by SVD, because
this direction maximizes the variance of the projections. This direction now appro-
priately reflects the dominant vertical mode of variation. In particular, these rank
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one approximations now lie in the middle of the point cloud. This demonstrates
a clear value to data object mean centering. The coefficients of these projections
are the PC1 scores, plotted on the horizontal axis of the scores scatterplot in the
bottom right panel. The cyan lines in the top right panel show the residuals of
this approximation (which of course have minimal sum of squares). The signed
lengths of these are the PC2 scores used on the vertical axis in the bottom right
panel.
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Figure 6.8 Toy example comparing SVD and PCA for the 2-d Toy data. Top panels are
feature space views of the data objects (black circles) together with the SVD (left) and
PCA (right) approximations. Corresponding scores representations appear in the bottom
panels. Shows the column mean object centering implicit to PCA allows better low rank
approximation of the data, and also uncorrelated scores scatterplots.

Figure 6.8 also highlights another aspect of PCA (relative to SVD of uncentered
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data) that is worth noting: the scores are uncorrelated. Essentially this is because
when there is correlation, as shown in the lower left panel, the variance of the
larger projection can be made even larger by appropriate rotation. Similarly the
sum of squared residuals (shown as cyan in the top row) can be made smaller
by this rotation. It is perhaps surprising, and generally not widely acknowledged,
that the lack of correlation in PC scores is a consequence of the column data
object mean centering. The mathematics behind these observations is given in the
calculation (17.17) in Section 17.1.2.

There are several reasonable notions of centering (i.e. subtracting some type of
mean) of a data matrix X (using notation from (3.4)). From the default OODA
perspective of column vectors as data objects, a natural definition of center is the
mean vector

xCO =

 x1,A

...
xd,A

 ∈ Rd, (6.1)

where xi,A = n−1
∑n
j=1 xi,j for i = 1, ..., d. A potential ambiguity (which tends

to generate confusion in discussions about data analysis) is whether xCO should
be called the “column mean”, as it is the mean vector of the column vectors, or
should be called the “row mean” because it is the vector whose entries are the
means of the entries in the corresponding rows of the data matrix X . The OODA
resolution of this problem is to use the name column object mean for xCO, hence
the subscript of CO. This choice of terminology is deliberately intended to keep
the focus of the discussion on the data object column vectors, and not on individual
matrix entries.

While column data object vectors are the main focus of OODA, the row vectors
that make up the data matrix X are sometimes also of interest, e.g. when con-
sidering multi-block methods as in Section 17.2. Using terminology from Table
3.1 OODA terminology for the rows of X is row trait vectors. Here the more
biological synonym of “trait” instead of “feature” is used because the term “fea-
ture vector” already has the common meaning of “data object column vector”.
The term “trait vectors” for row vectors of the data matrix avoids that ambiguity.
Averaging these row vectors gives the row trait mean vector,

xtRT =
(
xA,1 · · · xA,n

)
, xRT ∈ Rn, (6.2)

which has entries x̄A,j = d−1
∑d
i=1 xi,j for j = 1, · · · , n.

As noted above deep study of these notions of center, including their repre-
sentations as projections, can be found in Section 17.1.1. The rest of this section
considers how centering by subtracting one or the other (or both) of the column
object mean (6.1) and the row trait mean (6.2) impacts a data matrix.

Relationships between heat-map and curve views of a common data set are ex-
plored using a combined view in Figure 6.9. This is an analysis of the d = 50
dimensional Twin Arches data set that was studied in Figures 4.3 and 4.4. That
data set was generated with theoretical mean 0 in each coordinate, but due to
sampling variation the column object sample mean vector xCO, shown in the top
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center panel of Figure 4.3, is only nearly but not exactly equal to 0d,1. Various
views of the input data set are shown in Figure 6.9. The upper right panel is essen-
tially the same as the upper left panel of Figure 4.3 except it has been transposed
(so the coordinate axis is now vertical, with curve height on the horizontal axis),
and the curves are differently colored. These same curves (actually just vectors)
are grouped into a matrix (with corresponding vertical axes) in the heat-map view
in the top left panel, using intensities of red (blue) to indicate negative (positive
respectively) curve heights with white for 0. The four clusters revealed in the mid-
dle top panel of Figure 4.4 appear as four distinct vertical red-blue color patterns
in the columns of the heat-map. Recall from the middle row of Figure 4.3 that
two large clusters had arches that followed either a valley-peak or a peak-valley
pattern. These appear in the right hand part of the heat-map, which make it clear
that these clusters drove the first PC because there are more column data objects
in them. Similarly the last row of Figure 4.3 indicates curves with peak-peak and
valley-valley patterns, which appear in the first two smaller clusters of column
objects on the left of the heat map. The color scheme of the curves in the top right
panel follows the rainbow color bar in Figure 1.2, from magenta through blue,
green and yellow to red, in the order of the columns of the matrix. The yellow-
red curves are plotted last and follow the valley-peak pattern as shown in the far
right cluster of column objects in the heat-map. Second to last are the cyan-green
curves with a peak-valley pattern that is similarly consistent with the third set of
columns in the top left heat map. The other colors only appear intermittently, as
those curves are mostly overplotted by the latter two clusters.
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Figure 6.9 Combined view of the Twin Arches toy data set from Figures 4.3 and 4.4. Upper
left is a heat-map image view (red for negative, blue for positive values). Upper right is the
columns as data object curves view (using a rainbow color scheme), transposed for good
correspondence with the heat map. Lower left shows the corresponding view of the row
trait vectors as curves (with a heat ordered color palette). Lower right is distribution of
colors in the heat-map.

The bottom left panel of Figure 6.9 shows the same data using a parallel coordi-
nates plot of the row trait vectors. Again the horizontal axis is deliberately chosen
to correspond to the horizontal axis of the heat map. To make clear the contrast
with other panels, a completely different color scheme is employed, which is heat
ordered from black through red and orange to light yellow. A key point is that the
common variation in the heat map is expressed in quite different ways, although
there is an important duality between them. In particular, instead of having four
clusters determined by just two peak-valley patterns (as for the column data ob-
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jects discussed above), from this viewpoint the upper left heat-map shows that the
row trait vectors naturally fall into only two clusters determined by more compli-
cated peak-valley patterns. The cluster of rows appearing in the bottom of the heat-
map follows a peak-valley-peak blue-red pattern whose curves are highlighted in
the bottom left using cooler black and dark red colors. The peak-valley-peak pat-
tern in the curve heights reflects that which is shown with blue-red colors in the
upper left panel. The other cluster follows a different peak-valley-peak-valley pat-
tern (again both in the top row cluster in the heat-map as well as in the curves)
shown using curves colored with hotter orange and yellow shades in the bottom
left panel. The duality between the column object and row trait curve representa-
tions is that clusters in one correspond to curve structure in the other.

The bottom right panel of Figure 6.9 shows the distribution of red-white-blue
colors used for the pixels in the heatmap. For each color, the height of the bar (and
hence its area) indicates the frequency of pixels in the heatmap of that color. The
use of this type of graphic was discussed in Section 6.1.

The toy example of how SVD compares to PCA in Figure 6.8 demonstrated the
benefits of centering the data by subtracting the column object mean xCO (i.e.
the mean of the column vectors). However the heat map view of the data begs the
question of why not also center the other way by subtracting the mean of the row
trait vectors xtRT ? Note this is the same as subtracting the mean of the entries from
each column. Data adjustments of this type are particularly important for various
types of bioinformatics data. For example most gene expression measurements
involve amplification of quantities such as RNA which essentially involves an
uncontrollable random multiplicative factor for each case. When such data are
analyzed on a log scale (the usefulness of this is demonstrated in Figures 4.5-
4.8), such effects can be mitigated by row trait mean centering, which essentially
controls for that random amount of scaling in the original measurements.

The residuals from doing both types of centering, called double centering in
Section 17.1.1, for the toy data in Figure 6.9 are shown in Figure 6.10. In this
case, the column object centering had a negligible impact because as noted above
xCO ≈ 0, however the row trait centering does change the visualization. Note
that the column object curves view of these mean residuals in the upper right
panel is quite different from the column object mean residuals shown in the upper
right panel of Figure 6.9. The predominantly cyan-green and orange-red bundles
of curves are the same as in the upper left of Figure 6.9, because the means of the
entries of those column vectors are all essentially 0 (apparent in both top panels
of Figure 6.9). The two new bundles that were previously hidden under those
bundles (due to being plotted earlier in the process of constructing the upper right
panel of Figure 6.9), but have been pulled out by the row trait centering since the
mean of their entries is not 0. In particular, each entry of the row trait mean vector
xtRT from (6.2) is calculated as the average of the entries of the corresponding
heat map column. For the first (left-most) cluster of columns in the heat map,
the matrix entries are all between 0 and 10 (apparent in both the upper left heat
map and the lower left row curve view of Figure 6.9) so the averages are around
5. The impact of subtracting 5 from each column of the matrix moves the color
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range [0,10] to [-5,5] in the upper left heat map, and similarly moves the bundle
of curves in the lower left panel downwards, while in the upper right panel, this
shift of 5 moves only the predominantly magenta bundle of curves to the left, i.e.
out from under the other bundles. Similarly, the second cluster in the heat map
has column averages around -5, so that cluster has opposite shifts in each panel.
In particular in the heat map, the color range shifts from [-10,0] to [-5,5], with a
corresponding shift in the lower left panel, as well as pulling the predominantly
blue second cluster out from the other bundles towards the right in the upper right
panel. A key lesson is that while column object mean centering results in a rigid
shift of the full set of column object curves, the row trait mean centering operates
on individual column object curves.
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Figure 6.10 Combined view of Twin Arches data, after both column object and row trait
centering (i.e. double centering). Shows interpretation of both types of centering is not
always intuitive.

As will be seen in Section 17.1.2, for double centered data (both row and col-
umn centered), computation of the PCA modes of variation for row trait data ob-
jects and for column object data objects are very closely linked. Essentially the
loadings for one provide the scores for the other. The first of these PCA modes, for
the Twin Arches data of Figures 6.9 and 6.10 is studied using a similar combined
view in Figure 6.11. The column object view in the upper right is essentially the
transpose of the middle left first mode of variation shown in Figure 4.3, although
this color scheme is more interpretable. The reason for this is clear from either
panel on the left side. In particular this mode is strongly driven by points in the
third and fourth column clusters of the heat map image and essentially ignores the
first two clusters which were strongly affected by the row trait mean adjustment.
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The top left heat map image also illustrates how PCA can be viewed as the best
rank one approximation. In particular, the shown matrix explains as much varia-
tion in the full set as possible with a rank one matrix. Note that the larger number
of nearly white pixels (on the left side of the upper right heat-map) is clearly dis-
played as nearly zero values in the color distribution plot in the lower right. Also
note the much higher vertical scale compared to the color distribution (lower right
panel) in Figure 6.10.

Figure 6.11 First mode of variation (best rank one approximation) based on double mean
centered Twin Arches data from Figure 6.10. Upper right panel shows the column object
mode of variation is similar to that in Figure 4.3. Left two panels reveal this is driven by
the large two column object clusters revealed above.

The combined view of the second mode of variation based on double centering
is shown in Figure 6.12. In contrast to the first mode shown in Figure 6.11, the
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column object view in the upper right panel appears to be quite different from the
mode displayed in the lower left panel of Figure 4.3. But both panels on the left
make it clear why. They both reveal that this variation appears in nearly only the
first two column object clusters, i.e. in the curves numbered 1-16 on the horizon-
tal axes. At first glance the curves in the top right panel appear to exhibit twice
the frequency of those in the lower left of Figure 4.3, but a careful inspection
reveals that this is just the result of separately row trait mean centering each of
those two clusters. From the matrix approximation viewpoint, this rank one ma-
trix is the product of a row and column vector, each of which is orthogonal to
the corresponding vector in Figure 6.11, which best approximates the remaining
variation. Note that both axes of the color distribution in the lower right panel are
quite different from the preceding cases showing even more nearly white pixels.
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Figure 6.12 Second mode of variation (rank one approximation) based on double mean
centered Twin Arches data from Figure 6.10. The column object mode of variation shown
in the upper right panel this time appears different from that in Figure 4.3. Left two panels
again explain this via insights about clustering of column objects.

In the examples shown in Figures 6.9 - 6.12, basing the analysis on double
mean centering gives a very insightful decomposition of the structure of the data
set. However, this is not always the case, as illustrated in Figure 6.13. That stud-
ies the same Lung Cancer RNAseq gene expression curves shown in Figures 4.5
- 4.8. The left panel of Figure 6.13 shows the column object mean centered ver-
sion of the gene expression curves, using the colors from Figure 4.8. Note that
the essentially unexpressed cases colored red, are still clearly distinguished. Fur-
thermore the critical gold versus blue distinction in the exon near the right side
is also still very clear. However, there is some loss of insight relative to the very
clear explanation available from the Figure 4.8 view. This loss of interpretability
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becomes much worse in the double centered view shown in the right panel of Fig-
ure 6.13. This time the impact of row trait mean centering (with strong potential
for moving clusters as demonstrated in the top right panel of Figure 6.12) moves
these clusters in a way that strongly impairs seeing the key lessons in this data set.
In particular the fact that the (unexpressed) red cases are substantially lower than
the others mostly disappears because each curve has separately had the mean of
its entries subtracted which obscures important aspects of the data.
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Figure 6.13 Centered views of Lung Cancer data from Figure 4.8. Column object cen-
tering on the left and double centering on the right. Shows how centering can give less
interpretable views of data.

An important lesson from these examples is that substantial thought should be
devoted to centering of data. Both column object centering and row trait centering
have the potential to either reveal or obscure important insights. Further centering
issues, which include various projection viewpoints, are studied in greater depth
in Section 17.1.1.

6.4 Scatterplot Matrix Views of Scores

Scatterplot matrix views provide yet another frequently useful type of insight, this
time highlighting the relationships between data objects. This has also been seen
many times in the above examples as detailed here.
• Figure 4.4, Twin Arches example. This view provided clear presentation of the

important structure in the data set that was challenging to understand from the
curve views of this data in Figure 4.3. In particular, it revealed that there are
four clusters in the data, whose 1-d projections generated the perhaps surprising
effects shown there. That example also illustrated axis scaling issues, where the
PC3 and 4 axes were rescaled to minimize white space, at the cost of not clearly
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revealing that those scores were an order of magnitude smaller than the others,
i.e. the noise component was generated from an isotropic Gaussian distribution.
• Figure 4.6, Lung Cancer data. This PCA scatterplot matrix revealed the im-

portant structure of clusters in the data, which motivated the development of a
novel method for finding alternate splicing using gene expression data.
• Figure 4.7, Lung Cancer data. This brushed version of Figure 4.6 defined a

color scheme whose application led to Figure 4.8, which revealed the nature
of the clusters in this data set, in terms of alternate splicing. This led to the
invention of the SigFuge method, that was effective at finding new alternate
splicing events.
• Figure 4.9, Pan Cancer data. Here is a PCA scatterplot aimed at showing the

limitations of PCA, using a cancer gene expression data set. Colors and sym-
bols indicate cancer types, and reveal some differences, although also substan-
tial overlap of some of the classes.
• Figure 4.10, Pan Cancer data. This demonstrated how computing scores by

projecting the data onto non-PCA directions can give much better visual con-
trast between cancer types. This used DWD directions (discussed in Chapter
11) trained on pairs of individual cancer classes, which directly target maximal
separation of the classes.
• Figure 4.12, High dimensional Gaussian example. Here is another example

designed to reveal limitations of PCA. No apparent structure is apparent in this
PCA scores scatterplot, especially in terms of comparison of the two classes.
• Figure 4.13, High dimensional Gaussian example. This again shows that the

DWD direction, which deliberately optimizes for separation between classes,
reveals a strong difference between them. Such views generally improve on
PCA for understanding potential class differences. Note that the DWD scores
exhibit substantially less variation than is apparent in the PC directions. This is
again an axis scaling issue, that could be highlighted at the cost of introducing
white space.
• Figure 5.3, Drug Discovery data. The PCA view revealed that the raw data

were dominated by outliers, which distracted from the important activity dif-
ferences which were the main motivation of the analysis.
• Figure 5.12, Drug Discovery data. Here the impact on the PCA view of data

cleaning and focusing only on the binary variables is revealed. Shows much
richer structure in the data, and reveals interesting insights about activity dif-
ferences, shown with color and symbols.
• Figure 5.15, Drug Discovery data. This shows that the appropriately cleaned

and transformed non-binary variables do a much better job of understanding
activity differences.
• Figure 6.6, Two Cluster example. Here it is seen how scatterplot matrices can

reveal structure in data that is not easily available from heat-map views.
In most of the above scatterplot matrices, the graphics are straightforward because
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the directions that determine the axes are orthogonal. But this is not always the
case, for example the three DWD directions in Figure 4.10. A naive way to han-
dle this is to just plot the scores on the vertical and horizontal axes. An important
drawback to that is the scores plot no longer maintains relative positions of the data
in the underlying Euclidean space, and thus can give a quite distorted view, espe-
cially when the direction vectors are far from orthogonal. This is demonstrated by
the toy data set in Figure 6.14. The data lie on four small circles in R2, with more
points on the circles centered on the line from the blue to the cyan circles, shown
using a solid line type. Another direction of interest in such data is along the line
from the center of the red circle to the yellow one shown with a dot-dashed line
type. Recall that for both of those lines, projection of each data point onto them
consists of finding the closest point on the line, which could be connected by a line
segment that is perpendicular to the given line, e.g the cyan line segments in the
right panel of Figure 3.2 (these are not shown to keep the picture from being too
busy). The distance from the origin to each projection is the corresponding score.
Such scores are plotted in the other panels of Figure 6.14. The top right shows the
red-yellow scores (i.e. projections on the dot-dashed line) on the vertical axis, and
the blue-cyan scores on the horizontal axis. There is large distortion in the relative
position of the circles (the blue and red circles appear much closer to each other,
as do the cyan and yellow) and also strong distortion in the shape of the circles.

Such distortions generally occur from naively plotting scores with respect to
non-orthogonal axes. Visualizations that avoid such distortions are shown in the
bottom two panels. The bottom left has the same blue-cyan scores on the hori-
zontal axis, but the vertical axis is now the projections (i.e. scores) on the line
perpendicular to that axis, which is shown using the dashed line type in the pan-
els on the left. Everything is now a rigid rotation of the quantities in the upper
left panel, which thus preserves relative locations. Such graphics were used in
the plots above the diagonal in Figure 4.10. The lower right plot in Figure 6.14
illustrates the plots below the diagonal. There the horizontal axis represents the
red-yellow direction (still shown with the dot-dashed line type) and the vertical
axis is the orthogonal direction (again not shown as yet another line for ease of
understanding). As for the lower left panel there is no distortion of the relative
positions, and the projection of the other direction of interest (the solid blue-cyan
line) is shown to maintain the comparison between the two directions. With this
understanding in mind, it could be useful to review the corresponding above and
below diagonal plots for the Pan Cancer data in Figure 4.10.
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Figure 6.14 Toy example showing problems with plotting projections onto non-orthogonal
lines. Raw 2-d data in upper left shows lines (directions of interest) connecting clusters
of interest. Upper right panel is a plot of projections on red-yellow line (dot-dashed) as
a function of projections on blue-cyan line (solid), which introduces large distortions in
placement of data. Lower left panel shows projections on blue-cyan (solid) line, and on
orthogonal line (dashed), which keep relative positions, i.e. are just rotations (and flips) of
the original data. Lower right is same for projections on the red-yellow (dot-dashed) line.

For comparison of slightly different populations, such as viewing the impact
of adding a few new observations, or partially perturbing some data objects, a
useful graphical device is to flip between two different scatterplot matrices on a
computer screen. This requires use of exactly the same coordinate axes, which
can be a challenge for some implementations of PCA. The issue is that PCA is
based on an eigen analysis of the sample covariance matrix (or equivalently on
a Singular Value Decomposition of the centered data matrix, as noted in Section
17.1.2). While eigen analysis provides a very useful decomposition, there is a
natural ambiguity in terms of the direction of the signs of eigenvectors (direction
vectors). In particular, for any eigenvectors all entries can be multiplied by −1,
i.e. the vector can be rotated 180◦, and it will still be a direction of maximal
variation. This can strongly disrupt attempts to flip between two graphics, and
perhaps other tasks as well, so it is useful to adopt a convention to minimize the
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occurrence of this event. A recommended choice is to make all projections onto
the diagonal vector (1, 1, · · · , 1)

t (denoted 1d,1 in (10.1)) positive. This is simply
achieved by choosing the direction which makes the average of scores positive.
This will fail when the data have been row trait mean centered, i.e. each column
has mean 0 (since that inner product gives the sum of the vector entries). In that
case a reasonable alternative is to choose the direction which makes the maximum
absolute score positive. The subspace generated by the diagonal vector Jd,1 is
studied much more deeply in Section 17.1.

Note that many, but not all, of these scatterplot matrices are based on PCA
directions. Some exceptions are the use of DWD (e.g. the Pan Can data in Figure
4.10) to give directions with better class separation. But there are many other
potentially interesting directions, depending on the context, as discussed in the
next section.

6.5 Alternatives to PCA Directions

PCA is a well proven workhorse in finding insightful directions for the computa-
tion of scores that reveal structure in data, because the set of directions of maximal
variation which it targets frequently highlight such structure. However PCA does
not necessarily reveal all types of interesting structure, especially when the lat-
ter appears in directions of relatively lower variation. This issue becomes more
serious in high dimensions. Hence it is useful to realize that there are many al-
ternatives, which can give important insights depending on the particular context.
These include the following. Some of these come directly from multivariate anal-
ysis (recall this is viewed as a special case of OODA at the beginning of Chapter
1), but others arise from other considerations.
• Classification Directions. The statistical context called classification (also

termed discrimination) is discussed in detail in Chapter 11. Binary linear classi-
fication methods seek to find a hyperplane that separates two labeled subsets of
the data usually in some optimal sense. The normal vector to a separating plane
often provides very useful directions for visualization when there is interest in
highlighting differences between two subsets of data. The Mean Difference di-
rection (computed as the difference between the means of the two subsets, and
discussed in detail in Section 11.1) is a simple and generally interpretable di-
rection for this purpose. Often better visual impression comes from Distance
Weighted Discrimination (DWD studied in Section 11.4), because the target of
the optimization is more directly related to visual separation than are subset
means. Examples of this use of DWD appear in Figures 4.10 and 4.13. In rel-
atively low dimensional situations, good visual separation of multiple classes
can be achieved by Canonical Variate Analysis, see Mardia et al. (1979), which
is also called Multiple Discriminant Analysis in Duda et al. (2001). Deeper dis-
cussion of related issues can be found in Section 11.4.

• Independent Component Analysis. This source of interesting directions in high
dimensional data space seeks directions of maximal non-Gaussianity. The key
idea was first developed by Cardoso and Souloumiac (1993) and is discussed
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in detail in Hyvärinen et al. (2001). Its main motivation is called Blind Source
Separation, which mathematically models the ability of human hearing to com-
prehend multiple simultaneous conversations. This is done using two different
mixtures (linear combinations) of time series signals. When the coefficients are
known, signal separation only needs simple matrix inversion. More challeng-
ing is the blind case of unknown coefficients, which Independent Component
Analysis solves by finding coefficients resulting in maximal non-Gaussianity.
This works because linear combination is essentially an averaging operation
that tends to increase Gaussianity. The approach has become very popular in
many neuroscience analyses. Such directions are often useful in exploratory
data analysis, as they tend to find interesting structure such as directions of
multi-modality. The idea of finding directions of interest by maximizing non-
Gaussianity goes back at least to the varimax subspace rotation from factor
analysis proposed by Kaiser (1958).
• Fourier Subspace. For applications where periodicity plays a central role,

Fourier basis vectors can provide useful directions for projection. This idea
was used to give an insightful analysis of the Spellman et al. (1998) Yeast Cell
Cycle data by Zhao et al. (2004). That noisy data set featured gene expression
measured over two cell cycles with a high level of background noise. The noise
was high enough that a standard PCA resulted in non-interpretable directions
which did not exhibit the periodicity that was the point of the study. A much
better noise reduction was done by projecting the data onto the subspace of
even Fourier frequencies, which kept only parts of the data where the first half
of the time series is identical to the second half. Good access to aspects of
Fourier analysis important to statistics can be found in Brillinger (1981) and
Bloomfield (2000).
• Wavelet Decomposition. This important variation of Fourier Analysis shifts the

focus from approximately periodic signals to those with more local structure,
resulting in orthogonal bases with good signal compression (and thus efficient
data object representation) for curves with local structure such as jumps and
bumps. See Section 3.3 for references and more discussion of wavelets in the
context of curve estimation.
• Known modes of variation. In some applications particular modes of variation

are given as very important. For example in the evolutionary biology work of
Izem and Kingsolver (2005), the focus is on modes of variation of central im-
portance to the ability of a population to adapt to environmental changes. Some
of these modes were nonlinear, motivating some relatively early research on
quantifying variation on manifolds. Theoretical properties of the methods de-
veloped there were investigated in Izem and Marron (2007). More recent devel-
opments in the area on nonlinear modes of variation are discussed in Chapters
8 and 9.
• Maximal Smoothness Directions. As noted several times above PCA is very

powerful because of, but can also sometimes be hobbled by, its property of
finding directions of maximal variation in a Euclidean feature space. In some
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evolutionary biology applications, as discussed in Gaydos et al. (2013) and
Kingsolver et al. (2015), the major interest is instead on directions of minimum
variation. This is because they represent ways in which a given population is
unable to adapt to environmental change, called the nearly null space. Such
directions can also be easily found by PCA, simply by working with small
eigenvalues, instead of the large ones that are the basis of conventional PCA.
However, unlike PCA directions, which are typically interpretable because they
are driven by important modes of variation, directions of minimal variation are
generally far less interpretable as most of them are driven by uninteresting sam-
pling artifacts. To find important interpretable directions of minimal variation,
among the nearly null subspace that minimizes variation, those papers propose
finding directions of maximal smoothness. These are found by eigen analysis of
a matrix reflecting simplicity (essentially smoothness, but also usually reflect-
ing maximal interpretability) of directions instead of variation as is done in
conventional PCA. In particular, Gaydos et al. (2013) propose a method called
PrinSimp. This studies PCA eigenvectors from a perspective that simultane-
ously accounts for variation explained as well as simplicity of representation
of the null space. Kingsolver et al. (2015) provide a number of interesting ap-
plications of PrinSimp. An R software package implementation of PrinSimp is
available from Zhang et al. (2014).

• Non-Negative Matrix Factorization. In some functional data applications, not
only are the input data curves nonnegative, but there is also a desire for all as-
pects of the analysis to be nonnegative. An important example is chemical spec-
tra as data objects, where the height of the curves represent mass, for example
the TIC curves in Figure 2.1. Standard functional PCA can be very unattractive
to chemists, because while the first component direction will typically have
nonnegative loadings, the orthogonality constraint of PCA entails that all other
components will have negative loadings, which chemists tend to find challeng-
ing to interpret (because mass is an intrinsically nonnegative quantity). Such
considerations are addressed by Non-negative Matrix Factorization (NMF) as
proposed by Lee and Seung (1999). Simple insight into the relationship be-
tween NMF and PCA comes from considering (as detailed in Sections 1 and
17.1.2) the latter as providing an optimal approximation of a mean centered
d × n data matrix X , by a matrix product of a d × r loadings matrix L (e.g.
in the Twin Arches analysis of Figure 4.3 the lower left modes of variation are
multiples of the r = 3 columns of L) and an r × n scores matrix S (e.g. in
Figure 4.4 various pairs of the r = 4 rows of S are plotted against each other).
In particular, as seen in Section 17.1 L and S essentially provide minimizers
(subject to orthogonality conditions) of the Frobenius norm (defined at (7.9)) of
X−LS. NMF is based on a similar optimization, but with the constraints that
all the entries of both L and S are non-negative. As noted say in Fogel et al.
(2006) there are other applications, e.g. in gene expression, where an essen-
tially additive, nonnegative decomposition of variation can be viewed as more
intuitive than the orthogonal decomposition provided by PCA. As discussed in
Section 8.6, a weakness of classical NMF is that it is not nested. This issue has
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been addressed by the Nested Nonnegative Cone Analysis proposed by Zhang
et al. (2015).
• Binary Matrix Factorization. In some applications, the data matrix X may be

binary, i.e. each entry may take on only the values 0 or 1. The entries are num-
bers, so one can analyze the variation using a classical PCA decomposition.
But for most purposes, such a decomposition will not be very interpretable, be-
cause neither loadings nor scores will be binary. A more interpretable version
is offered by Binary Matrix Factorization proposed by Srebro et al. (2005) and
Zhang et al. (2007b), which has a goal in the spirit of NMF, i.e. an approxima-
tion of the form d (X,LS), where the matrix product LS is computed with
Boolean operations, and d is an appropriate metric on binary matrices such as
Hamming (1950) distance which just counts the number of different entries.
Also appealing is the Jaccard (1901) distance which is the proportion of the
number of differences among the total number of ones.
• Lines Containing Data. In computer vision, when analyzing images involving

man-made objects, such as touristic city scapes, many useful methods are based
on finding lines in an image. This is done by filtering the image to find points
of interest, e.g. points of maximal change in various senses. Lines are then dis-
covered by finding lines containing a reasonable number of such points, which
are used as building blocks for more complex types of analysis. The RANSAC
(more precisely Random Sample Consensus) method, proposed by Fischler and
Bolles (1981), is a useful algorithm for finding such inlier lines, featuring a few
but “very close to collinear” points. These ideas are an interesting inversion of
the robustness ideas of Chapter 16 where the focus is on outliers.
• Maximal Data Piling. A perhaps surprising phenomenon in high dimensional

data analysis (when the dimension is larger than the sample size), is that given
two subsets of the data, there is (with high probability) a set of directions where
each subset projects to a single point. The direction which maximizes the dis-
tance between these points is called the Maximal Data Piling direction, which
is studied in more detail in Section 11.1. This direction is not particularly useful
for most visualization purposes, but is still worth keeping in mind when con-
templating the large variety of directions available in high dimensional space.
• Auxiliary Data Directions. In many situations, visualization in directions that

incorporate additional data are very useful. The simplest of these may be stan-
dard multiple linear regression, when the additional information is in terms of
a response value Yi for each data object. More sophisticated approaches, es-
pecially in high dimensions include the Sliced Inverse Regression of Li (1991)
and the Sufficient Dimension Reduction of Cook and Lee (1999). When richer
vector-valued data are available, methods such as Partial Least Squares and
Canonical Correlation Analysis, discussed in Section 17.2, also provide very
useful directions for visualization.



CHAPTER 7

Distance Based Methods

This chapter is about OODA methods that are based only on distances between
data objects. An advantage of such approaches is that they are quite broadly useful,
which can be important in exotic data spaces such as manifolds, or tree/graph
spaces, where simply developing data analytic methods can be challenging. In
particular, the only structure needed on the object space for such methods is the
presence of a metric (i.e. distance). In some situations, even less may be needed,
e.g. perhaps only a pseudo metric or even a dissimilarity, but these will not be
further pursued here.

In this chapter, the symbol δ will be used to denote metrics, i.e. distance func-
tions. As in any elementary analysis textbook, as apparently originally formulated
by Fréchet (1906), a metric is a two argument function from some space to the
real numbers which is symmetric, nonnegative with the value 0 taken if and only
if the two arguments are the same, that satisfies the triangle inequality. Given a set
of data objects in an arbitrary space

{χi : i = 1, · · · , n} ,

and a distance δ, the corresponding n× n symmetric distance matrix is

D =


0 δ(χ1, χ2) · · · δ(χ1, χn)

δ(χ2, χ1) 0
...

...
. . . δ(χn−1, χn)

δ(χn, χ1) · · · δ(χn, χn−1) 0

 . (7.1)

Working with data objects in this type of format is rather common in the machine
learning literature, see Cristianini and Shawe-Taylor (2000), Schölkopf and Smola
(2002) and Shawe-Taylor and Cristianini (2004) for good overviews. Indeed a
central idea in that area is called the kernel trick, where one works with a matrix
of inner products (closely related to the usual distance in Euclidean spaces), with
the important goal of large computational benefits.

As noted in Sections 3.1 and 4.3, a quick and dirty default approach to OODA is
to first find a metric, and then simply carry out a distance based analysis. Such no-
tions of center are discussed in Section 7.1. Methods for understanding variation
about the center, in the spirit of PCA, using only distances are explored in Section
7.2. Clustering is another set of data analytic methods, that are frequently based
only on distances between data objects. Cluster analysis is discussed in Chapter
12.

While the metric first approach gives useful insights of some types, a drawback
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is that it tends to only yield scores (displaying relationships between data objects
e.g. for the Twin Arches data in Figure 4.4) and not full modes of variation as
defined in Section 3.1.4. In particular, it does not easily give the one dimensional
indexed sets in the data space that convey all of the insights available from full
modes. A more careful use of particular data space structure can result in full
modes of variation in many OODA contexts, as discussed in Chapters 8, 9 and 10.

A critical aspect of metric based analyses is that choice of distance has a major
impact on the results. For a particularly dramatic example consider the discrete
metric

δD (χ, ς) =

{
0

1

for χ = ς

for χ 6= ς
.

This exists for any space, but is useless for OODA analyses, because it contains no
information about how the data objects relate to each other. Section 8.7 contains
some perhaps surprising examples on the strong impact of metric choice in the
context of covariance matrices as data objects.

Generally a good choice of metric is very situation dependent. For example,
in the case of Euclidean data objects, say x,y ∈ Rd, the standard Euclidean L2

distance (a special case of the Lp norms defined in (3.3))

δ2 (x,y) = ‖x− y‖2 =

 d∑
j=1

(xj − yj)2

1/2

(7.2)

is often very useful. However, when it makes sense to think in terms of polar
coordinates, and the important variation happens in the angular direction with
mostly distracting noise in the radial direction, a more useful metric can be the
cosine distance

δC (x,y) = 1− 2

π
cos−1

(
xty

‖x‖2 ‖y‖2

)
, (7.3)

which is driven only by the angle between x and y projected onto the unit sphere.
The cosine distance is actually a pseudo metric because it does not distinguish be-
tween vectors that are multiples of each other. When outliers are a major concern,
the L1 distance

δ1 (x,y) = ‖x− y‖1 =

d∑
j=1

|xj − yj | (7.4)

is another useful approach because of its natural tendency to down-weight their
influence. The L1 distance is also very useful when sparsity is desired because of
a tendency to give optimization results with many 0 entries. In some situations, a
drawback of the L1 distance is a lack of rotation invariance, i.e. a strong depen-
dence on the coordinate system, as shown in Figure 7.4. In situations where the
variables have a relationship determined by a non-singular covariance matrix Σ, a
unit free metric is the Mahalonobis distance

δM (x,y) =
(

(x− y)
t
Σ−1 (x− y)

)1/2

.
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The Mahalonobis distance to the mean is the multivariate generalization of the
one dimensional notion of number of standard deviations from the mean.

7.1 Fréchet Centers In Metric Spaces

An important notion of center of a set of data objects {χ1, · · · , χn} in an arbitrary
metric space S (with distance δ) is the Fréchet mean,

arg min
χ∈S

n−1
n∑
i=1

δ (χ, χi)
2
, (7.5)

from Fréchet (1948). The factor of n−1 does not affect the minimizer, but provides
convenient notation below. This is a direct generalization of the standard sample
mean x = n−1

∑n
i=1 xi in Euclidean space Rd, because it is straightforward to

show that x is the solution of (7.5) in the case of Euclidean distance (7.2). Insight
as to how the Fréchet mean works is given in Figure 7.1.
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Figure 7.1 Toy two dimensional example illustrating the Fréchet mean. Left panel shows a
(far from optimal) candidate point as a blue x, with line segments representing the distance
to each data point. Right panel shows the optimal Fréchet mean as a green x, with again
line segments showing this point is much closer to the data points than the blue candidate
on the left. These issues are quantitated in each panel using the Fréchet average of squared
L2 distances.

A toy data set of n = 5 data points in R2 are shown as black circles in both
panels. The blue x in the left panel is a candidate choice of mean. The Fréchet cri-
terion in (7.5) (multiplied by n = 5) is the sum of the squared lengths of the blue
line segments, whose numerical value for this candidate is seen to be 2.64. The
operation of solving the Fréchet optimization problem can be thought of as mov-
ing the candidate point to minimize the Fréchet criterion. The solution is shown
as the green x in the right panel (actually just the familiar sample mean vector x
in this special case), based on an overall shorter collection of line segments and
the smaller criterion value of 0.67.

Depending on the choice of metric, many familiar notions of center can be
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viewed as Fréchet means. For example on the real line R1, the median can be
written in the form (7.5), by taking δ = δ

1/2
2 (note that it is straightforward to

show that the square root of any metric is again a metric). Furthermore on R+ =
{x ∈ R : x > 0} the geometric and harmonic means are Fréchet means, based on
δ (x, y) = |log x− log y| and δ (x, y) =

∣∣x−1 − y−1
∣∣ respectively.

As noted in Koenker (2006), for any distance δ an important variation is the
Fréchet median,

arg min
χ
n−1

n∑
i=1

δ (χ, χi) , (7.6)

which differs from the Fréchet mean only by replacing the power of 2 by 1. This
and other variations of the Fréchet mean have been extensively studied in the field
of robust statistics, see e.g. Hampel et al. (2011), Huber and Ronchetti (2009),
Staudte and Sheather (1990) and Clarke (2018), because both the median, and
also distances δ which down-weight points farther away, have good properties in
terms of reduced sensitivity to outliers. See Fletcher et al. (2009) for interesting
applications of this approach in the context of Riemannian manifolds. Deeper dis-
cussion of robustness in OODA contexts can be found in Chapter 16.

Direct comparison between the Fréchet mean and median is provided in Figure
7.2. This example features the same toy data set as in Figure 7.1, but this time the
center-point is calculated as the Fréchet median based on δ2. Again a poor candi-
date point is shown as the blue x, with the optimal solution shown in green. The
key difference is that the sum of lengths of the line segments (not their squares)
make up the Fréchet sums that are shown.
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Figure 7.2 Toy example illustrating the Fréchet median, based on the distance δ2, for the
same data set as in Figure 7.1. Again a sub-optimal candidate appears on the left, with the
Fréchet median on the right. This estimate is more robust in the sense of reduced sensitivity
to the outlying point in the data set.

First note the substantial difference between the Fréchet mean and median in
this case. In particular, the improved robustness property of the Fréchet median
can be seen in terms of the green x being in the middle of the convex hull of
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the 4 nearest points in Figure 7.2, while the outlier is far enough away to pull it
outside in Figure 7.1, because it has much stronger influence when the distances
are squared.

The impact of metric choice is again illustrated in Figure 7.3. This is also the
same toy data as in Figures 7.1 and 7.2, but now the distance used in the Fréchet
median is theL1 distance δ1. Because this distance is the sum of absolute distances
in each coordinate direction, each is now represented as a horizontal and a vertical
line.
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Figure 7.3 Study of the impact of metric choice using the same toy data from Figures 7.1
and 7.2. Again the left panel shows the Fréchet sum, but now with δ1, for a poor candidate,
and the right shows the optimum, i.e. the L1 Fréchet median. This version of center also
demonstrates reduced influence of outliers.

This variation of the Fréchet median reveals some perhaps surprising differ-
ences with the δ2 version. In particular, the solution here is the point-wise median
(i.e. this can be computed by simply taking the median of each coordinate of the
data vectors), which is not true for the δ2 version of the Fréchet median. Thus the
δ1 variation is easier to compute, while an iterative (but rather fast even in high
dimensions) computation is needed in the case of δ2.

Another basis for the comparison of these notions of center is rotation invari-
ance, as illustrated in Figure 7.4. The panels show different rotations of the same
toy data set in R2, together with both the δ1 and δ2 Fréchet medians. Because the
distance δ2 is rotation invariant, the greenish blue x showing that Fréchet median
has the same relative position when the data are rotated. But because the distance
δ1 is not rotation invariant, this is not true for that version, shown as the red + sign.
This example is deliberately constructed to show that the δ1 Fréchet median (i.e.
the coordinate-wise median, which is here seen to be a naive choice of “multivari-
ate median”) can be viewed as a poor notion of center, in the sense that it actually
lies on the boundary of the convex hull of the data.
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Figure 7.4 Two dimensional toy example studying rotation invariance. Data in the right
panel are a 45 degree rotation of the data on the left. In each case the δ2 based Fréchet
median is shown as the blue-green x, with the δ1 Fréchet median appearing as the red plus
sign. This shows the latter is not rotation invariant.

Despite these clear differences, note that both of these medians are direct gen-
eralizations of the familiar one dimensional median in R1 in the sense that they
both reduce to that quantity in the case d = 1. As discussed in Section 16.3, actu-
ally there are a number of other quite different notions of center in Rd which also
reduce to the median in the case d = 1.

Neither the Fréchet mean nor median are guaranteed to be unique. This is typ-
ically handled by working with mean sets (median sets, resp.). For example, on
R1 when n is even, the interval between the central two data points is the median
set. In that situation, and in others, sometimes a representative is chosen for the
set, e.g. the midpoint of the interval in the R1 median case. The extreme case of
non-uniqueness is the discrete metric δD, with respect to which both the Fréchet
mean and median sets are the full data space, and thus are of no practical use.

From the mathematical statistical perspective an important issue is just what is
being estimated by all of these notions of center. Useful models for this are based
on the notion of randomness and probability theory. The convention here and in
the rest of this book is that a tilde over notation indicates a random quantity as
shown in Table 7.1.

Type of Quantity Notation for Random Version

random number (scalar) x̃

random vector x̃

matrix of random variables X̃

element of arbitrary space χ̃

Table 7.1 Notation for random quantities.
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When the data objects are thought of as being a random sample (i.e. drawn
independently) from a probability distribution on the object space, then appropri-
ate notions of population center are defined using Fréchet criteria based on ex-
pected values. In particular, sample Fréchet means as defined in (7.5) can be use-
fully treated as estimates of the corresponding theoretical (i.e. population) Fréchet
means

arg min
χ∈S

Eδ (χ, χ̃)
2
, (7.7)

where χ̃ is a random variable with the population probability distribution. Simi-
larly for Fréchet medians. A good overview of many results studying various types
of asymptotic convergence of estimates to their population versions, in the chal-
lenging contexts of data objects on manifolds and stratified spaces, can be found
in Patrangenaru and Ellingson (2015). That book also provides a good overview of
affine and projective shape manifolds. For some early related discussion of statis-
tics on stratified spaces see Bhattacharya et al. (2013). Some interesting more
recent results can be found in Huckemann and Eltzner (2017) who derive asymp-
totics for backwards methods as developed in Chapter 8, and Huckemann and
Hotz (2016) who explore nonparametric methods on manifolds. See Hotz et al.
(2013) for a particularly unusual limiting distribution theory for the Fréchet mean
in a stratified space, involving the nonstandard notion of stickiness.

There are several synonyms of Fréchet mean. These include Riemannian
barycenter (really the center of mass in physics, when using the Euclidean dis-
tance δ2), and geodesic mean (when δ is a geodesic distance, say on a curved
manifold, as discussed in Chapter 8). The term Karcher mean is sometimes also
used, with a common distinction being that it refers to only a local minimizer,
instead of a global minimizer as in (7.7). However this terminology is not univer-
sally accepted, see Karcher (2014). Similarly there are synonyms for the Fréchet
median including geometric median, spatial median and L1 M estimate.

Also useful is to define a weighted Fréchet mean in an arbitrary metric space S
with fixed weights wi, i = 1, · · · , n, by solving

arg min
χ∈S

n∑
i=1

wiδ(χ, χi)
2

where
∑n
i=1 wi=1. The Fréchet mean given in (7.5) has equal weights w1 = 1,

i = 1, · · · , n. An example where the weighted Fréchet mean is useful is the
construction of an interpolation path between two objects χ1 and χ2, where the
weights depend on a parameter α ∈ [0, 1]:

arg min
χ∈S

(1− α)δ(χ, χ1)2 + αδ(χ, χ2)2. (7.8)

Values α = 0 and α = 1 correspond to the two objects at either end of the
path, and the Fréchet mean of the two objects is in the middle of the path given
by α = 1

2 . Insightful examples of interpolation paths on the manifold of covari-
ance matrices are given in Figure 7.14, where quite different behavior is observed
for each choice of distance. For certain types of distances (intrinsic distances)
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the interpolation path also provides a minimal geodesic path between points on a
manifold.

Values of α in (7.8) which are outside the interval [0, 1] lead to an extrapolation
path. In particular if we choose α < 0 we extrapolate beyond χ1 in an extension
of the path from χ2 to χ1, and if α > 1 we extrapolate beyond χ2 in an extension
of the path from χ1 to χ2.

7.2 Multi-Dimensional Scaling For Object Representation

As with notions of center, there are many ways of quantitating variation about the
center, based solely on metrics. A very simple one is the Fréchet variance which
is just the minimum value attained in (7.5).

But generally more useful for data analytic tasks, such as those discussed in
Sections 4.1 - 4.3, are distance based analogs of PCA. One approach to this is
Multi-Dimensional Scaling (MDS). MDS has been very popular in the psycho-
metrics literature, and at least the nomenclature is usually attributed to Torgerson
(1952, 1958) and Gower (1966). However, the underlying mathematics is sub-
stantially older, see Eckart and Young (1936) and Young and Householder (1938).
MDS is also called Principal Coordinates Analysis (abbreviated PCoA) in the bi-
ological literature.

In its simplest form, MDS starts with a set of n data objects, with a known set of
pairwise distances between them summarized as a distance matrix D as in (7.1),
and seeks to represent the objects as a set of points x1, · · · ,xn ∈ Rd for some d,
in such a way that the Euclidean distances δ2 (xi,xj) approximate the elements of
D as well as possible, in various senses. When the input distance matrixD is itself
composed of pairwise Euclidean distances δ2, typical basic algorithms return xi
as the vector of the first d PC scores. In that sense MDS extends PCA to cases
where only distances are known. A toy example is shown in Figure 7.5.
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Figure 7.5 Toy 2-d Gaussian example, illustrating MDS. Raw data is shown using + signs
in the left panel. Right panel shows the corresponding MDS scores as circles (with the same
coloring), calculated from the Euclidean distance matrix, which are essentially the same
as the PC scores for the data on the left.
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The raw data in the left panel are an elongated Gaussian point cloud, colored
along the major axis of elongation. To construct the plot in the right panel, the δ2
distance matrixD was computed, and then the corresponding classical (Torgerson
(1952, 1958)) MDS coordinates were plotted in the right panel. Note this looks
much like what would be expected from PCA scores for this data set, which is
consistent with the above discussion. As discussed in Section 6.4 for PCA scores,
each of these coordinates is only determined up to an arbitrary sign flip. In partic-
ular the colors suggest a reversal along the long axis.

Figure 7.6 studies how the choice of metric is critical to MDS. The data are
called “Equatorial” because they are distributed roughly along the equator of S2

as shown in the left panel. That is done using a spread Gaussian distribution to de-
termine the longitude together with latitudes from a tight Gaussian. One approach
to the distance between data objects is the Euclidean distance in the embedding
space R3. The MDS scores with respect to that Euclidean distance matrix are
shown in the center panel. It is not surprising that the distribution looks much the
same as the projections of the data into the plane determined by the equator, ex-
cept they are centered at the mean. This follows from the fact that MDS based
on Euclidean distance is essentially PCA (of the data in R3). A much different
geodesic distance is used in the right panel. There distance is measured by arc
lengths along the surface. That distance naturally follows the spread of Gaussian
points, so that the distance between points in opposite tails is nearly 2π. That re-
sults in a far different set of scores, giving a more intuitively useful view of the
distribution of the data, that is much more indicative of how they were generated.
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Figure 7.6 Equatorial data on S2, for illustrating impact of metric on MDS. Euclidean
distance MDS is shown in the center panel, exhibiting a strong horseshoe shape. The right
panel displays the MDS using geodesic distance (along the surface of the sphere), which
eliminates the metric induced distortion.

As noted in Section 14.5.2 of Mardia et al. (1979), point cloud shapes such as
those in the center panel arise when we can measure distance accurately when
objects are close together, but not when they are far apart. This situation occurs
surprisingly often in practice. That general pattern was given the name horseshoe
by Kendall (1970). Diaconis et al. (2008) pointed out that horseshoe effects tend to
occur in situations where distant points are less far away than would be expected
from linear extrapolation of the set of local distances. Figure 7.6 gives a canon-
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ical example of this. Another context where far away points have distances less
than expected by extrapolation appears in the study of micro-biomes as detailed
in Morton et al. (2017). They coined the term distance saturation to describe the
situation where far distances are less than expected by linear extrapolation. Horse-
shoe effects, together with a higher order version, are discussed again in Section
9.1.1.

A real data example that may be due to this horseshoe effect can be seen in
the Drug Discovery data shown in Figure 5.15. This suggests that an alternate
representation of that data set could be useful.

There are many generalizations of the basic MDS idea. An important case in the
psychometric literature extends the input of a distance matrix to merely a dissim-
ilarity matrix, whose entries are not required to satisfy the metric properties such
as the triangle inequality, see Kruskal (1964) for good discussion. More overviews
of this large area can be found in Cox and Cox (2000), Borg and Groenen (2005),
Buja et al. (2008) and Chapter 3 of Zhai (2016).

For OODA, an important generalization of MDS is to replace the embedding
into Euclidean space Rd, with embeddings into curved spaces. This is useful for
data spaces that are strongly curved, such as phylogenetic tree space, as discussed
in Section 10.1.2.

A weakness of distance and dissimilarity matrix based methods, is that they
only give analyses of the data set at hand, and are challenging to extend to contexts
requiring generalization to additional data, such as the classification / discrimina-
tion tasks considered in Chapter 11. An interesting approach to this is the out of
sample MDS ideas of Trosset and Priebe (2008). See Section 3.4 of Zhai (2016)
for a more detailed overview of out of sample MDS.

As noted above, from the perspective of modes of variation from Section 3.1.4,
a perhaps more serious weakness of MDS type analyses is that, while they can
provide useful and insightful scores, they fail to provide an analog of loadings that
would be needed to give full modes of variation. This means that understanding
of the drivers of modes, e.g. as done with loading plots in Figure 4.11 for the Pan
Cancer data, is not available from this approach.

MDS has also been used as a way of representing landmark shapes, using the
set of all distances between pairs of landmarks to represent the shape (up to a
reflection). This approach has been used by Bandulasiri and Patrangenaru (2005),
Dryden et al. (2008) and Bhattacharya (2008). Important choices to be made are:
how to average the distance matrices and how to project back to the space of
configurations.

Duin and Pekalska (2005) survey another way of handling data presented only
in terms of a distance matrix D from the machine learning literature. That is to
simply take the columns of D as data objects, i.e. to let the rows of D define the
features (using the object - feature terminology from Section 3.1). In other words
the traits become the distances to the other objects. The impact of this approach on
the relationship between this choice of data objects is studied in Figure 7.7, where
direct understanding comes from using the same data (and colors for keeping track
of individual data points) as in Figure 7.5.
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Figure 7.7 PCA of data using columns of the Euclidean distance matrix as data objects,
for the same data and colors as in Figure 7.5. Shows quite strong distortion of the original
relationships between data objects.

This PCA scores scatterplot matrix is in the same format as shown several times
in Chapter 4. The colors in the upper left panel, indicate that the first PC scores are
much as expected. However, the PC1 vs. PC2 scatterplot in the middle panel of
the top row shows structure that appears to be the same horse-shoe effect studied
in Figure 7.6. In particular, points at both the magenta and red ends are closer in
this data object representation, than they are in either panel of Figure 7.5, which
generates a very strong distortion in the relationships between the data objects.

Insight into this distortion again comes from the ideas of Diaconis et al. (2008)
as illustrated in Figure 7.8. Think of a data set of numbers equally spaced on [0, 1].
The dashed (dot-dashed) line segments represent distance matrix column data ob-
jects for the points 0.4 (0.8 respectively), which have distance δ = 0.4 between
them. The L1 distance between the piecewise linear data object representations
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is the cyan shaded area. To first order, this is δ × 1 = δ. However, a closer look
shows the area is more precisely δ − δ2/2 (half the area shown as a small square
box needs to be subtracted). A very similar calculation shows the corresponding
L2 distance is approximately

√
δ2 − δ3/2. Both of these have the property that

the dependence on δ is sub-linear, which fits exactly into the Diaconis et al. (2008)
explanation of horseshoe effects. For most purposes these issues seem like a seri-
ous weakness of the practice of using columns of a distance matrix as data objects.
However in the spirit of kernel methods described in Section 11.2 there may con-
ceivably be situations where this type of distortion of the relative positions of the
data objects could be useful.

Figure 7.8 Reveals reason for horseshoe distortion, caused by using columns of a distance
matrix as data objects, seen in Figure 7.7. Half the area of the box shows how typical
distances are sublinear.

7.3 Important Distance Examples

7.3.1 Conventional Norms

As noted at the beginning of this chapter, a broadly useful family of distances on
Rd are based on the Lp norms, defined in (3.3). The Lp norms are also directly
extendable to metrics on function spaces as

δp (f, g) = ‖f − g‖p =

(ˆ ∞
−∞
|f(x)− g(x)|p

)1/p

.
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There are a number of other useful norms on the space of matrices, including the
Frobenius norm which is the square root of the sum of squared matrix entries:

‖X‖F =
√

trace(XtX) =

∑
i

∑
j

x2
ij

1/2

(7.9)

which is also sometimes known as the Euclidean norm or Hilbert-Schmidt norm.
The Frobenius norm is used in Procrustes analysis in Sections 7.3.3 and 7.3.4, in
the analysis of covariance matrix data objects in Section 7.3.5, and in the analysis
of networks as data objects in Section 10.2.

Other matrix norms include the operator norm (the largest singular value), the
one norm (maximum absolute column sum of the matrix), the infinity norm (max-
imum absolute column row of the matrix) and the maximum norm (maximum
modulus of all elements). Finally, the entrywise norm of the m × n matrix X is
the Lp norm (3.3) of the vectorized version of X, i.e.

‖X‖EW =

 m∑
i=1

n∑
j=1

|Xij |p
1/p

. (7.10)

For p = 2 the entrywise norm is the Frobenius norm. Entrywise norms are par-
ticularly appropriate for computation with high-dimensional, sparse matrices. An
example using several of these matrix norms is given in Section 10.2.4 when com-
paring high-dimensional, sparse networks in the context of natural language pro-
cessing.

7.3.2 Wasserstein Distances

A particularly useful metric on the space of probability measures is the Wasser-
stein (i.e. Kantorovich–Rubinstein) distance. In the case of discrete measures this
is also called the Earth Mover’s distance (usually in Computer Science). That
name nicely expresses the intuition that this distance essentially quantifies how
much probability mass needs to be moved to get from one measure to the other.
For this reason it is not surprising that computation of Wasserstein distances in
general involves optimal transport formulations. In theoretical studies of the boot-
strap a popular criterion is Mallows distance, proposed in Mallows (1972) and
shown to be equivalent to the Wasserstein Distance by Levina and Bickel (2001).
A comprehensive resource for many important aspects of Wasserstein distances is
Panaretos and Zemel (2020). Theorem 1.5.1 of that book shows that in the case of
probability measures on the real line, the Mallows distance is just the L2 norm of
the quantile functions (defined in Section 3.3.1). Hence the good properties of the
Wasserstein metric are very consistent with the conclusion from Figures 3.7 and
3.8 that quantiles are frequently useful representatives of probability distributions
as data objects. The ideas of this section suggest that another useful approach to
tasks like PCA in that case is MDS with respect to the Wasserstein distance.

As discussed in Section 3.3, the optimal transport aspect of the Wasserstein
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distance accomplishes in a more rigorous way the goals of the Visual Error Cri-
terion of Marron and Tsybakov (1995). This is seen in Figure 7.9, which shows
the main example in that paper (which was motivated by one in Kooperberg and
Stone (1991)). The example consists of a target curve (shown as the solid line type)
and two candidate estimates (dashed and dotted). The target curve has two distinct
bumps, one quite thin, and the other broader. Especially in situations where bumps
are critical, Estimate 2 seems preferable as it has similar bumps, although the thin
bump is not quite in the right location. On the other hand Estimate 1 has smoothed
out that perhaps important feature. Now if effectiveness of the curve estimation is
measured using theL2 norm (the same holds for theL1 norm), Estimate 1 is closer
to the target. This is because the differences between the curves are measured ver-
tically, so Estimate 2 is penalized twice for having its bump in the wrong location,
while Estimate 1 only pays the peak penalty once. However, measuring discrep-
ancy using the squared error version of the Wasserstein metric gives the opposite
result. In that sense Estimate 2 is closer to the target than Estimate 1.
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Figure 7.9 Kooperberg-Stone example showing curve estimation context that is conceptu-
ally challenging to the L2 norm, but nicely quantified using the W 2 version of the Wasser-
stein metric.

A useful application of MDS based on the Wasserstein metric, in the context of
FDA curve registration of the Shifted Betas data is shown in Figure 9.4.
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7.3.3 Procrustes Distances

An introduction to the shape of landmark configurations as data objects was given
in Section 1.2.2. Much more discussion appears in Section 8.4. We now consider
suitable distances that measure differences between the shapes of two landmark
configurations.

Consider a configuration of k landmarks in m dimensions represented by a
k ×m matrix X, where k > m. Usually we have m = 2 or m = 3. Procrustes
analysis involves matching a set of such configurations using translation, rota-
tion and possibly scale using least squares techniques. Procrustes analysis was
developed initially for applications of factor analysis in psychology. The name
was given by Hurley and Cattell (1962) following the loose analogy with Greek
mythology where Procrustes would stretch his victims to fit exactly to a bed if
too short, or chop off their limbs if they were too tall. The technique can be
traced back to Boas (1905) and Mosier (1939). Other important references in-
clude Gower (1975), Kendall (1984) and Goodall (1991), and a summary is given
by (Dryden and Mardia, 2016, Chapter 7).

Ordinary Procrustes Analysis is where one configuration is fitted to another by
minimizing the sum of squared distances of landmarks between the configura-
tions, using translation, rotation and possibly scale.

Example: Digit 3 Data

The Digit 3 data are available in the shapes package in R (Dryden, 2021) and
further discussed in Sections 7.3.4, 8.4 and 8.4.2. The landmarks on each digit
were located by hand on images of envelopes containing British postcodes by
Anderson (1997), and there are n = 30 handwritten digits each with k = 13
landmarks in m = 2 dimensions.

In Figure 7.10 we see two of the handwritten digit 3s in red and blue, where
each digit has k = 13 landmarks in m = 2 dimensions. The left-hand plot shows
the unaligned data. The right-hand plot shows the two digits after they have been
centered and the blue digit has been rotated and rescaled to match the red digit as
closely as possible using Ordinary Procrustes Analysis.
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Figure 7.10 An example of two handwritten digits from the Digit 3 data. The left-hand plot
shows the original data. The right-hand plot shows the digits after they have been centered
and in addition the blue digit has been rotated and rescaled to match the red digit as closely
as possible.

Example: DNA Molecule Data

The DNA Molecule data form part of the study by Dryden et al. (2017) and are fur-
ther discussed in Sections 7.3.4, 8.4 and 8.4.3. The DNA Molecule dataset consists
of n = 50 DNA molecules, each with k = 22 landmarks in m = 3 dimensions.
More specifically the dataset is the TFC molecule in Dryden et al. (2017) (a type
of damaged DNA molecule) provided by Charlie Laughton and the observations
have been temporally thinned to each 50th observation. The landmarks are located
at the phosphorous atoms in the molecule.

In Figure 7.11 we see two of the DNA molecules. Each landmark is marked
by small red and blue spheres in the left-hand plot for each molecule. Lines are
joined along each of the two strands, and also between the strands to indicate the
base pairs. The familiar helix shape of DNA can be seen. In this perspective view
of the DNA molecule the spheres are smaller for atoms further away and larger
for atoms that are closer to the viewer.

In the right-hand plot the blue molecule is translated, rotated and rescaled to
minimize the sum of squared Euclidean distances between pairs of atoms. We
say that the blue DNA molecule has been Procrustes rotated onto the red DNA
molecule.
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Figure 7.11 An example of two molecules in red and blue from the DNA Molecule data,
each consisting of k = 22 landmarks in m = 3 dimensions. The left-hand plot shows a
view of the two DNA molecules in arbitrary positions. In the right-hand plot the molecules
have been matched using Ordinary Procrustes analysis with the blue molecule translated,
rotated and scaled to match the red molecule.

We can measure the distance between two shapes using Procrustes analysis.
We first transform the configurations to pre-shapes by centering and rescaling to
unit norm (see (8.1)), and then optimize over rotation. The rotation group SO(m)
is the set of all rotation matrix operators on Rm, which is the set of all m ×
m matrices with orthonormal columns (simply summarized as U tU = Id) and
determinant 1. The partial Procrustes distance is a shape distance given by

δPP (X1,X2) = min
Γ∈SO(m)

‖Z2 − Z1Γ‖F , (7.11)

where Zj = CXj/‖CXj‖F , j = 1, 2 are called pre-shapes;

C = Ik − Jk,1J
t
k,1/k (7.12)

is the centering matrix; and ‖X‖F is the Frobenius norm (7.9). Other alternative
distances include the full Procrustes distance (8.3) and Riemannian shape distance
(8.2) which are described in Section 8.4. For small shape changes there is little
difference between these choices of shape distance, and the distances between
the pairs of Digit 3s (a large distance) and the pairs of DNA molecules (a small
distance) are given in Table 8.1.
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7.3.4 Generalized Procrustes Analysis

In order to compute the mean from a sample of shapes the most commonly used
method in practice is Generalized Procrustes Analysis, e.g. see Gower (1975),
Goodall (1991) and Dryden and Mardia (2016). The method of Generalized Pro-
crustes Analysis involves translating, rotating and rescaling the configurations rel-
ative to each other so as to minimize a total sum of squares

n∑
i=1

‖(βiXiΓi + 1kγ
t
i)− µ‖2F (7.13)

with respect to scale βi, rotation Γi, translation γi, i = 1, . . . , n, and an overall
mean µ, subject to an overall size constraint (which avoids everything shrinking
to the origin), such as

n∑
i=1

S2(βiXiΓi + 1kγ
T
i ) =

n∑
i=1

S2(Xi). (7.14)

where
S(X) = ‖CX‖F (7.15)

is the centroid size of X. If we write γ̂i, Γ̂i, β̂i for the optimal translation, rotation,
scale then the Procrustes mean configuration after matching is

µ̂ =
1

n

n∑
i=1

β̂iXiΓ̂i + 1kγ̂
t
i. (7.16)

The translations γ̂i are simply obtained by object centering. However, the rota-
tions and scales must be obtained by an iterative algorithm. A summary of some
algorithms is given by (Dryden and Mardia, 2016, Section 7.4) and an implemen-
tation in R is given by the function procGPA in the shapes package (Dryden,
2021).

The shape of µ̂ is also equal to the Fréchet mean (7.5) with respect to the full
Procrustes distance (where δFP is given in (8.3)), which is obtained from

µ̂ = arg min
µ

n∑
i=1

δFP (Xi,µ)2.

Methods for studying variation in shape are studied in Section 8.4.1. In partic-
ular, after alignment by Generalized Procrustes Analysis, Principal Components
Analysis and other techniques can be carried out to explore the modes of shape
variation.

Case Study: Digit 3 Data

An example of Generalized Procrustes Analysis for the full Digit 3 data (intro-
duced in Section 7.3.3) is given in Figure 7.12. Here there are n = 30 handwritten
digit 3s with k = 13 landmarks in m = 2 dimensions. The original digits are
viewed in the left-hand plot in red. In the right-hand plot we seen the Procrustes
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registered digits in green, which are obtained using Generalized Procrustes Anal-
ysis. In both plots the shapes of the digits are the same, but in the right hand plot
the unimportant rotations, translations and scales have been removed.

Figure 7.12 The 30 handwritten digits from the Digit 3 data in red (left) and the digits
matched using Generalized Procrustes Analysis in green, where translation, rotation and
scale have been removed (right). This registration gives a more focussed view of the popu-
lation variation.

Case Study: DNA Molecule Data

An example for the DNA Molecule data (introduced in Section 7.3.3) is given in
Figure 7.13. Here there are n = 50 DNA molecules of k = 22 atoms in m = 3
dimensions. The unaligned molecules have been pictured in the left hand panel
in red. In the right hand panel one can see the Procrustes registered molecules in
green, which are obtained using Generalized Procrustes Analysis. Here the unim-
portant rotations, translations and scalings have been removed in the right-hand
plot. Alignment can be thought of as a form of noise reduction which results in
distinctly visible landmarks in this case.
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Figure 7.13 The n = 50 unaligned molecules from the DNA Molecule data in red (left).
The molecules matched using Generalized Procrustes Analysis in green, where translation,
rotation and scale have been removed (right).

7.3.5 Covariance Matrix Distances

Following Dryden et al. (2009) let us compare and discuss some possible choices
of distances between covariance matrices S1, S2 ∈ PSDk (recall the set of sym-
metric and positive semi-definite k×k matrices from Section 3.3). The Euclidean
(or Frobenius) distance between two matrices is given by

δE(S1,S2) = ‖S1 − S2‖F =
√

trace{(S1 − S2)t(S1 − S2)} , (7.17)

where ‖X‖F is the Frobenius norm (7.9). However, PSDk is more naturally con-
sidered as a curved manifold. This is because when linearly extrapolating beyond
the data, for example when using (7.8) with α < 0 or α > 1 one can leave PSDk.
This undesirable feature of using a linear extrapolation in a Euclidean space is also
seen in the warping example of Figure 9.13, where the extrapolated paths using
Euclidean PCA are no longer strictly monotone, sometimes leaving the space of
warps.

Another drawback of the Euclidean metric noted by Arsigny et al. (2006, 2007)
is that this distance suffers from a swelling effect when averaging diffusion ten-
sors, which are 3 × 3 covariance matrices that represent the local movement of
water molecules in white matter fibers of the brain. The swelling effect occurs
when the average of two tensors using the Fréchet mean (7.5) has a bigger volume
than either of the two individual tensors. An example which displays interpolation
paths between common diffusion tensors is given in Figure 7.14 using the Fréchet
interpolation (7.8) for a selection of distances. The swelling effect can be clearly
seen for the Euclidean distance in the first row.
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Figure 7.14 Four different interpolation paths between the two common diffusion tensors
(3 × 3 covariance matrices) in the left-most and right-most columns. Each covariance
matrix is represented by an ellipsoid at the 95th percentiles of a multivariate normal distri-
bution with that covariance matrix. The interpolation paths are obtained from (7.8) using
Euclidean δE (1st row), log-Euclidean δL (2nd row), Cholesky δC (3rd row) and Procrustes
δS (4th row) distances.

These drawbacks can be overcome by using any of several covariance matrix
distances, which essentially results in the covariance matrix objects lying in a
curved manifold. One such distance is based on the matrix logarithm. We write
the logarithm of a positive definite (all positive eigenvalues) covariance matrix S
as follows. Let S = UΛUt be the usual spectral (i.e. eigenvalue) decomposition
with U ∈ O(d) (the orthogonal group which consists of the orthogonal matrices,
i.e. those d × d matrices which have orthonormal columns with determinant ±1,
which consists of both rotation and axis flip operators) and Λ diagonal with strictly
positive entries. See Section 17.1.2 for further discussion of eigenanalysis of ma-
trices. Let log Λ be a diagonal matrix with logarithm of the diagonal elements of
Λ on the diagonal. The matrix logarithm of S is given by log S = U(log Λ)Ut

and likewise the matrix exponential of S is exp S = U(exp Λ)Ut. Arsigny et al.
(2006, 2007) propose the use of the log-Euclidean distance, where Euclidean dis-
tance between the logarithm of covariance matrices is used for statistical analysis,
i.e.

δL(S1,S2) = ‖ log(S1)− log(S2)‖F . (7.18)

Another logarithm-based distance uses a Riemannian metric in the space of square
symmetric positive definite matrices, also known as the affine-invariant metric:

δR(S1,S2) = ‖ log(S
−1/2
1 S2S

−1/2
1 )‖F . (7.19)

which has been explored by several authors including Pennec et al. (2006),
Moakher (2005), Schwartzman (2006), Lenglet et al. (2006) and Fletcher and
Joshi (2007). A disadvantage of both the log-Euclidean and Riemannian metrics
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is that the covariance matrices must be strictly positive definite: non-full-rank ma-
trices cannot be considered. Advantages are that the log-based distances do not
suffer from the extrapolation problem - all extrapolations remain positive definite.
Also, the interpolated covariance matrices are much less prone to swelling. In the
example in Figure 7.14 the second row shows the interpolation path using the log-
Euclidean distance. Note that the volume of the tensor in the middle of the path
is smaller than when using the other metrics. The Riemannian metric interpolated
path is visually very similar for this example.

We have many other choices of distance for comparing covariance matrices.
For the one dimensional case we can look at the distance between variances
(Euclidean distance), log variances (log-Euclidean or Riemannian distances) or
square root of variances. The square root scale is a reasonable choice that works
well in many applications. But there is non-uniqueness in choosing a suitable root
in higher dimensions. One choice is the symmetric square root decomposition
where Si = L2

i , i = 1, 2 and Li is symmetric, i.e. the symmetric square root
matrix of S = UΛUt is L = UΛ1/2Ut. The square root distance is given by

δ1/2(S1,S2) = ‖L1 − L2‖F . (7.20)

The square root metric is less prone to swelling than the Euclidean metric, but
unlike the logarithm-based metrics it can be applied to non-full-rank covariance
matrices.

Another distance (which requires full rank matrices) is based on the Cholesky
decomposition (Wang et al., 2004), where Si = LiL

t
i and Li = chol(Si) is lower

triangular with positive diagonal entries. The Cholesky distance is given by

δC(S1,S2) = ‖chol(S1)− chol(S2)‖F . (7.21)

The Cholesky decomposition is commonly carried out for efficient numerical
computation.

A final choice is the best root in terms of minimizing distance over rotation and
reflection between two root matrices. Such a transformation includes permuta-
tions of the rows/columns of the covariance matrix and sometimes it is sensible to
not care about this ordering in applications. This motivates the choice of the Pro-
crustes size-and-shape metric (Dryden et al., 2009) between two k× k covariance
matrices S1 and S2 which is defined as

δS(S1,S2) = min
R∈O(k)

‖L1 − L2R‖F , (7.22)

where Li is a decomposition of Si such that Si = LiL
t
i or Si = LtiLi (i = 1, 2)

(the latter representation leads permutations of rows/columns). This metric is gen-
erally quite similar to the square root metric, and has similar properties. If a per-
mutation of the rows and columns is appropriate then the Procrustes metric could
be useful, as the permutation matrices are a subset of the orthogonal matrices. This
property is particularly useful for comparing unlabeled networks as discussed in
10.2.5.

The last two rows of Figure 7.14 show the interpolation paths for the Cholesky
and Procrustes size-and-shape metrics. The paths look rather different due to
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the extra rotation in the Procrustes method. The metrics are both prone to some
swelling in the interpolation, but much less than the Euclidean metric.

A broad family of power metrics was introduced by Dryden et al. (2009). Dry-
den et al. (2010) selected from such metrics with Box-Cox transformations, and
the square root transformation was appropriate in their diffusion tensor applica-
tion.

A promising metric for interpolating between diffusion tensors has been given
by Jung et al. (2015) and Groisser et al. (2017), and involves decomposition of the
tensors using rotation and scaling. An advantage with their approach is that there
is no swelling effect, and the interpolation paths are visually appealing.

A further example with covariance matrices as data objects is given in Section
8.7 in the context of diffusion weighted MR imaging.





CHAPTER 8

Manifold Data Analysis

As discussed in Section 1.2, at several points in Chapter 2 and in Section 7.3.5,
data objects that naturally lie on a curved manifold are an important and challeng-
ing part of OODA. The value of analyzing data in this way is first illustrated using
the perhaps most straightforward example of data objects on the unit circle in Sec-
tion 8.1. A brief introduction to aspects of manifold geometry needed for OODA
appears in Section 8.2. Section 8.3 highlights a succession of improvements in the
area of PCA-like analyses of data objects lying on manifolds and Section 8.4 con-
siders the shape space of landmarks in more detail. Section 8.5 briefly explores the
Central Limit Theorem for probability distributions on manifolds. A fundamental
concept stemming from these developments is Backwards PCA, as discussed in
Section 8.6. Section 8.7 contains a brief overview of covariance matrices as data
objects, another area where data analysis on manifolds is an important concept.

8.1 Directional Data

Perhaps the oldest and most deeply investigated area of statistics involving non-
Euclidean data objects is called directional data. There the data objects are angles
such as wind or magnetic field directions. The large body of methods developed
for analysis of such data are summarized in the monographs by Fisher (1993);
Fisher et al. (1993), Mardia and Jupp (2000) and Jammalamadaka and SenGupta
(2001). Good recent overview of the area can be found in Pewsey and García-
Portugués (2021).

As illustrated in Figure 8.1 it can be very useful to carefully take the non-
Euclidean nature of the space of angles into account. Both panels of Figure 8.1
show toy data sets with angle data objects as green dots on the unit circle, S1

(recall this notation from (3.2)). In the left panel of Figure 8.1, the shown angles
are 8◦, 14◦, 342◦ and 350◦. One approach to finding the center (a notion of mean)
of the data is to simply average the four numbers, and the result of that is shown
as the red plus sign. Displaying this average on the unit circle S1 makes it clear
this is a very poor notion of center of the set of green dots. A much better notion
of center is shown as the blue plus sign, which is the Fréchet mean with respect
to the arc length metric (also called geodesic distance), as defined in (7.5). This
example shows how taking the unit circle (perhaps the simplest non-trivial exam-
ple of a curved manifold) structure into account is essential to doing a reasonable
statistical analysis of directional data. In general, it is similarly useful to carefully
consider curvature of the space in the analysis of data objects lying in arbitrary
manifolds.
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Figure 8.1 Toy examples of directional data, shown as green dots in S1 both panels. Left
panel shows the conventional mean of the angles as numbers (red) is a poor notion of
center of data, while the Fréchet mean (blue) is more sensible. Right panel compares the
extrinsic resultant mean (red) with the intrinsic Fréchet mean (blue).

Another example of data centering issues can be seen in the right panel of Fig-
ure 8.1. That data set (shown as green dots) consists of 7 data angles slightly less
than 90◦ (some shown outside the circle to indicate replication) together with 6
data angles slightly more than 270◦ on S1. A notion of mean called an extrinsic
mean is shown as the red x sign. This is computed by first taking the mean of the
green dots (actually the angles on the unit circle) in R2, shown as the red circle.
Next the red circle is projected out to the unit circle to get the estimated extrinsic
mean angle (red x sign). In directional data, this notion of mean is often called
the resultant mean because it is the result of treating each angle as a vector in R2,
finding the vector sum, and then projecting that back to the circle S1. Advantages
of this extrinsic mean, relative to the Fréchet mean (called intrinsic because all of
its operations happen within S1 rather than in the embedding space R2) include
straightforward fast computation and better uniqueness properties of the projec-
tion. Recall from Section 7.1 that the Fréchet mean is not unique (see Figure 8.3
for an example). An extreme example is an equally spaced data set on S1 where
the Fréchet mean set consists of all the midpoints between consecutive pairs of
data points.

A perhaps unattractive feature of the resultant mean is that it does not corre-
spond to one’s guess as to where a notion of mean should be, and that it can be
rather unstable with respect to small changes in the data. The Fréchet mean with
respect to the arc length metric (thus an intrinsic notion of center) is shown using
the blue x sign. Many would view this as a more intuitive notion of center in this
case. It is also more stable with respect to changes in the data which remain in
the 1st and 4th quadrants. This comparison is not unlike comparing the standard
Euclidean R1 mean and median for slightly unbalanced, strongly bimodal data.
One more point worth noticing (that does not happen in R1) is that if the data are
shifted slightly to the 2nd and 3rd quadrants, the Fréchet mean is even less sta-
ble in the sense of jumping to the complete opposite side of the circle (while the
resultant mean moves relatively less far).



INTRODUCTION TO SHAPE MANIFOLDS 159

This directional data space of angle data objects can also be viewed as another
example having the equivalence class (i.e. quotient) structure as the triangle shape
space indicated by Figure 1.9. In particular, using polar coordinates every point
(except the origin) in R2 can be represented by an angle and a distance from
the origin. Identification of points with the same angle is an equivalence relation,
whose resulting equivalence classes are rays from the origin, which are character-
ized simply by the angles. This is the perhaps simplest example of how spaces of
equivalence classes tend to naturally be represented by curved spaces.

8.2 Introduction to Shape Manifolds

As discussed above, a convenient mathematical representation of shapes is based
on equivalence classes as data objects. In the case of angles as data objects in
Section 8.1, the resulting object space yields the best analyses when viewed as a
curved manifold.

The general version of this process starts with a group of transformations. For
the case of directional data, this group is the set of constant multiples (i.e. scal-
ings) in R2. For the triangles (or more generally for shape configurations repre-
sented by landmarks) depending on the particular application it can be a set with
any of translations, rotations, scalings or perhaps permutation of the vertex labels.
Identification of elements which can be reached by a transformation in the group
yields an equivalence relation. For directional data, points lying on each ray in
R2 are thus all equivalent to each other. In the case of triangle shapes, all transla-
tions, rotations and scalings of a given triangle are identified with each other. The
space of resulting equivalence classes (also called orbits, which are typically the
data objects of interest) is called the quotient space. For example angles represent
equivalence classes in directional data, while sets of triangles are the shape equiv-
alence class data objects in the triangle case. Generally selection of the group of
transformations is a critical issue in OODA.

Quotient spaces are usually curved manifolds (e.g. the unit circle in the case
of directional data) which are fundamental to differential geometry. These curved
surfaces lie in a higher dimensional Euclidean space and are smooth in the sense
that at each point the surface is approximated by a tangent (hyper)plane in the
(limit operation) sense of shrinking neighborhoods. In particular, a manifold M
is a topological space which locally resembles a Euclidean space near each point.
This is illustrated in the left panel of Figure 8.2 which appears as Figure 2.2 in the
PhD dissertation Fletcher (2004). It shows how at the point p on the manifold M ,
that smooth surface is approximated by the tangent plane TpM on neighborhoods
of p.

Further a Riemannian manifold is a smooth manifold which has a positive def-
inite inner product defined on the tangent space TpM at p. The distance between
two points on a Riemannian manifold is measured by the length of the shortest
path (minimal geodesic) in the manifold connecting the points. The Riemannian
structure allows defining the useful concept of the exponential map at p in Rie-
mannian geometry, also shown in the left panel of Figure 8.3. That is the inverse
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of the log map, which (on neighborhoods of p) maps points on the curved sur-
face of M to points on the tangent plane in such a way that the geodesic distance
(to p) along the surface of M is the same as the corresponding distance in the
plane TpM . The exponential-log terminology comes from complex analysis as
illustrated in the right panel of Figure 8.2. In particular the first quadrant of the
complex unit circle is shown there, which contains the point eiθ = cos θ+ i sin θ,
for a given angle θ. Recall that the length of the arc from the point 1 + 0i to eiθ

(shown as the thick dashed curve) is θ radians. That is also the length of the tan-
gent line segment from 1 + 0i to 1 + θi (shown as the thick dashed line segment).
In this sense the complex exponential maps the tangent line segment to the mani-
fold which is the unit circle so that distances (to 1) on the tangent line are mapped
to distances along the manifold (unit circle). Hence the manifold exponential map
generalizes that of complex analysis.

θ

e
iθ

1 + 0i

1 + θi

Figure 8.2 Left panel illustrates the concept of a curved manifold, and its tangent plane
approximation at each point, with the exponential map. Right panel shows how the
exponential-log terminology comes from complex analysis.

The PGA (recall Principal Geodesic Analysis from Section 1.2) modes of vari-
ation illustrated in Figure 1.11 can be viewed as starting with a tangent plane
centered at the Fréchet mean. The data are mapped into that plane using the log
map where they are analyzed with conventional Euclidean PCA. Mapping the
resulting PC direction vectors back to the manifold using the corresponding ex-
ponential map results in the corresponding principal geodesic modes of variation.
Reconstruction of corresponding s-rep figures gives the one dimensional set of
object space members that make up each mode of variation as defined in Section
3.1.4.

For a deeper introduction to manifolds and Riemannian geometry, see Chavel
(2006) and Lee (2018). A far more in depth discussion of statistical analysis on
Riemannian manifolds can be found in Pennec et al. (2019).

An interesting variant of the data objects lying on a manifold theme of this
chapter is manifolds as data objects as studied in Kang et al. (2017). This idea
has been extended to data objects which are a union of a manifold together with
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a function on that manifold (motivated by medical imaging applications) in Lila
et al. (2016, 2020); Lila and Aston (2020).

Again the focus of this chapter is the statistical analysis of populations of data
objects that naturally lie on curved manifolds. However, there is another area
where the term manifold intersects with statistics, which is now called manifold
learning. The main idea is that in the analysis of high dimensional data, there are
situations where the data may lie near a relatively low dimensional curved mani-
fold, and the goal is to estimate that manifold from the data. An informative ex-
ample, from Tenenbaum et al. (2000), is a set of digital photographs of the face of
a statue from different angles, with different light sources. The vectorized version
of such a set of images (as done in Section 2.4) is in some sense low dimensional,
since the 3-d structure of the face is the same in each, and the variation is easily
summarized by a few parameters. But this variation is nonlinear in the space of
vectorized images, so methods like PCA will not properly find the low dimen-
sional structure. The field of manifold learning grew out of the principal curves
idea of Hastie and Stuetzle (1989), in the case of fitting a one dimensional mani-
fold, i.e. a curve, to data giving a notion of first mode of variation. An interesting
issue was how to find a second mode of variation, which can be hard to imag-
ine when trying to generalize PCA, as there is no useful notion of orthogonality
in the space of curves. A solution to this problem was provided by LeBlanc and
Tibshirani (1994) who proposed finding an appropriate surface, i.e. a higher di-
mensional manifold, as an appropriate higher dimensional generalization of PCA.
A large amount of research in manifold learning, involving many variations, was
started by the implementations proposed by Tenenbaum et al. (2000) and Roweis
and Saul (2000). See Wang and Marron (2008) for an early approach to estimation
of effective dimensionality, i.e. the dimension of an approximating manifold in the
presence of noise using scale space ideas.

8.3 Statistical Analysis of Shapes

A fundamental aspect of the statistical analysis of shapes as data objects is that
the quotient operation mathematically removes irrelevant aspects of the variation
from the analysis. As in Section 2.1 such irrelevant variation (e.g. translation, rota-
tion and scaling in the case of triangle shapes illustrated in Figure 1.9) is usefully
called nuisance variation. In that section on curve registration ideas, it was noted
that depending on the context either phase or amplitude data objects could be of
primary interest or else could merely be thought of as nuisance variation. Less
well known is that there is a parallel situation for landmark representations. In
particular, the study of plate tectonics and continental drift is also based on land-
mark data, as studied in Chang (1988) and Royer and Chang (1991). However, in
that context an opposite choice of data objects was most sensible. In particular,
shape variation was the nuisance, which was removed by essentially the inverse
quotient operation. Thus the transformations were the data objects in that analysis.

As can be seen in other statistical areas, there are several rather different ideas
as to the “proper” way to statistically analyze data objects lying on a manifold. An
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important dichotomy is between extrinsic and intrinsic methods, using terminol-
ogy introduced in Section 8.1. The main idea of extrinsic analysis is to treat the
data objects as points in the embedding Euclidean space (R3 in the case of the 2
dimensional manifold shown in the left panel of Figure 8.2), do the analysis there,
and then project the result back to the manifold. In contrast, intrinsic methods base
the statistical analysis on operations within the manifold. One way to achieve in-
trinsic methods is to work with distance methods, such as the Fréchet mean and
MDS as discussed in Sections 7.1 and 7.2, with respect to a metric using distances
along the curved manifold surface (hence intrinsic).

This topic was introduced and motivated, using bladder-prostate-rectum data
objects, in Section 1.2. As discussed there, several rather different representations
of shape can be found in the literature, including landmark and boundary rep-
resentations. Another approach to shape representation takes the data objects to
be transformations, typically of some template, such as the Large Deformation
Diffeomorphic Metric Mapping of Dupuis et al. (1998) and Beg et al. (2005). A
particularly attractive shape representation, based on quotienting over potential
reparameterizations to again give equivalence classes (i.e. orbits) as data objects
can be found in Srivastava and Klassen (2016). That idea also has provided a com-
pelling approach to curve registration as discussed in Chapter 9. Statistical analy-
sis of any of these shape representations entails working on a curved manifold at
some level.

In the rest of this section the focus is on skeletal representations (s-reps), as
illustrated in Figure 1.10, because of their strong intuitive appeal and their ability
to effectively summarize important aspects of shape as discussed in Pizer and
Marron (2017) and Pizer et al. (2020). These data objects naturally lie in a curved
manifold because the representation includes a number of angles on S2. While
it is possible to attempt analysis of s-rep data in the ambient space, e.g. to treat
points on S2 as lying in R3, a major problem is that analytic methods such as PCA
tend to leave the space where the data lie. As noted above, one approach to this is
extrinsic analysis. The idea is to do the statistical analysis (e.g. the mean or PCA)
in the ambient space and then project back to the curved manifold. This approach
works well when the data lie in a small region of the manifold where there is not
much curvature, so there is little distortion caused by the extrinsic approach.

When the data are distributed more broadly across the manifold, curvature mat-
ters more, which provides strong motivation for intrinsic analysis methods. One
of these is the Principal Geodesic Analysis (PGA) of Fletcher et al. (2004). As
noted in Section 1.2, the main idea of PGA is to think of the standard Euclidean
PCA basis as a set of orthogonal lines that (sequentially) best fit the data. In PGA
these best fitting lines are replaced by best fitting geodesics (e.g. great circles on
S2) which are a natural analog of lines along the surface of the manifold, that nat-
urally determine modes of variation. A deliberate choice that was made in PGA
was to consider only geodesics passing through the Fréchet mean. That restriction
allowed straightforward computation of PGA as discussed in Section 8.2, using
the corresponding tangent plane. Modes of variation generated by a PGA were
shown in Figure 1.11.
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More recent research has led to major improvements in statistical methodology
that have been realized through improved incorporation of the underlying geom-
etry. Huckemann et al. (2010) made the important observation that the effective-
ness of the PGA tangent plane analysis of Fletcher et al. (2004) was strongly tied
to the quality of the Fréchet mean as a notion of center-point. Figure 8.3 shows
how that can be a serious limitation. The data objects are shown as blue dots dis-
tributed along the equator of the ordinary sphere S2. Note that since they follow
a geodesic this data set is essentially one dimensional. The Fréchet means of this
data set are shown as red crosses. The Fréchet mean is a mean set (consisting of
both north and south poles) in this case, because there is not a unique minimum
of the Fréchet criterion (7.5). This is a consequence of least squares penalizing
large distances most strongly. In particular, a candidate point along the equator
will have some residuals extending half way around the sphere, while the poles
are only a quarter of the way from each data point. If the data only approximately
lie along the equator, the Fréchet mean will typically be unique, but it will still be
very far from all data points (essentially choosing just one of the north and south
poles), and it will similarly be very poorly representative of the data.

Not only are the red Fréchet means in Figure 8.3 an unintuitive notion of data
center, they are also exceptionally poor candidates as a point of tangency for a
PGA analysis. This is illustrated by the yellow tangent plane in Figure 8.3. The log
map projection of the data objects onto the equator, shown as green dots, follow
the green circle which is centered at the geodesic mean. This has the unattractive
property that it requires two PGA modes of variation to fully represent essential
aspects of the data. Such a two dimensional representation seems inefficient be-
cause the data distributed on the equator of S2 are one dimensional (in the sense
of following a one dimensional curve in the high dimensional space). In fact these
data objects are actually describable using just the single (nonlinear) mode of vari-
ation (as defined in Section 3.1.4) shown as the green circle. That will generally
result in much more efficient statistical analysis (e.g. Bayes model fitting for seg-
mentation as seen in Jeong et al. (2008); Jeong (2009); Pizer et al. (2005a); Pizer
and Marron (2017)).
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Figure 8.3 Toy example on sphere S2 demonstrating poor performance by tangent plane
PCA. Data distributed along the equator shown as blue dots, Fréchet means shown as red
crosses, with log data shown as green. Note log data lies along green circle in the tangent
plane, thus requiring two PGA modes of variation to fully capture the data relationships.

The solution proposed by Huckemann et al. (2010) was to consider all geodesics
in modeling the data, thus moving beyond the restriction of PGA to only geodesics
going through the Fréchet mean. An interesting point here is that the first Eu-
clidean PCA component can be viewed as the line that best fits the data, which
will necessarily contain the sample mean, as easily seen using an ANalysis Of
VAriance (ANOVA) decomposition of sums of squares (a generalization of the
Pythagorean Theorem). However, in non-Euclidean situations (e.g. data objects
lying on curved manifolds) this is no longer true, so a conscious decision needs
to be made. In particular the use of PGA entails the restriction to geodesics which
go through the Fréchet mean. The Geodesic PCA proposal of Huckemann et al.
(2010) considers all geodesics, resulting in a first mode of variation along the
equator for this toy example, which gives a much more appropriate one dimen-
sional representation (i.e. mode of variation) of this data set.

The toy example in Figure 8.3 of data objects lying on the equator of S2 may
appear to be artificial, but related modes of variation are actually frequently im-
portant to medial and skeletal shape representations, as demonstrated in Figure
8.4. The left panel shows the distribution of a single spoke over a number of real-
izations from the bladder-prostate-rectum simulator model of Jeong (2009), which
captured realistic modes of variation. Note that the data are quite broadly spread
over the sphere, as in the above discussed toy example.

Figure 8.4 also demonstrates a limitation of Geodesic PCA. This is that the
spoke variation does not actually follow a great circle (i.e. a geodesic such as the
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equator in Figure 8.3), but instead follows a small circle (think Tropic of Capricorn
on the earth). Hence the Geodesic PCA fit still requires two modes of variation as
shown in the center panel. This motivated the Principal Arc Analysis proposed by
Jung et al. (2011), which generalizes Geodesic PCA to allowing both small and
great circle fits to the data as modes of variation. The benefit of this is shown in the
right panel of Figure 8.4, where only one mode is needed to fully model this data
set. This is an example of where careful exploitation of the curved structure of
the manifold gives much more efficient analyses than are available from distance
methods as discussed in Chapter 7.

Figure 8.4 Variation of a single spoke, from a bladder-prostate-rectum simulator model.
Left panel shows the blue data objects distributed on the sphere. Center panel shows the
results of a Geodesic PCA summary, requiring two modes of variation. Right panel shows
the corresponding Principal Arc Analysis, which is much more statistically efficient since
only one mode of variation is needed.

Motivated by landmark based shape analysis, the idea of using small circles to
give an analog of PCA was extended to higher dimensional spheres, Sd for d ≥ 2,
by Jung et al. (2012a), to give a method called Principal Nested Spheres (PNS).
In the special case of S2, PNS gives the result shown in the right panel of Fig-
ure 8.4. One step of the iterative calculation of PNS is illustrated in Figure 8.5,
where data objects distributed on Sd are shown as blue dots. The gold circle rep-
resents the best fitting sub-sphere of dimension d−1. The green dots represent the
projections of the data objects onto the gold sub-sphere. Note that the projection
(defined as the closest point in the sub-sphere) of each blue dot is calculated with
respect to the metric of arc length along the sphere. These lengths are graphically
depicted using cyan arcs. The gold sub-sphere is taken to be “best-fitting” in the
sense of minimizing the sum of the squares of these cyan lengths. The green dot
projections are then the best co-dimension 1 (i.e. one lower dimension) approxi-
mations of the blue data objects. Also fundamental to PNS is keeping the signed
(depending on which side of the gold sub-sphere) lengths of the cyan arcs as the
highest level PNS scores. This process is then repeated iteratively down through
dimensions, to generate a full set of PNS scores. The final projections to S1 play
the role of PNS 1 scores. One more aspect of this process worth noting is that the
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Fréchet mean of the PNS 1 scores is a compelling notion of center called the PNS
mean or the backwards mean. In particular, for the Figure 8.3 toy example of data
distributed around the equator of S2, the backwards mean is the quite reasonable
one dimensional Fréchet mean computed along the equator.

Figure 8.5 Illustration of one step of Principal Nested Spheres. Raw data shown as blue
dots on Sd. Green dots are projections (along the surface) onto the best fit version of Sd−1

shown as a gold circle, representing the d− 1 dimensional approximations. Level d scores
are signed lengths of the cyan lines.

As noted in Pizer et al. (2013); Pizer and Marron (2017); Pizer et al. (2020),
PNS has provided major improvements in the Bayes segmentation methods dis-
cussed in Section 1.2. For example, representations that required 20 PGA com-
ponents, could be done using just 13 PNS components, meaning very substan-
tial noise reduction and corresponding improved segmentation. This dramatic im-
provement appears to be mostly driven by the natural prevalence of small circle
modes of variation in s-rep data, as illustrated in Figure 8.4. Strong performance
of PNS in landmark shape contexts was also demonstrated by Jung et al. (2012a)
and is further discussed in Section 8.4.4 for landmark shapes. Also PNS performed
well in the study of rotational deformations by Schulz et al. (2015) and in med-
ical imaging by Kim et al. (2019). In addition PNS has been used in the area of
Fisher-Rao curve registration as discussed in Section 9.2, which maps curves to a
high dimensional sphere. The benefits of this for blood glucose monitoring data
was demonstrated by Yu et al. (2017a). Another important contribution of PNS is
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that it motivated the development of the Backwards PCA viewpoint, discussed in
Section 8.6.

While PNS made major improvements in the statistical analysis of s-rep shapes,
there is still room for improvement because s-reps do not lie on a single high di-
mensional sphere. Instead they lie on a manifold that is a product of spheres called
a polysphere. A direct approach to polysphere data, called Composite PNS in Pizer
et al. (2013), is to use PNS to obtain Euclidean representations for each compo-
nent sphere, which are then concatenated into long vectors that are analyzed using
PCA. While this approach has given useful results as noted above, a weakness is
that it makes the perhaps dubious assumption of linear dependence across spheres.
A more compelling approach is the Polysphere PCA methodology proposed by
Eltzner et al. (2015, 2018). The key idea is to better employ PNS by first distort-
ing the polysphere space into a higher dimensional sphere, and then doing PNS
there. This method has been seen to give some improvements, but finding a truly
intrinsic approach to PCA for data objects lying on a polysphere space remains
an interesting open problem. An important special case, that arises in computa-
tional chemistry, is torus type spaces,

(
S1
)d

, where the data objects are vectors of
angles.

8.4 Landmark Shapes

An example of a quotient space of the type discussed in Section 8.3 is the shape
space of k > m landmarks in m real dimensions, where m is usually 2 or 3.
Landmark configurations were introduced in Figure 1.9 and in Section 7.3.3 and
an important method for comparing the shapes of the configurations as data ob-
jects is Procrustes analysis, see Sections 7.3.3 and 7.3.4. Examples of landmark
shape data were given in those sections, in particular the Digit 3 data in m = 2
dimensions and the DNA Molecule data in m = 3 dimensions.

Let X be a k × m matrix representing a shape object of k landmarks in m
dimensions. The shape of the configuration X is what is left when translation, ro-
tation and isotropic scale are removed. The geometry of the space is complicated,
see Kendall et al. (1999). However, practical progress can be made by first trans-
forming to the pre-shape, which involves the easier steps of removing translation
and scale by centering and dividing through by centroid size:

Z =
CX

‖CX‖F
∈ S(k−1)m−1 (8.1)

where C is the centering matrix (7.12) and ‖CX‖F is the centroid size (7.15).
The pre-shape space is a sphere in (k − 1)m dimensions S(k−1)m−1, as defined
in (3.2).

Rotations of Z on the pre-shape sphere constitute an orbit or fiber of the pre-
shape space S(k−1)m−1, which is an equivalence class. Equivalence classes and
orbits were discussed in the context of triangle shape objects in Section 1.2.2 and
also in Section 9.1.3 for warping functional data objects. Fibers on the pre-shape
sphere correspond one to one with shapes in the shape space, and so we can think
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of a fiber as an equivalence class representing the shape of a configuration. The
pre-shape sphere is partitioned into non-overlapping fibers by the rotation group
SO(m) and the fiber is the orbit of Z under the action of SO(m).

The idea behind constructing a distance in the quotient space is to minimize
the great circle distance on the pre-shape sphere between points, one in each fiber.
This shape distance is the Riemannian shape distance, which is the geometrically
natural distance inherited from the projection of the fibers on the pre-shape sphere
to points in the shape space. The Riemannian shape distance ρ is given by

ρ(X1,X2) = 2 arcsin

(
δPP

2

)
, 0 ≤ ρ ≤ π

2
, (8.2)

where δPP is the partial Procrustes distance of (7.11). The interpolation path (7.8)
using ρ as the shape distance is the shortest geodesic path between X1 and X2,
which has length ρ(X1,X2). D.G. Kendall introduced this Riemannian distance
in his seminal paper Kendall (1984).

The projection from the pre-shape sphere to shape space is isometric, because
distances are preserved. The Riemannian distance is an intrinsic distance in the
shape space, and recall that discussion of intrinsic versus extrinsic distance was
discussed in Section 8.1. The shape space is a type of quotient space, where the
rotation has been quotiented out from the pre-shape sphere using optimization.
The quotient space optimization imposes nonlinear constraints on the configura-
tion, and hence a non-Euclidean distance is appropriate.

Recall that an alternative shape distance is the partial Procrustes distance (7.11)
which is a type of extrinsic distance between two shapes, where the extrinsic dis-
tance is measured in an embedding of the manifold, see (Dryden and Mardia,
2016, Chapter 4). The partial Procrustes distance is the shortest chordal distance
measured in the embedding space between two fibers on the pre-shape sphere.

An additional choice of shape distance is the full Procrustes distance

δFP = sin(ρ) (8.3)

which is another extrinsic distance and a variation of the Procrustes distance de-
fined at (7.11). The full Procrustes distance involves optimizing the Euclidean
distance in an embedding of the pre-shape sphere over both scale and rotation.
The term “full” Procrustes is used as both rotation and scale are used to match
pre-shapes, whereas “partial” involves just rotation.

When shape changes are small all three distances (8.2), (7.11), (8.3) are similar.
In Table 8.1 we see distances between the pairs of Digit 3s from Figure 7.10 and
the pairs of DNA molecules in Figure 7.11. Clearly the shape distances are small
for the DNA data, and so all three shape distances are similar. However, for the
Digit 3 Data example the shape differences are larger, and thus differ more.

Further discussion of geometrical properties of the landmark shape space is
given by Kendall (1984, 1989); Le and Kendall (1993); Kendall et al. (1999);
Kent and Mardia (2001); Small (1996); Dryden and Mardia (2016). The geometry
is particularly straightforward in m = 2 dimensions, where complex arithmetic
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Figure ρ δPP δFP

Digit 3s 7.10 0.5155 0.5098 0.4930

DNA molecules 7.11 0.1464 0.1459 0.1463

Table 8.1 Shape distances between the pair of Digit 3s and the pair of DNA molecules.
This shows that these distances tends to be similar, especially when the shapes are closer
to each other.

can be used. In this planar case the shape space is a homogeneous space called a
complex projective space CP k−2 (Kendall, 1984; Kent, 1994).

For triangle shapes a toy example was given in Figure 1.9. In the triangle case
the shape space is the complex projective space CP 1, which is equivalent to a
sphere in three dimensions (Kendall, 1983; Dryden and Mardia, 2016, p.54). A
plot of the triangle shape space is given in Figure 8.6, and the equilateral triangles
are at the North Pole (anti-clockwise labels) and the South Pole (clockwise labels).
Some longitudes with isosceles triangles are indicated, and the equator consists of
all flat triangles (where the three points are collinear). If the shape sphere has
radius 1/2 then the great circle distance on the sphere is the same as the intrinsic
Riemannian shape distance of (7.19).
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Figure 8.6 Kendall’s spherical shape space for triangles in m = 2 dimensions. The shape
coordinates are the latitude θ (with zero at the North pole) and the longitude φ. The anti-
clockwise labeled equilateral triangle is at the North Pole (A) with θ = 0, and the clock-
wise labeled equilateral triangle is at the South Pole (B) with θ = π. Longitudes with
isosceles triangles are shown in black (φ = kπ/3, k = 0, . . . , 5), and flat triangles at the
equator are shown in red at θ = π/2.

For m = 2 the shape space is a homogeneous space, which is a nice space
to deal with as the structure of the local geometry is the same at each point in
the space. However, for m > 2 the shape space is not homogeneous in the sense
that the local geometry changes depending on the location in the space. Le and
Kendall (1993) studied the Riemannian structure of shape spaces in detail, and in
particular gave explicit formulae for the average section curvature in the space at
each location. Also, for m > 2 there are singularities in the shape space when
the k points lie in an m − 2 dimensional subspace, see Kendall (1989), so we
assume that we are away from such singularities. Furthermore the tangent space
to the shape space itself is also complicated (Le, 1991). As the shape space is
complicated in general, it is convenient to carry out analysis on the pre-shape
sphere S(k−1)m−1 and then adapt methods so that the analysis does not depend
on the rotations of the configurations.

8.4.1 Shape Tangent Space

The tangent space to the pre-shape sphere can be decomposed into two comple-
mentary sub-spaces: the horizontal tangent space of dimension (k−1)m−m(m−
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1)/2− 1 which does not depend on rotation, and the vertical tangent space of di-
mension m(m−1)/2 which contains the rotation information. For shape analysis
we work with coordinates in the horizontal tangent space to the pre-shape sphere.

Constructing the Procrustes tangent space involves first choosing a pole P, a
k ×m matrix, which is assumed to be non-degenerate (Kent and Mardia, 2001)
which means that the eigenvalues of PtP satisfy λm−1 > 0 (i.e. the rank of P
is at least m − 1). We carry out Procrustes rotation of X onto P (where P and
X have been centered) to give XP = XΓ̂, where Γ̂ is the optimal rotation from
Ordinary Procrustes Analysis in Section 7.3.3.

The partial Procrustes tangent coordinate matrix is then (Kent and Mardia,
2001)

V = XΓ̂− αP, (8.4)

where α = cos ρ(X,P) > 0, with ρ(X,P) the Riemannian distance between X
and P, and X is also non-degenerate. We can write

X = (αP + V)Γ̂t, (8.5)

where 0 ≤ ρ < π/2, which is helpful for projecting back to the configuration
space.

Multivariate statistical methods can then be carried out in the tangent space on
the vectorized coordinates of V, for example PCA, and P is taken as the Fréchet
mean, obtained from Generalized Procrustes Analysis (see Section 7.3.4). We
compute the vectorized Procrustes tangent space coordinates, evaluate the sample
covariance matrix SV and carry out an eigendecomposition of SV . For detailed
discussion of PCA and variants see Chapter 17. The eigenvectors of SV are the
PC loadings, and the eigenvalues are the variances explained by each of the PCs.
In order to visualize the modes of variation revealed by the PCs we back-project
using (8.5) to configurations that are located at multiples along each PC, for ex-
ample at±3 standard deviations along each PC. We consider an example of shape
PCA in Section 8.4.2 for the Digit 3 Data.

8.4.2 Case Study: Digit 3 Data

In Section 7.3.3 we introduced the Digit 3 data and carried out Generalized Pro-
crustes Analysis in Section 7.3.4. In Figure 8.7 we see a plot of the Fréchet mean
obtained from Procrustes analysis in the middle column. We also carry out PCA
of the partial Procrustes tangent coordinates of (8.4). In the left and right columns
modes of variation are displayed using configurations drawn at ±3 standard devi-
ations along the 1st (top row), 2nd (middle row) and 3rd (bottom row) principal
component directions. This matrix of scatterplots is essentially the transpose of
that used to display modes of variation in Figure 1.11. In this example the per-
centage of variability explained by these modes of variation are 50.4%, 15.4%,
12.8%, and so more than three quarters of the shape variability is explained by the
first three PCs. There are often complicated combinations of features present in
each mode of variation which may not be simple to interpret. In this case the per-
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haps dominant aspects are: the first mode reflects the length of the middle prong
in the digit, the second mode reflects tall thin digits versus short fat digits, and the
third mode reflects an asymmetry in slanting up at one side versus the other.

Figure 8.7 The first three PCs for the Digit 3 data. Each row represents a mode of variation
with the Fréchet mean in the middle and configurations at ±3 standard deviations along
each PC on the left and right. We see that the first mode reflects the length of the middle
prong in the digit, the second mode reflects tall thin digits versus short fat digits, and the
third mode reflects an asymmetry in slanting up at one side versus the other.

An alternative view of these same modes of variation is shown in Figure 8.8.
The piecewise colored line shows the mean (center column of Figure 8.7), with
colors used to indicate the ordering of the landmarks from 1 to k. The variation
in each mode is displayed by including the mean plus 3 standard deviations (right
column of Figure 8.7) as the black piecewise line, and the mean minus 3 standard
deviations (left column of Figure 8.7) as the gray piecewise. The line segments
connecting the landmarks show the paths of each landmark through the mode
of variation (recall from Section 3.1.4, that is a set of data objects that is one
dimensional in some sense).
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Figure 8.8 PCA for the Digit 3 data with the mean (shown as the colored piecewise line)
and the first (left), second (center) and third (right) modes of variation. Mean±3 standard
deviations are shown as the black and gray piecewise curves.

8.4.3 Case Study: DNA Molecule Data

In Section 7.3.3 we introduced the DNA Molecule data and carried out General-
ized Procrustes Analysis in Section 7.3.4. We also now carry out PCA using the
shape tangent coordinates. In Figure 8.9 the colored piecewise lines are plots of
the mean shape configuration obtained from Procrustes analysis using translation,
rotation and scale, with colors indicating landmarks as in Figure 8.8. The larger
spheres are located at the landmarks, with the perspective view making the closer
spheres larger, and those further away smaller. In addition variation is reflected
in a fashion similar to Figure 8.8, with vectors drawn to configurations which are
3 standard deviations along the 1st (left), 2nd (middle) and 3rd (right) modes of
variation. In this example the percentage of variability explained by the first three
modes of variation are 26.8%, 19.7%, 14.7%, and so just over 60% of the shape
variability is explained by the first three PCs. It is difficult to interpret the modes
of variation here, but features such as bending and twisting of the molecule may
be present, as well as more localized features. The first mode reflects change at
the opposite ends of each strand (at red and cyan atoms), and the second mode has
orthogonal changes at the same points.

In our examples up to this point, the focus has been on shape, where all of
translation, rotation and scale (size) have been removed by the quotient opera-
tion. Yet in some situations size matters. For example the part of biology called
allometry studies relationships between size and shape. An approach to this is a
scatterplot matrix comparing data object size, quantified as the centroid size de-
fined in (7.15), with the first 3 shape PC scores shown in Figure 8.10. It can be
seen that each PC score has some (strongest for PC1) correlation with centroid
size. Also the remaining (shape) scores are unstructured which is consistent with
lack of correlation between cases caused by the data thinning.
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Figure 8.9 PCA for the DNA Molecule data with the mean and first three modes of varia-
tion. Most modes seem to be various contrasts of variation at the red end versus the cyan
fold point.
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Figure 8.10 A scatterplot matrix plot of the centroid size and first three PC scores for the
DNA Molecule data. We see that these PC scores are all correlated with centroid size.

A more extensive analysis of the mean and covariance structure for the DNA
Molecule data for six different types of DNA which are undamaged or damaged
has been carried out by Dryden et al. (2017). Other related work for investigating
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variability in time-series of DNA molecules includes time-orthogonal principal
components (Dryden et al., 2010).

8.4.4 Principal Nested Shape Spaces

PCA in shape tangent space is appropriate when the data object variability is not
too large and the variability has linear structure. An alternative is an extension
of the Principal Nested Spheres (PNS) methodology of Section 8.3 (Jung et al.
(2012a)), adapted to Principal Nested Shape Spaces (PNSS) by Dryden et al.
(2019a). The method of PNSS involves fitting a nested sequence of pre-shapes
to the Procrustes registered data. In order to speed up computation an initial PCA
can be carried out, e.g. by first reducing to 20 PCs as in the following examples.
Thus a small amount of noise is removed by linear PCA, and then the main com-
putational effort is spent in fitting a sequence of pre-shape spheres of successively
lower dimension. As for PNS one has the option to fit either a great sphere (with
radius 1) or a small sphere (with a smaller fitted radius) at each level. The lowest
levels of PNSS are the primary interest, and it is desirable that these explain high
percentages of shape variability. The very final zero dimensional level (PNSS0)
corresponds to the backwards mean shape (an alternative to the Procrustes mean)
and the first PNSS mode of variation (PNSS1) is a circular arc in shape space with
PNSS1 scores indicating the position along this arc. In order to visualize the ef-
fects of PNSS we can back-project the PNSS0 to a configuration, and then draw
arcs to configurations along each PNSS mode of variation.

In Figure 8.11 we see the results from PNSS modes of variation carried out on
the DNA Molecule data of Section 7.3.4 using a format similar to that of Figure
8.9. The back-projections to configurations show the effects of each PNSS mode
of variation. Again the rainbow color is the PNSS mean. The black configuration
is +1 standard deviations along the first component, the gray configuration is -
1 standard deviations along each component for DNA, and the path along each
component is plotted as an arc. Note that the DNA data has some very small
radii spheres/circles fitted in the PNSS sequence, indicating that they are rather
far back. For PNSS the small circular arcs for the DNA reflect the fact that the
distance between the atoms on either strand remains nearly fixed in the dataset.
These plots should be compared to the linear shape PCA plots that were given in
Figure 8.9. The nonlinearity of these nodes of variation is reflected by the small
arcs for the atoms being curved here, in comparison to being straight lines due to
the linear analysis there.

The percentage variation in the first 5 PNSS scores and PCs can be seen in the
top rows of Table 8.2. It is clear that the nonlinear circular variation captured by
PNSS1 explains a much higher percentage of shape variation (69.8%) than the
linear PCA method (26.8%), because the mode of variation is allowed to follow
a curved path. See Section 9.2 for a parallel phenomenon in the context of curve
registration.
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Data Figure 1st 2nd 3rd 4th 5th

DNA molecule PCA 26.8 19.7 14.2 7.2 4.6
PNSS 69.8 7.3 4.1 3.0 2.0

Digit 3 PCA 50.4 15.4 12.8 7.5 4.3
PNSS 59.3 13.2 9.1 6.7 3.9

Digit 3 PCA 43.6 18.4 13.2 9.0 4.9
w/o outlier PNSS 64.1 12.1 8.9 4.9 3.3

Table 8.2 The percentages of variation explained by the first five modes of variation using
PCA and PNSS for the DNA Molecule and Digit 3 Data. This shows that the PNSS compo-
nent explains higher percentages of shape variability than PCA in the first few components.

Figure 8.11 DNA Molecule data. PNSS with the PNSS mean and first three modes of vari-
ation at 1 standard deviations along the arcs.

We now apply the PNSS method to the Digit 3 data of Section 7.3.4. The per-
centages of variability compared to PCA are given in the middle row of Table
8.2. In this example there is not such a major difference between the percentages
of variability explained. The back projected PNSS mean and first three modes of
variation are given in Figure 8.12. These plots should be compared to the linear
shape PCA plots that were given in Figure 8.8, and the structures of PNSS and
PCA are quite similar here. The small arcs reflecting variation of each landmark
are perhaps surprisingly roughly linear here, suggesting this nonlinear analysis is
not far from that of Figure 8.7. In this dataset there is a large outlier (the first ob-
servation) and the first PNSS and PC modes of variation are both in the direction
of the outlier. This outlier (and the paucity of data between it and the bulk of the
data) appears to be the cause of the nearly linear modes of variation in Figure 8.12.
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Figure 8.12 PNSS for the Digit 3 Data with the mean (rainbow colored) and first three
modes of variation (gray and black configurations) at ±2 standard deviation along the
arcs.

To explore this, an alternative analysis without the outlier is given in Figure
8.13 with the percentages of variability given in the last rows of Table 8.2. The
first PNSS mode of variation now represents more variability (64.1%) than the
first PC (43.6%) and the nonlinear aspects of variability are now more clearly
seen in the back-projection for the first PNSS in Figure 8.13. In particular the first
mode now once again uses a curved path to explain much more variation.

Figure 8.13 PNSS for the Digit 3 data with the outlier removed with the mean (rainbow
colored) and first three modes of variation (gray and black configurations) at ±2 stan-
dard deviation along the arc. PNSS1 is on the left. Here the PNSS1 variability is clearly
nonlinear.

8.4.5 Size-and-shape space

In applications we have a choice of data objects, and in shape analysis one partic-
ular choice is whether to retain size in the analysis or whether to remove it. For
example with the DNA Molecule data in Section 7.3.4 we removed location, ro-
tation and scale, but an alternative is to choose to retain the original scale of each
molecule and just remove translation and rotation. In this case the space of interest
is the size-and-shape space (see (Dryden and Mardia, 2016, Chapter 5)).

The size-and-shape space is again a quotient space, but the normalization by
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size to obtain the pre-shape is not carried out. The Riemannian size-and-shape
metric is based on the Frobenius norm of the residual matrix after carrying out
Ordinary Procrustes Analysis using translation and rotation only, and so the dis-
tance between X and P is

δSS = ‖XΓ̂−P‖F =
√
S(X)2 + S(P)2 − 2S(X)S(P) cos ρ(X,P) , (8.6)

where S is the centroid size of (7.15) and ρ is the Riemannian distance of (8.2).
The Fréchet mean size-and-shape is given by the sample mean of the configu-

rations after carrying out Generalized Procrustes Analysis using translation and
rotation only. The size-and-shape tangent coordinates are given by the residual
matrix after Procrustes rotation, and specifically this is given by (8.4) but with
α = 1. Again multivariate statistical methods can then be carried out on these
tangent coordinates, and for the DNA Molecule Data the analysis is similar to the
shape space analysis.

The data object choice of whether to scale or not is up to the data analyst. Figure
8.10 took an allometry approach by plotting pairwise views of the first three shape
PC scores for the DNA Molecule data (where size was removed), together with the
centroid size as a separate variable of interest. An alternative approach is to retain
the original sizes of the objects throughout, and in that case we work directly with
size-and-shapes.

8.4.6 Further methodology

Statistical shape analysis has undergone extensive methodological developments,
with a large array of applications. Some recent examples include Riemannian
smoothing splines applied to peptides (Kim et al., 2021); regression models for
human movement data (Dryden et al., 2020); and measurement error model-
ing and Bayesian regression for face landmarks (Du et al., 2015; Dryden et al.,
2019b). Good overviews of contemporary developments in statistical shape analy-
sis include Grenander and Miller (2007); Younes (2010); Bhattacharya and Bhat-
tacharya (2012); Hamelryck et al. (2012); Bookstein (2014); Dryden and Kent
(2015); Patrangenaru and Ellingson (2015); Dryden and Mardia (2016); Srivas-
tava and Klassen (2016); Turaga and Srivastava (2016); Zheng et al. (2017); Pen-
nec et al. (2019).

8.5 Central Limit Theory on Manifolds

An important property of the meanx of a random sample x̃1, · · · , x̃n in Euclidean
space Rd is the Central Limit Theorem (CLT). That Gaussian limiting distribution
property is shared by many other notions of center such as the median. As de-
fined in Section 7.1 a random sample means independently drawn from a common
probability distribution. The CLT states that under rather broad conditions on the
underlying probability distribution (e.g. merely the existence of some moments)
the limiting distribution of x as n→∞ is Gaussian in the sense that

n1/2 (x− µ)
d→ N (0d,1,Σ) , (8.7)
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where µ and Σ are the population mean vector and covariance matrix, using the
notation 0d,1 for a vector of zeros from (4.2). This CLT is why the Gaussian dis-
tribution plays such a central role in statistical inference as taught in elementary
courses, and also is why the Gaussian distribution is often called “the Normal dis-
tribution” (hence the symbolN in (8.7)). For extension of the CLT to manifolds, a
fundamental aspect is that the CLT convergence in distribution happens on neigh-
borhoods that shrink at the rate n−1/2. Connecting this idea with the tangent plane
definition of manifolds illustrated in Figure 8.2 has resulted in a number of analogs
as surveyed in Chapter 5 of Patrangenaru and Ellingson (2015). A good classical
reference for CLTs on manifolds is Terras (1985), which has been updated to Ter-
ras (2013, 2016). Early work on large sample theory for intrinsic and extrinsic
means on manifolds was given by Bhattacharya and Patrangenaru (2003, 2005).
An important CLT for PNS (the Principal Nested Spheres method developed in
Section 8.3) and related methods has been established by Huckemann and Eltzner
(2018). An intriguing variation that appears to happen only on positively curved
manifolds is the case of smeariness as defined by Eltzner and Huckemann (2019),
where limiting Gaussians with a rate slower than n−1/2 have been discovered.

While the issue is not critical to analogs of the Central Limit Theorem, because
that happens on shrinking neighborhoods, it is natural to contemplate analogs of
the Gaussian distributions on manifolds, for example this could be a reasonable
approach to the development of a meaningful notion of covariance matrix on man-
ifolds. The Gaussian analog issue can be approached in several ways. An approach
that is explained well in Terras (1985) is via the heat diffusion equation, whose
Green’s function is the Gaussian density in Euclidean space. While this is natu-
ral for isotropic diffusion (essentially spherically symmetric covariance) it is not
clear how to construct it in a non-isotropic way (i.e. to develop aspherical covari-
ances). Another approach is via normalized random walks. In Euclidean space
Rd, an n step random walk that is normalized by n−1/2 converges (as n → ∞)
to a Gaussian distribution. Extending this to a random walk on a manifold is an-
other approach to a Gaussian distribution. Handling anisotropy after the first step
is a challenge that has been elegantly addressed using the moving frame idea of
Sommer (2020).

When either of these approaches to an analog of the Gaussian distribution is
followed on the unit circle S1, the result is the wrapped normal distribution,

∞∑
j=−∞

1√
2πσ

e
−(x−µ−2πj)2

2σ2 ,

see page 50 of Mardia and Jupp (2000). While this is similar to the normal distri-
bution when the scale parameter σ2 is relatively small (so all but one term of the
sum are negligible), this approach entails a substantial price in that the distribution
is not an exponential family because of the summation. Hence, likelihood meth-
ods are challenging for numerical implementation, for statistical inference, and
for mathematical analyses. For these reasons, most of the classical approaches to
directional data are based on variations of the von Mises distribution, which has
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the simple exponential family closed form

1

2πI0 (κ)
eκ cos(x−µ),

for centerpoint µ and scale parameter κ (where I0 is the modified Bessel func-
tion of order 0), and thus straightforward likelihood properties. A contrast with
the Gaussian is that the von Mises distribution does not seem to be the limiting
distribution of any analog of the CLT. However, it is the conditional (on norm 1)
distribution of a bivariate isotropic Gaussian distribution. Furthermore, for smaller
values of its spread parameter (larger values of κ) it is very close to the wrapped
normal (and to the corresponding tangent plane Gaussian). Many more related ex-
amples, asymptotics and discussion can be found in a series of papers by Hotz
(2013); Hotz and Huckemann (2015); Huckemann and Hotz (2014).

Much more discussion of extrinsic versus intrinsic issues, together with many
other aspects of manifold data including a wide array of theoretical results, are in
Patrangenaru and Ellingson (2015). That book goes beyond manifold data object
spaces to stratified spaces. Typical stratified spaces are richer data spaces than
manifolds that essentially consist of a union of manifolds of differing dimension
that are appropriately attached together. An important example is the case of co-
variance matrices as data objects, discussed in more detail in Section 8.7. As noted
there the set of covariance matrices of the same rank is usefully treated as a mani-
fold. But a given set of data covariance matrices may contain members of different
ranks, which thus lie in manifolds of differing dimensions. These manifolds are
naturally connected to each other through limiting operations where some eigen-
values tend to 0. Stratified spaces also play an important role in the analysis of tree
structured data objects considered in Chapter 10. In parallel to the above CLT dis-
cussion, even stranger versions of the CLT occur on stratified spaces, such as the
stickiness first observed by Hotz et al. (2013) (also mentioned near the end of Sec-
tion 7.1), where the rate of convergence can be much faster than the conventional
Euclidean CLT.

8.6 Backwards PCA

PCA is typically introduced as a forwards decomposition, where one starts with
the mean (best 0-d least squares approximation), then finds the 1-d best fitting
subspace (best fit line) and continues sequentially building up higher dimensional
approximating subspaces. But PCA can also be developed in a backwards way,
starting with a hyperplane whose dimension is the rank of the data, and itera-
tively finding a decreasing sequence of best fitting subspaces. The terminology of
forwards and backwards here is consistent with that used in classical variable se-
lection for linear models where forwards (start with small models and sequentially
add variables that explain the most variation at each step) and backwards methods
(start large and sequentially delete variables explaining minimal variation) were
popular before the advent of sparse methods. A detailed study of the backwards
PCA idea can be found in Damon and Marron (2014).
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Little attention has previously been paid to this forwards versus backwards is-
sue in the context of PCA, perhaps because in the case of Euclidean data they
give the same result. As noted in Section 17.1.2, both decompositions are sim-
ply calculated from either a Singular Value Decomposition (SVD) of the object
mean centered data matrix, or equivalently from an eigen analysis of the sample
covariance matrix. The forwards (backwards) decomposition of the data matrix
consists of projections onto the increasing (decreasing respectively) sequence of
affine spaces generated by the eigenvectors. As noted in Section 8.3 this equiv-
alence is usefully thought of as a consequence of the ANOVA decomposition of
sums of squares (Pythagorean Theorem) that underlies the eigen spectral analysis,
which no longer holds in non-Euclidean contexts.

In such non-Euclidean cases, the Pythagorean Theorem no longer applies, so
backwards methods are no longer the same as forwards. Damon and Marron
(2014) review these ideas noting that the backwards approach seems to frequently
give more useful methodologies. An intuitive basis for this observation was de-
veloped through viewing PCA in terms of a nested series of constraints. That idea
can be understood through considering the SVD of a data matrix, described in de-
tail in Section 17.1.2. SVD is studied here instead of the usual mean centered PCA
for notional simplicity (otherwise subtraction of means obscures the main point).
Such an SVD results in a sequence of subspaces of Rd having rank k = 1, · · · , r
(where r is the rank of the data matrix)

Sk =

x : x =

k∑
j=1

cjvj , cj ∈ R

 ,

where the vj are the eigenvectors and the cj play the role of scores. Now to find
the next smaller subspace Sk−1 one could simply change the index above the
summation to k − 1, but much more insight comes from writing

Sk−1 =
{
x ∈ Sk : xtvk = 0

}
,

where xtvk denotes the Euclidean inner product. This highlights the fact that
Sk−1 is easily calculated from Sk by incorporating a single linear constraint. The
general success of backwards methods is interpretable in terms of it being rela-
tively easy to sequentially find constraints, as done by backwards methods. On
the other hand, to compute a forwards analog of PCA one needs to know the full
sequence of constraints in advance, and then sequentially relax them, which takes
much more effort.

Many variations of PCA have been proposed for a wide variety of purposes.
Some of those that focus on non-Euclidean contexts are discussed here, while
others are in Section 17.1. A common theme in many non-Euclidean extensions is
an unfortunate tendency to move away from nested approximations. In particular,
while one can usually have a rank k approximation for desired k, there is typi-
cally no relationship between say the rank k and k − 1 approximations, making
multi-scale (in the sense of rank) interpretation quite challenging. Nested versions
of PCA analogs are also essential for developing modes of variation that yield
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insightful visualizations of population structure, as detailed in Section 4.1, and
also used above in many places. A major strength of backwards approaches to
non-Euclidean PCA is that they easily address both of these concerns, using the
fundamental idea of defining the method through a nested series of constraints.

In very high dimensions, because backwards approaches are stepwise, they
can be computationally slow relative to conventional linear calculations of PCA,
which are done with fast Singular Value Decompositions (SVD) as discussed in
Section 17.1.2. This can be mitigated by doing an initial SVD with a high enough
rank to only eliminate noise and retain almost all the signal followed by using the
backwards method to give good compression of the remaining signal part of the
data.

In addition to PNS, and PNSS, contexts where backwards ideas have had (or
apparently could have), a useful impact include:
• Non-Negative Matrix Factorization. NMF was introduced in Section 6.5. Re-

call it is an approximation of the (uncentered) data matrix by a product of
loadings and scores matrices subject to the constraint that all matrix entries
are nonnegative. There is a substantial literature on various ways to implement
NMF (which reference the original Lee and Seung (1999) paper). However
most of them are non-nested in the sense that one can request any rank of ap-
proximation, but the results are completely different when a different rank is
requested. An exception is Nonnegative Nested Cone Analysis (NNCA), pro-
posed by Zhang et al. (2015). NNCA specifically uses a backwards implemen-
tation, starting with the nonnegative cone generated by the data, and succes-
sively reducing the dimension through a sequence of linear cone constraints,
keeping that level of scores at each step.
• Manifold Learning. As discussed above, this approach is very useful for high

dimensional data sets that tend to lie quite close to, or perhaps even on, a lower
dimensional curved manifold. A drawback to all current approaches is that they
are not nested, so there is no relationship between a rank k and rank k− 1 rep-
resentation of the data, and thus no decomposition into modes of variation. An
interesting open problem is to find a nested version of manifold learning, where
one iteratively finds a rank k − 1 approximation as a submanifold of the one
of rank k. This would make the most sense by minimizing the sum of squared
geodesic distances at each step. This would result in a more natural analog
of PCA scores distribution plots than the current PCA typically performed on
unrolled versions of the k dimensional manifold.
• Robust PCA. Robust methods that are generally useful in OODA are discussed

in Chapter 16. One overall approach is to use methods based on the L1 norm.
Such methods typically draw robustness from behavior similar to the median
as discussed in Section 7.1. Motivated mostly by computational considerations,
Brooks et al. (2013) have proposed a backwards approach to L1 based PCA.
• Principal Flows. Another backwards approach to PCA for data objects lying

on a manifold is the Principal Flow approach of Panaretos et al. (2014). This



COVARIANCE MATRICES AS DATA OBJECTS 183

method results in nongeodesic components with an interesting ability to locally
track maximal variation.

An important contribution to the discussion of backwards versus forwards PCA is
the Barycentric Subspace Analysis idea of Pennec (2018). In addition to providing
an interesting general framework for manifold PCA, that paper points out that
both backwards and forwards methods are essentially greedy searches, which one
expects can be improved by solving an overall optimization, although that comes
at the price of increased complication. An interesting open problem is how much
gain is available from a globally optimized overall method, relative to a simple
backwards approach. As noted in Section 8.5, an approach to asymptotic analyses
in this direction can be found in Huckemann and Eltzner (2018).

8.7 Covariance Matrices as Data Objects

Covariance matrices as data objects appear in several applications. The one that
has received the most research effort has been diffusion tensor imaging, started
by Basser et al. (1994). In that area connectivity within the brain is studied using
3-d images, where at each voxel the distribution of diffusion of water molecules
is summarized in terms of a covariance matrix, as shown in Figure 8.14. These
3-d covariance matrices are represented by shaded ellipsoids representing a con-
tour of the corresponding Gaussian distribution in Figure 8.14, after Dryden et al.
(2009). In fluid regions of the brain this covariance is essentially a multiple of
the identity matrix, reflecting the ability of the molecules to diffuse freely in var-
ious directions. In regions with fibers, such as neuronal brain connections, one
eigenvalue of the covariance matrix is much larger than the other two, indicating
only one degree of freedom of diffusion along the direction of the fiber. Covari-
ance matrices as data objects also play an important part of the speech sounds as
data objects discussed in Section 2.3. Additional examples appear in the survey of
Object Oriented Spatial Statistics by Menafoglio and Secchi (2017).
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Figure 8.14 Example of a coronal slice of diffusion tensors estimated from a human brain.
Tensors are represented by ellipsoids. Those stretched in a single direction indicate fibers
running through that location.

A number of approaches to data analysis of covariance matrices have been pro-
posed. Since matrices are just arrays of numbers they could be vectorized into
long vectors, and then analyzed with standard linear methods. But that approach
generally leads to severe complications because linear analyses such as PCA tend
to leave the space of positive semi-definite matrices. As noted in Chapter 7 PCA
distance methods provide a useful approach to this challenge. An interesting as-
pect of covariance matrices is that there are quite a few metrics of interest, with
quite different properties as seen in Section 7.3.5. The log-Euclidean metric (7.18)
was popularized by Arsigny et al. (2006, 2007). Fletcher and Joshi (2004) point
out benefits of a Riemannian metric (7.19) approach and Dryden et al. (2009) ad-
vocate the Procrustes metric (7.11). Properties of the metrics have been revealed
by studying widely varying interpolation paths generated by different metrics, for
example in Dryden et al. (2009) and Pigoli et al. (2014a), and some examples were
given in Figure 7.14.

A measure calculated from a covariance matrix that is very commonly used in
diffusion tensor imaging is Fractional Anistropy

FA =

{
k

k − 1

k∑
i=1

(λi − λ̄)2/

k∑
i=1

λ2
i

}1/2

where 0 ≤ FA ≤ 1 and λi are the eigenvalues of the diffusion tensor matrix (in
which case k = 3), or alternatively a covariance matrix. Note that FA ≈ 1 if
λ1 >> λi ≈ 0, i > 1 (very strong principal axis of the confidence ellipse) and
FA = 0 for isotropy. Basser and Pierpaoli (1996) developed the use of FA in the
context of diffusion tensor imaging. High values ofFA correspond to white matter
fibers which connect different parts of the brain. The study of the arrangement of
these fibers is a key objective of diffusion weighted MR imaging.
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An alternative to FA for finding voxels indicating fibers is to use the full Pro-
crustes shape distance δF (8.3) to isotropy. This gives the Procrustes Anisotropy
of Dryden et al. (2009)

PA =

{
k

k − 1

k∑
i=1

(
√
λi −

√
λ)2/

k∑
i=1

λi

}1/2

, (8.8)

where
√
λ = 1

k

∑√
λi. So 0 ≤ PA ≤ 1, with PA = 0 indicating isotropy, and

PA ≈ 1 indicating a very strong principal axis.
A final isotropy measure based on metrics δL or δR is the Geodesic Anisotropy

GA =

{
k∑
i=1

(log λi − log λ)2

}1/2

,

where 0 ≤ GA <∞ (Arsigny et al., 2007; Fillard et al., 2007; Fletcher and Joshi,
2007), which has been used in diffusion tensor analysis in medical imaging with
k = 3.

To compare the measures of anisotropy consider the diffusion tensors obtained
from diffusion weighted images in the brain that were plotted in Figure 8.14. In
Figure 8.15 we see a slice from the brain with the 3 × 3 tensors displayed. This
image is a coronal view of the brain, and the corpus callosum and cingulum can
be seen. At first sight all three measures appear broadly similar, but the GA image

Figure 8.15 The anisotropy measures FA (left), PA (middle), GA (right) for the diffusion
tensors, from Figure 8.14. This shows the differences in displays using the three measures,
with arguably PA having better contrast within the (relatively bright) corpus callosum.

has fewer brighter areas than PA or FA. Dryden et al. (2009) argue that PA is
slightly preferable here, offering more contrast than the FA image in the highly
anisotropic region - the corpus callosum. The data were provided by Paul Morgan
and for related discussion see Tench et al. (2002).

Important work on the statistical analysis of covariance matrices and covari-
ance operators as data objects can be found in Dryden et al. (2009), Pigoli et al.
(2014a,b) and Aston et al. (2017). Analysis of diffusion tensor data, using local
polynomial smoothing methods can be found in Yuan et al. (2012), and a varying
coefficient model approach is given in Yuan et al. (2013).

The above works demonstrate that it has been very useful to understand co-
variance matrices as data objects lying on a curved manifold. However, an even
more appropriate mathematical context is a stratified space. As noted in Section
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8.5 that is a connected set of manifolds of different dimensions. Stratified spaces
are appropriate for covariance metrics of varying rank. For each given rank r, the
natural data space is a manifold whose dimension is r (r + 1) /2. These manifolds
are naturally connected across rank through limiting operations where eigenvalues
tend to 0.

While geodesics reveal interesting aspects of metrics, they are also useful for
interpolation between covariance matrices. Also of interest for interpolation pur-
poses are the non-geodesic paths of Jung et al. (2015) and Groisser et al. (2017)
which better correspond to intuitively expected interpolation for diffusion tensors.

Additional useful analytic methods for covariance matrices as data objects, in-
cluding hypothesis testing and even kriging can be found in Secchi et al. (2013),
Pigoli et al. (2014b, 2016) and Cabassi et al. (2017).



CHAPTER 9

FDA Curve Registration

As discussed in Sections 2.1 and 5.4, amplitude and phase variation can play an
important role in FDA. As noted there and demonstrated in Figure 9.1, many curve
registration methods work well on the data sets for which they were designed,
yet typically require intensive manual tuning for application to a different data
set. OODA ideas, including the use of equivalence classes as data object repre-
sentations (which were quite useful for quantifying “shape” variation in Sections
1.2, 8.2 and 8.3), are seen in Section 9.1 to provide a mathematically rigorous
and hence broadly applicable general solution to this challenge. In particular, that
section discusses the Fisher-Rao methodology of Srivastava et al. (2011), which
was never published in the statistical literature apparently due to the mathemat-
ical overhead involved. Section 9.2 shows how the Fisher-Rao approach can be
enhanced using Principal Nested Spheres as introduced in Section 8.3.

Figure 9.1 is a subset of Figure 1.2 of Srivastava et al. (2011), that was con-
structed by Wei Wu. In each row, the left hand column shows a set of curve data
objects which present different challenges to peak alignment. The data in the top
row is similar to the Shifted Betas in Figure 10.2 below. The middle two rows con-
sider other types of shift variation. That in the bottom row comes from Wu et al.
(2014). The middle three columns show analyses of each data set by a method
from the literature with publicly available software. In particular, the second col-
umn uses the method of Liu and Müller (2004), the third column is based on the
self modeling warp implementation of Gervini and Gasser (2004), while the fourth
column shows the moment based approach of James (2007). These give various
degrees of alignment of the peaks, which are quite example dependent. It is im-
portant to note that with sufficient manual tuning, most of these can give good
results. The last column shows the corresponding analysis using the Fisher-Rao
curve registration method described in Section 9.1. For the reasons given in that
section, unlike the other methods shown in Figure 9.1, simple default settings give
high quality peak alignment in a fully automatic way.

187
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Figure 9.1 Comparison of several curve registration methods (columns) on four data sets
(rows). Shows the Fisher-Rao approach (last column) provides the most stable fully auto-
matic alignment of peaks and valleys in curves.

9.1 Fisher-Rao Curve Registration

Further motivation for Fisher-Rao curve registration comes from the Shifted Betas
example in Section 9.1.1. The impact of misalignment on the sample mean was
shown in Figure 5.17. Alignment issues even more strongly affect PCA as seen in
Figure 9.2 below. The basics of warping functions that generally underlie curve
registration are discussed in Section 9.1.2. Details of the Fisher-Rao approach
appear in Section 9.1.3.

9.1.1 Example: Shifted Betas Data

The Shifted Betas raw data object curves are shown in the top left panel of Figure
9.2. These curves are n = 29 Beta(α, β) probability densities, with α = 20 −
β = 4.4, 4.8, · · · , 15.6. There is a very strong phase mode of variation, which is
approximately tracked by the means of these distributions,EX = α

α+β , and coded
with a rainbow color scheme. The name Shifted Betas is not entirely appropriate
as these densities all have support [0, 1]. Nevertheless it does convey the clear left
to right shifting of probably mass. The colors clearly indicate a single nonlinear
mode of variation. The same colors are used at many other points in this chapter.
Because this single mode is nonlinear it can admit insightful decomposition into
other (sometimes linear) modes. For example there is a clear amplitude (linear)
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mode of variation in terms of heights. There is also a nonlinear mode of variation
in the widths since as probability densities each curve has area 1 underneath so
change in height entails change in width. The presence of these modes of variation
(in addition to the obvious phase mode suggests that an intuitive analysis of this
data set should show 3 modes of variation. The sample object mean is shown in
the top center panel. For the reasons given in the discussion around Figure 5.17
this mean is not representative of the data objects. In particular the object mean
is only a very broad peak, that is much lower than any individual, as highlighted
using the same vertical axis as the top left panel. The mean centered residuals are
shown in the top right panel, which are then decomposed into modes of variation
by PCA in the remaining rows.
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Figure 9.2 Shifted Betas example, illustrating the impact of phase variation on straightfor-
ward Euclidean FDA using PCA. Format similar to Figure 4.1, with data, object mean and
mean residuals in the top row. Modes of variation show PCA does a very poor job of dis-
playing the visually obvious shift in peaks as the dominant mode. This motivates alternative
approaches to understanding horizontal variation.



FISHER-RAO CURVE REGISTRATION 191

The left plot in the second row shows the first PCA mode of variation. This is
disappointingly unlike either the phase shift or the peak height modes discussed
above. Instead it only shows that the magenta and blue curves are higher on the left
and lower on the right, while the yellow and red curves exhibit opposite behavior.
The residuals in the center are harder to interpret. However, notice that use of
common vertical axes, as for the Tilted Parabolas in Figure 4.1, visually suggests
that these residuals represent a substantial share of the variation, in fact 39.7%
of the sum of squares about the mean. The color scheme of PC1 scores in the
right panel at least suggests that this mode is mostly driven by the shift in peaks,
sweeping from left to right.

The third row shows the PC2 mode of variation (28.4% of the sum of squares).
The scores on the right seem to be a doubling of the frequency of the sweep
through the colors, going right to left and back. The colors of the mode of variation
on the left show only the later plotted green to red curves, because these overplot
the (hence invisible) magenta to green curves. The 3 bump general pattern can
be interpreted as the second order correction of the crude 2 bump approximation
of PC1. The next such correction in approximation seems to be the 4 bump pat-
tern shown in PC3 (8.4% of the variation) in the bottom row left. These increasing
bumps approximations are very reminiscent of the behavior of orthogonal polyno-
mial basis systems over increasing degree. The corresponding scores in the bottom
right again represent an increase in frequency of back and forth sweeps.

The main point of this example is that just a single mode of phase variation is
very poorly captured by PCA, with the signal power of that mode being spread
widely across the PC spectrum. Using terminology from Marron et al. (2015),
PCA is a vertical (amplitude) analysis method, which only weakly provides in-
sights about horizontal (phase) variation.

It is interesting to study the impact of the systematic back and forth swings of
scores using the scatterplot matrix view (this device was used e.g. to visualize
the Twin Arches data in Figure 4.4). This is done in Figure 9.3, where the first 3
diagonal plots are the same as in the right column of Figure 9.2. The sequential
sweeping effects of the scores over different PC modes generates some interest-
ing patterns. Perhaps initially hardest to interpret may be the PC2 vs. PC4 panel
because the green to red points again exactly overplot (and thus obscure) the ma-
genta to green points. Particularly attractive is the knot tied in the PC3 vs. PC4
panel. Together these scores plots indicate that the scores follow a one dimen-
sional curve that bends around through the scores space. This is a sense in which
the data can be thought of as a single mode of variation. That is consistent with
the visual impression of the bundle of curves in the upper left panel of Figure 9.2,
and with the fact that those are essentially a one parameter family of curves. This
is another way to understand that while PCA can provide good decompositions of
vertical variation as seen at many points above, it has its limits in the presence of
horizontal variation, which motivates the coming ideas.
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Figure 9.3 Corresponding PC scores scatterplot matrix for the Shifted Betas data of Figure
9.2. Shows very systematic patterns that are common in applications of PCA to data with
a strong component of pure phase variation.

The second panel of the top row of Figure 9.3 is an example of the horse-
shoe effect studied in the context of MDS in Section 7.2. The explanation (from
Diaconis et al. (2008)) given there applies here, because curves that are farther
from each other have much less overlap, and thus are less far apart than might be
expected from linear extrapolation of the shorter distances. This same issue lies
at the heart of the shifting support example given in Morton et al. (2017) in a
micro-biome context. The distinctive patterns of the scores in Figure 9.3 seems to
be a type of higher order horseshoe effect, that could be seen in other examples
when higher order components are viewed. Another situation where such patterns
have emerged is the time varying chemical spectra studied in Marron et al. (2004).
These appear often enough to suggest the existence of a general mathematical the-
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ory (perhaps something akin to Sturm-Liouville theory) behind this phenomenon.
That might be a generalization of the concept of harmonics in Fourier analysis.

The upper left panel of Figure 9.2 suggests that these generalized horseshoe
effects are caused by the L2 norm doing a poor job of quantifying the shifting
probability mass that is a very important aspect of the clear mode of variation.
Because these are probability densities, this is another manifestation of the issue
discussed using a family of Gaussian densities in Section 3.3.1, that densities of-
ten provide a poor representation of probability distributions as data objects. The
approach to this that was taken there was to represent the data objects using quan-
tile functions. In the case of one dimensional distributions as data objects, that was
seen in Section 7.3.2 to be equivalent to using an optimal transport based MDS
using the Wasserstein metric. Both approaches gave a less distorted representation
of this major mode of variation. A Wasserstein MDS appears in the left panel of
Figure 9.4. Note that common axes are used to reflect the fact that there is much
more variation in the MDS 1 scores than in MDS 2. In particular, this Wasserstein
decomposition of the variation seems to be much more informative than the PCA
shown in Figure 9.3. The colors suggest that MDS 1 is driven by the clear shifting
of mass in the upper left panel of Figure 9.2. The existence of a smaller, but still
visible second mode of variation suggested by MDS 2, is consistent with the fact
that the peak heights in the density start high, decrease towards the middle, then
increase again. Unfortunately it is not simple to visually verify these ideas using
loadings (as for the Spanish Mortality data in the left panels of Figures 1.4 and
1.5, or for the Pan Cancer data in Figure 4.11) because the MDS type of analysis
only provides scores, not full modes of variation. One approach is to plot individ-
uals at key points of the MDS scatterplot. For example the first MDS mode can be
understood from the magenta and red curves (recall corresponding colors), shown
in the top panel of Figure 9.2, as a shift mode of variation. The second mode is a
contrast between the light green curve and those other two indicating variation in
peak height and width.
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Figure 9.4 Wasserstein MDS analysis of the Shifted Betas example. Left panel shows scores
giving much more intuitive decomposition of the variation than the PCA shown in Figure
9.3. Scree plots (on log10 scale) in the right panel also shows the MDS gives a much more
efficient representation from another viewpoint,

The right panel of Figure 9.4 gives a further contrast of PCA with the Wasser-
stein MDS analysis of the Shifted Betas data, using scree plots (defined in Section
3.1.3) based on the first 4 components. Because the numbers involved vary over
several orders of magnitude, the log10 of the proportion of variation explained
by each of the first 4 components is shown. The green curve clearly shows how
conventional Euclidean PCA spreads the energy of the signal broadly across the
spectrum, as discussed near Figure 9.2 above. On the other hand, the magenta
Wasserstein scree plot shows the great bulk of the energy appears in MDS 1, with
almost all the rest in MDS 2. The remaining very small energy in the other two
components seems to be at the level expected from errors in the MDS optimiza-
tion process. Thus MDS with respect to the Wasserstein metric gives a far more
insightful decomposition of the Shifted Betas data. Its optimal transport moti-
vation is clearly useful to keep in mind when facing serious registration issues.
This seems to have been done in the microbiome literature where Fukuyama et al.
(2012) discuss connections between the Wasserstein distance and the Unifrac met-
ric. However, it still has the drawback of not providing full modes of variation, be-
cause of a general lack of loadings. The latter consideration provides motivation
for the Fisher-Rao methodology in the rest of this section.

9.1.2 Introduction to Warping Functions

Warping functions are a very useful concept for understanding approaches to
curve alignment and to amplitude - phase decompositions of the type illustrated
using the Bimodal Phase Shift data in Figure 2.2. For numerical convenience
these are typically defined on compact intervals. Allowing for linear transforma-
tion, these intervals can be taken without loss of generality to be [0, 1]. In this
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chapter, the data objects are taken to be functions f : [0, 1] → R. The function
γ : [0, 1]→ [0, 1] is a warp function when it
• Is onto [0,1] (i.e. surjective),
• Is strictly increasing, hence one to one (injective). These last two properties

result in γ being invertible (bijective),
• Is a diffeomorphism, meaning both γ(x) and its inverse are differentiable.
Let Γ denote the set of all such warps. As noted in previous sections, useful intu-
ition comes from thinking of warps in terms of local stretching and compression
of the horizontal axis, as illustrated in Figure 9.5. The horizontal axis in each
panel shows an equally spaced grid on [0, 1]. The function γ(x) is shown as a
curve from (0, 0) to (1, 1). The thin lines indicate how γ(x) induces a stretching
and compressing of the equally spaced grid on the vertical axis. The upper left
panel shows the diagonal line, i.e. the identity warp, γI(x) = x, which leaves the
spacing between grid points unchanged. The version of γ(x) in the upper right
panel is convex, which results in a compression of smaller values and stretching
of larger values. The lower left panel shows a concave γ(x) which results in the
opposite type of stretching and compression. The γ(x) in the lower right has both
convex and concave parts, resulting in compression at both ends, with stretching
in the middle.

Figure 9.5 Illustrations of warping functions γ(x) : [0, 1]→ [0, 1], showing how they are
usefully thought of as stretchings and compressions of the horizontal axis.

9.1.3 Fisher-Rao Mathematics

There were several major contributions to the curve registration literature made by
Srivastava et al. (2011). The presentation here is aimed at maximal understanding
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of this important set of ideas, which is done with various types of approximation.
In particular several function space technicalities are deliberately ignored here.
See that paper for the fully rigorous version, which uses concepts such as gener-
alized functions and related approximations for full mathematical precision.

The first contribution of Srivastava et al. (2011) was to distinguish ampli-
tude and phase variation using a quotient structure parallel to that employed
in shape analysis in Section 8.3. In particular, the set of all warps is a group
of transformations that plays a similar role as the translation - rotation - scal-
ing group of transformations in landmark based shape analysis. Following that
idea, two curves are identified when one can be reached from the other by a
warping function, i.e. f1(x) ∼ f2(x) when there is a warp γ(x) ∈ υ so that
f1(x) = f2(γ(x)) = f2 ◦ γ(x). That equivalence relation induces a quotient
structure, i.e. a set of equivalence classes which are usefully thought of as an
insightful type of data objects, playing a role parallel to the shape equivalence
classes in Section 8.3. In this chapter, given a function f : [0, 1]→ R, let its orbit
be [f ] = {f ◦ γ : γ ∈ Γ}, i.e. the set of all warps of f(x). Any member of [f ] is
called a representer of that equivalence class. Intuitive data analytic understanding
of orbits will come from careful choice of representers.

Additional insights into warp equivalence classes come from the examples
shown in Figure 9.6. The left panel shows a set of curves that are all in the or-
bit of a single curve f(x) with three bumps. Not only does each each curve share
all 3 bumps, each bump also has the same height. Furthermore the bumps are in
the same order, so they can reach each other through smooth compressions and
extensions in the spirit of the lower right panel of Figure 9.5. Thus they are all
elements of [f ]. A much different example appears in the right panel of Figure
9.6. The curves there all have peaks of differing heights, so none of them can be
warped into any other, i.e. none of these are warp-equivalent. Thus [fi] 6= [fj ] for
i 6= j in this example.
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Figure 9.6 Toy example of some elements of a single warp equivalence class (left panel),
and of bimodal curves none of which are warp-equivalent (right panel).

The notion of warp-equivalence classes allows a formal, mathematically rigor-
ous, definition of the amplitude of a functional data object:
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Definition: The amplitude of a function f is its warp equivalence class [f ].
The left panel of Figure 9.6 indicates that any amplitude data object representer
of f contains all of the vertical aspects of f, such as the heights of all peaks, and
depths of all valleys, in addition to the relative relationship between peaks and
valleys. A parallel definition of phase data object is a deeper concept, and requires
development of some intermediate notions.

The second fundamental contribution of Srivastava et al. (2011) to the curve
registration literature was the proposal of the Fisher-Rao approach to quantifying
the difference between amplitudes (i.e. orbits). A fundamental aspect of that is
warp invariance. Such metrics on functions induce a proper metric on the quotient
space of orbits. The key idea is illustrated in Figure 9.7, which is Figure 3.3 of the
PhD dissertation Lu (2013) that was reproduced as Figure 2 in Yu et al. (2017a).
This demonstrates the inconsistency of a common approach to the estimation of
warping functions, which is to find the warp γ(x) ∈ Γ to minimize

‖f1(x)− f2 ◦ γ(x)‖2 . (9.1)

In Figure 9.7 the functions f1 and f2 (called the Step Function toy example) are
essentially step functions as shown in the top left panel (actually these are just
parallel coordinate plots on a dense grid, so each has one very steep jump between
consecutive grid points). The warp function γ(x) that minimizes (9.1) is shown
in the top center panel, as the blue (dashed) function that essentially shifts the
jump point in f2 until it coincides with the jump in f1. Because f1 is unwarped
in the computation of (9.1), a red diagonal line, representing the identity warp γI
is also shown in the top center panel. The bottom center panel gives insight into
the minimum value of (9.1), in terms of the area of the rectangle shown with a
light blue green color (actually the L2 norm is the height times the square root
of the length). The right column shows the result of minimizing the version of
(9.1) where f1 and f2 switch roles, so that the jump in the red f1 is shifted over
to the jump in f2, using the red warping function in the top right panel (with the
blue dashed diagonal line indicating γI(x), i.e. no warping for f2 in this case).
This results in a minimizing value of (9.1) represented using a pink rectangle in
the lower right panel. Notice this L2 minimum value is much different than in
the center column showing that criteria of the form (9.1) cannot provide a metric
(i.e. distance as discussed in Chapter 7) on the quotient space of amplitudes. In
particular, Figure 9.7 reveals that an attempt to base a quotient space metric on
(9.1) would fail due to a lack of symmetry, i.e. δ ([f1] , [f2]) 6= δ ([f2] , [f1]). The
lower left panel is explained in detail below.
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Figure 9.7 Step Function example illustrating failure of classical approaches to provide
a metric on the space of warp equivalence classes. Data objects in the upper left, with
aligning warps in the other upper panels. Lower right panels shows impact of warps on
the L2 norms (which are quite different). Lower left shows the impact of the intermediate
Fisher-Rao warp estimates γ1,K , γ2,K .

A natural approach to developing a metric on the space of amplitudes (i.e. the
quotient space) is to start with a metric δ on the original space of functions that is
warp invariant in the sense that

δ (f1, f2) = δ (f1 ◦ γ, f2 ◦ γ) , (9.2)

for all warps γ ∈ Γ. That property of a metric is usefully understood as implying
that the equivalence classes are all “parallel” with respect to γ as illustrated in
Figure 9.8. In particular, moving through both equivalence classes by the same
warp, leaves the distance unchanged. The property (9.2) ensures that δ induces a
well defined metric on the warp-equivalence quotient space as

δ ([f1] , [f2]) = min
γ∈Γ

δ (f1 ◦ γ, f2) . (9.3)

In particular the warp invariance (9.2) entails that δ ([f1] , [f2]) does not depend
on the representers f1 and f2.
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Figure 9.8 Illustration of how a warp invariant metric results in parallel quotient space
orbits.

The Fisher-Rao analysis of amplitude and phase variation is motivated by the
area called information geometry, that was started by Rao (1945), and more fully
developed by Amari (1985), which studies parametric likelihood estimation from
a geometric perspective. The Fisher-Rao approach achieves warp invariance by
approaching differentiable functions f through their Square Root Velocity Func-
tion (SRVF)

qf (t) = sign (f ′(t))
√
|f ′(t)|, (9.4)

i.e. a signed version of the square root of the derivative. The SRVF transformation
can be viewed as representing the variation in f in the sense that

f(x) = f(0) +

ˆ x

0

qf (t) |qf (t)| dt,

where the integrand is similarly thought of as a signed version of the square of
qf . For a given warp γ ∈ Γ, integration by substitution shows that the SRVF
representation is very useful for curve registration because it gives the L2 norm a
type of warp invariance in the sense that

‖qf1◦γ − qf2◦γ‖2 = ‖qf1 − qf2‖2 .

The Fisher-Rao metric on the quotient space is nearly the L2 norm on SRVFs, but
an alignment of q functions is still needed. In particular, inducing a metric on the
space of amplitudes as in (9.3) gives the amplitude distance between functions

δA (f1, f2) = min
γ∈Γ
‖qf1◦γ − qf2‖2 . (9.5)

It is straightforward to show that δA induces a proper metric on the space of am-
plitudes, and also that for f1, f2 ∈ [f ], δA (f1, f2) = 0.

Given a set of functions f1, · · · , fn, Fisher-Rao analysis starts with the Fréchet
mean (called the Karcher mean in Srivastava et al. (2011), despite the objection
of Karcher (2014) discussed in Section 7.1) of the amplitudes [f1] , · · · , [fn] with
respect to δA. In principle, using (7.5) this gives

[f ] = arg min
[f ]

n∑
i=1

δA ([f ] , [fi])
2
.

But [f ] is only defined up to warps, leaving open the question of the choice of
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best representer. For now, let fC denote a candidate representer of [f ], and let its
SRVF be qf,C . For i = 1, · · · , n let

γi,C = arg min
γ∈Γ

∥∥∥qfi◦γ − qf,C∥∥∥
2

denote the corresponding warps of the fi into fC .
The distance δA could also form the basis of an MDS (from Section 7.2) version

of PC scores on amplitudes. However, direct computation of δA is quite challeng-
ing, so the approach detailed below is numerically preferable, and also results in
fully interpretable modes of variation.

The third contribution of Srivastava et al. (2011) is a parallel definition of phase
distance, which integrates appropriately with δA to give the Fisher-Rao approach
to curve alignment, which is based on also applying the SRVF idea to the warp
functions. In particular, given a differentiable warp γ ∈ Γ, define its SRVF

ψγ(t) =
√
γ′(t).

The definition of ψγ does not need the sign function used in (9.4) because γ is
strictly increasing. A very important property of the SRVFs of warps is

‖ψγ‖22 =

ˆ 1

0

ψγ(t)2dt = γ(1)− γ(0) = 1, (9.6)

i.e. the SRVFs of warps ψγ all lie on the unit sphere in function space. A direct
analog of the arc length distance on Sd (which is the arc cosine of the inner product
of the corresponding vectors in Rd+1) is the distance between warps

δP (γ1, γ2) = cos−1

(ˆ 1

0

ψγ1(t)ψγ2(t)dt

)
.

Given f1, · · · , fn, a candidate center fC and corresponding candidate warps
γ1,C , · · · , γn,C , result in a candidate notion of the phase distance between func-
tions

δP,C (f1, f2) = cos−1

(ˆ 1

0

ψγ1,C (t)ψγ2,C (t)dt

)
.

Again an analog of PC scores could be derived by MDS applied to the distance
δP,C , but a derivation of full modes of variation, as well as sensible choice of the
candidate fC and efficient computation are described below.

A natural sense of average representer of [f ] is the Karcher mean function fK ,
which is the element of [f ] with the property that the corresponding warps γi,K of
each fi into fK , are centered at the identity warp, γI(x). Recall γI(x) was shown
as the red diagonal line in the middle panel (and the blue dashed line in the right
panel) of Figure 9.5. In particular, fK is the member of [f ] which gives warps
whose SRVFs have Fréchet mean

ψγI = arg min
ψ

n∑
i=1

∥∥ψ − ψγi,K∥∥2
.
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Choosing the candidate representer fC to be fK in the above calculations results
in the final version of the phase distance between functions δP .

The fourth major contribution of Srivastava et al. (2011) is an iterative algo-
rithm for numerical approximation of these quantities, based on dynamic pro-
gramming ideas. This is a special case of the general approach to registration
problems described in Srivastava and Klassen (2016). Efficient software can be
found in Tucker et al. (2013), with a corresponding R version on CRAN in the
package fdasrvf.

That computation results in a useful amplitude and phase decomposition of a
data set of curves f1, · · · , fn into a couple of useful variations on the theme of
data object.
• A Karcher mean function, fK , which is a useful version of overall center. In the

Step Function Example of Figure 9.7, the Karcher mean is shown as the black
dotted curve in the lower left panel. Because that curve takes into account both
δA and δP it contains both phase and amplitude notions of center of the input
curves in the top left panel. For the Shifted Betas data in Figure 9.2 the Karcher
mean is in the right panel of Figure 9.9.

• A set of warps, γ1,K , · · · , γn,K of each fi into fK . These represent the hori-
zontal variation in the data, and can be thought of as phase data objects. Such
curves comprised the phase mode of variation of the Bimodal Phase Shift data
in the lower left panel of Figure 2.2. For the Shifted Betas data set in Figure
9.2, these warps are shown in the top left of Figure 9.10, where these in turn
are decomposed into further insightful modes of variation.

• A set of aligned curves, f1 ◦ γ1,K , · · · , fn ◦ γn,K , that represent amplitude
variation. Similarly these are usefully considered to be amplitude data objects.
For the Step Function example, these are the colored curves in the bottom left
panel of Figure 9.7. Such curves for the Bimodal Phase Shift data appear in the
upper right panel of Figure 2.2. The top left panel of Figure 9.9 shows these
aligned curves in the case of the Shifted Betas example.

As noted above, PCA of the amplitude data objects results in insightful vertical
modes of variation, which is illustrated in Figure 9.9, based on a Fisher-Rao anal-
ysis of the Shifted Betas data in Figure 9.2. The aligned curves, f1◦γ1,K , · · · , fn◦
γn,K , are shown, using the same colors as in Figures 9.2 and 9.3, in the top left
panel. As in those figures, most panels show only the green to red curves, as the
others have disappeared due to overplotting. Their existence does appear in the
scores plot in the bottom right panel, which follows a similar pattern to the PC2
scores in Figure 9.2. That pattern makes intuitive sense in view of the vertical
down then up motion of the heights of the peaks in the original data set in the
top left of Figure 9.2. The PC1 residuals (bottom center panel) are essentially 0
(the inexactness reflects the discrete approximation used in the the numerical al-
gorithm which is also visible in the upper right panel), showing that there is only
one major vertical mode of variation in this data set.
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Figure 9.9 Vertical analysis of the Shifted Betas data from Figure 9.2. PCA of the aligned
curves reveals primarily just one vertical mode of variation.

The nonlinear horizontal objects, which are the set of warps γ1,K , · · · , γn,K ,
can be decomposed into further modes of variation using a PCA as done in Figure
9.10. The warps (for the Shifted Betas example) are shown in the upper left panel,
again using the same common colors. Note that the shifting peak mode of variation
is nicely reflected in the family of warps which goes from something like the
convex warp in the upper right of Figure 9.5 to the concave warp in the lower left.
It is not surprising that the mean of the warps is γI(x) = x, as that is the criterion
that was used to pick the Karcher mean as a representer of the Fréchet mean
equivalence class [f ]. The first mode of variation (center left panel) of these curves
appears to be some circular arcs, that are challenging to interpret, although the
color scheme, and the scores in the center right panel, show it is clearly about the
strong mode of shifting peaks apparent in the original data. The first PC residuals
in the center panel are similarly hard to interpret. The bottom row shows that
practically all of the remaining variation appears in the second PC component.
Note that the PC2 scores (bottom right) follow the same pattern as, i.e. are strongly
correlated with, the vertical PC scores in the bottom left of Figure 9.9. This makes
sense because the original curves are probability densities (thus having area one
underneath), so lower curves are wider. However, this notion of width is hard to
understand in terms of warps. The PC2 residuals in the bottom center plot reflect
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the fact that there cannot be a pure shift mode of variation in densities supported
on [0, 1].
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Figure 9.10 PCA of warps of the Shifted Betas toy data set from Figure 9.2. Shows two
modes of variation, whose scores are clear, but loadings are hard to interpret.

The interpretation problems with the warp modes of variation in the left column
of Figure 9.10 are addressed in Figure 9.11. That gives a more interpretable ver-
sion of the families of warps, by taking each curve, turning it back into an actual
warp by adding γI to it, and then applying that warp to the Karcher mean fK . The
results of this, for each γi,K , once more using the common colors are shown in
Figure 9.11. Note that all of these modes are simply warps of the Karcher mean.
The left panel very clearly shows that the first mode of variation is a shift in the
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peak location. The center panel shows that the second mode is the widening that
is due to the varying heights together with the curves being densities. The very
strong connection of this mode with the dominant phase mode in Figure 9.9 is
shown by comparing those scores with the bottom right panel of Figure 9.10. The
third panel of Figure 9.11 shows only the last red curve, because it overplots all the
others, since there is essentially no variation left for the third component, which is
consistent with the PC2 residuals in the bottom center panel of Figure 9.10 being
essentially 0.
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Figure 9.11 Horizontal modes of variation for the Shifted Betas example, shown by using
the modes of variation in Figure 9.10 (added back to δI ) as warps applied to the Karcher
mean. Accurately and intuitively reflects two modes of horizontal variation as expected
from the raw data in the upper left of Figure 9.2.

Fisher-Rao analysis has been quite useful in a number applications. These
include the examples following Marron et al. (2014b), including Tucker et al.
(2014), Lu et al. (2014a); Lu and Marron (2014a,b), Wu and Srivastava (2014),
Kurtek et al. (2014), Staicu and Lu (2014) and Xie et al. (2014), as well as the
modeling of seasonal variation in electricity prices in Chen et al. (2019). Think-
ing about probability distributions as data objects as in Section 3.3.1, in situations
where the focus must be on densities and not quantile functions (shown to be pre-
ferred in the analyses of Figures 3.7 and 3.8), Fisher-Rao analysis can also be very
useful.

However, the Fisher-Rao analysis is not the only warp invariant approach to the
analysis of warp-equivalence quotient spaces. See Section 3.2 of the PhD disser-
tation Yu (2017) for introduction to a broader class of metrics based on general
root derivative transformations. Some improvements in the sense of consistency
(as n → ∞) are proposed there. However, the Fisher-Rao approach remains a
workhorse method because of its excellent properties in terms of peak alignment
in curve registration, as shown in Figure 9.12.

The value of the L2 norm applied to SRVFs, as in (9.5), for peak alignment
is demonstrated in Figure 9.12, based on an example constructed by Xiaosun
Lu. That is based on two Gaussian curves (not densities as they are just vertical
rescalings), f1 (dashed) and f2 (solid), shown in blue in the bottom center panel.



FISHER-RAO CURVE REGISTRATION 205

The left side of the top panel compares 2 ‖f1 − f2 ◦ γα‖ (solid black curve) with
‖qf1 − qf2◦γα‖2 (dash dotted curve) for a family of warps indexed by α ∈ (−1, 0].
The factor of 2 is used to put these on approximately the same vertical scale.
The family of warps (one member of which appears as the solid red piece-wise
line in the middle left panel) is piece-wise linear, with a strong vertical jump of
size α over a very small interval near the center. Those warps squish the interval(

1−α
2 , 1+α

2

)
into a very small interval, so that f2 ◦ γα (shown as the solid curve

in the bottom left) suffers what has been called a “pinching effect”. The red line
in the top panel shows the value of α that minimizes 2 ‖f1 − f2 ◦ γα‖, and the
corresponding warp γα is the solid red curve in the middle left panel. It is clear
from comparing the red curves f1 (dashed) and f2◦γα in the bottom left panel that
they are visually much closer together than are the blue curves (corresponding to
α = 0) in the bottom center panel, which is quite concerning for peak alignment
methods based on the L2 norm between functions. This comparison is quantified
in the top panel, where the solid curve is lower at the red line than at the blue
line). However, note that the norm of the corresponding SRVFs ‖qf1 − qf2◦γα‖2
(dot dashed curve) has the opposite behavior. This is because the red solid curve
has very steep derivatives near the center of the plot, so the L2 norm of the SRVFs
strongly penalizes against such pinching.
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Figure 9.12 Top row shows the L2 distance between original functions f1 and f2 (solid)
versus SRVFs q1 and q2 (dot-dashed) for a family of pinching warps (red) indexed by
α ∈ (−1, 0] in the left hand column and a family of stretching warps (green) indexed by
α ∈ [0, 1) in the right column. The middle column shows the α = 0 identity warp in blue
and the original f1, f2 below. Shows how the L2 norm applied to SRVFs gives a much
more natural notion of peak alignment.

The left side of the top panel does a slightly different comparison, this time
of 2 ∗ ‖f1 ◦ γα − f2‖2 versus ‖qf1◦γα − qf2‖2 for a different family of piece-
wise warps γα, for α ∈ [0, 1). That warping family has a flat spot of length α
in the center, which stretches (instead of compressing as for α < 0) the width
of the peak. The warp is applied to f1 instead of f2 in this case because that
gives smaller norm values. The solid norm of the functions in the top panel shows
a local minimum indicated by the green line. That local minimum is intuitively
understood by noticing the green curves in the bottom right panel are again closer
than shown in the blue panel. Once again applying the norm to the SRVFs results
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in a smaller value at α = 0 (blue curves) this time because the warped dashed
curve has a too small derivative near the center.

Wagner and Kneip (2019) point out that a weakness of the Fisher-Rao numerical
approach is that when fK ≡ 0 the method will fail. Essentially the dynamic
programming algorithm requires a non-constant template mean for convergence.
They propose a method that does work in such cases, although it is not as efficient
at peak alignment in situations where that is a priority. Other approaches based
on the SRVF include Bayesian functional alignment, where prior distributions are
placed on the warping functions. Cheng et al. (2016) use a Dirichlet prior on the
simplex and Lu et al. (2017) set a Gaussian process prior on the sphere for the
warp functions.

9.2 Principal Nested Spheres Decomposition

While the interpretation of the Fisher-Rao approach to curve registration has al-
ready benefited in a major way from OODA concepts such as the warp equiva-
lence class quotient space, in some situations there is also technical benefit from
other OODA ideas. In particular, the analysis of the warping functions done in
(9.6) shows that the warps γ1,K , · · · , γn,K , which quantify horizontal variation in
a Fisher-Rao analysis, all have corresponding SRVFs that lie on the surface of a
high dimensional sphere in function space. The decomposition into modes of vari-
ation in Figure 9.10 was essentially a Euclidean PCA done in the tangent space
centered at the Karcher mean fK . As noted in Section 8.3, this can result in the
problem of a distorted analysis which can be substantially improved using PNS
(recall Principal Nested Spheres from Section 8.3) on the corresponding SRVFs.
This motivated the proposal of Yu et al. (2017a) to couple PNS with a Fisher-Rao
analysis to understand phase variation.

In many situations, there is not a major difference between the tangent plane
analysis and PNS. This seems to be because for many data sets SRVFs do not tend
to spread very broadly around the sphere (so the tangent plane approximation is
frequently adequate). This may be due to the fact that for γ(t) increasing, ψγ(t) >
0, and hence γ lies in the positive orthant of the sphere, which in finite dimensions
is
{
x ∈ Rd : ‖x‖2 = 1, x1 > 0, · · · , xd > 0

}
. However a toy example showing

the tangent plane approximation can be a serious problem is shown in Figure 9.13.
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Figure 9.13 Far left panel shows a family of piece-wise linear warps γ(t). Center left
shows representations of each warp in terms of heights at t = 1

3
, 2
3

, together with pro-
jections onto Euclidean PCA. Center right is reconstruction of Euclidean projections with
cyan curves highlighting invalid warping functions. Far left shows PNS projections, which
are all valid warps.

Figure 9.13 first appeared in the PhD dissertation of Lu (2013), and is Figure
5 of Yu et al. (2017a). The far left panel contains a set of warping functions γ(t),
which are piece-wise linear, all having just two breakpoints at t = 1

3 and 2
3 . Thus

each warp is entirely characterized by
(
γ( 1

3 ), γ( 2
3 )
)
, and is shown as a small black

circle in the center left panel. Because warps must be increasing, i.e. γ( 1
3 ) < γ( 2

3 ),
all of these circles are above the diagonal black line that represents γ( 1

3 ) = γ( 2
3 ).

The results of a direct Euclidean PCA on the family of warps is also overlaid on
the center left panel. The red line shows the first eigen direction, and the symbols
are the projections of the warps onto the first mode of variation. Red plus signs
are those projections that are actually warps (i.e. are increasing functions), while
the cyan circles indicate those of the projections that are actually outside of the set
of warps (because they are no longer increasing functions). The impact of replac-
ing the Euclidean PCA of the warping functions with a PNS of the corresponding
SRVFs is shown in the right panel. Note that each projection onto the first PNS
component remains a valid warp. Another view of the effect of PNS is the blue
curve shown in the center left panel. That is a plot of

(
γ( 1

3 ), γ( 2
3 )
)

for a dense grid
of points lying along the PNS one dimensional representation. It shows how ap-
propriately managing the curvature of the space keeps that analysis in the range of
functions of interest. A similar issue occurred when studying covariance matrices
in Section 7.3.5 where linear extrapolation using the Euclidean metric can lead to
negative eigenvalues, hence leaving the space of covariance matrices (which are
all positive semi-definite). Recall that challenge was similarly addressed by using
a curved manifold for representing covariance matrix data objects.

Figure 9.14 shows another example of the improvement available from PNS
of the Fisher-Rao warp functions over the simple tangent plane PCA shown in
Figure 9.10. That is based on the Shifted Betas data in the top left panel of Figure
9.2 which was used with the same coloring to illustrate many points in Section
9.1. The input to the PNS is the set of Fisher-Rao warps, γ1,K , · · · , γn,K , shown
in the top left panel of Figure 9.10. Figure 9.14 shows various projections onto
the rank 2 Euclidean PCA subspace. The circles are the (rank 2) projections of
the warps onto this space, with the horizontal axis showing the first PC eigen
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direction, and the vertical axis the second. The x signs show the first PCA mode
of variation (shown in a different way in the middle left panel of Figure 9.10),
whose constraint of being linear makes them a poor approximation of the clearly
nonlinear data set. That strong distortion is addressed by the plus signs, which
are the projections of the first PNS approximation of this data set. That mode of
variation is essentially nonlinear with respect to this data view. It clearly provides
a far better approximation of the data. A careful look at the horizontal and vertical
scales shows this effect in not terribly strong (also reflected by the rather small
variation in the center panel of Figure 9.11) although still considerable. A more
dramatic example (which is based on even stronger phase variation) appears in
Section 2 of Yu et al. (2017a).
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Figure 9.14 Shows benefits of a PNS analysis of the warps in the top left panel of Figure
9.10 whose projections onto the 2-d PCA subspace appear as circles. The x signs are the
rank 1 PCA approximations. Much better approximation comes from the projections of the
rank 1 PNS approximation shown as plus signs.

A real data example, where PNS gives a big benefit over tangent plane PCA can
be found in Section 3 of Yu et al. (2017a), in the context of real time monitoring
of blood glucose. Additional examples appear in Staicu and Lu (2014) and in the
analysis of the Juggling data by Lu and Marron (2014a) shown in Figure 2.3.





CHAPTER 10

Graph Structured Data Objects

In the mathematical field of graph theory a graph is defined as G = (V,E),
where V is a set of vertices (also known as nodes) and where E is a set of edges
(that connect the vertices), i.e.E = {[v, w] : v 6= w ∈ V }. In a directed graph, the
edges are thought of as pointing from say v tow, so [v, w] is taken to be an ordered
pair (v, w). Edges in undirected graphs ignore directions, and so [v, w] = {v, w},
just an unordered set. In some situations, it useful to add attributes to the graph
structure, which are numbers or vectors (or even more general objects) assigned
to each vertex and/or to each edge. An example of vertex attributes are the centers
and radii of the spheres that compose the artery trees shown in Figures 2.5 and
2.6.

Directed graphs are natural when tabulating ancestry, yielding the terminology
w is a child of v when (v, w) ∈ E, and v is similarly a parent of w. A tree is
a special case of a graph, which is directed, has a starting vertex called the root
which has no parent, and is acyclic in the sense that every other vertex has exactly
one parent and is a descendant of the root. A vertex with no child is called a leaf.
Brain artery systems as introduced in Section 2.2 and studied further in Section
10.1 are nearly trees, except for an anatomical structure called the Circle of Willis
(which seems to ensure that blockage of a carotid artery will not result in loss of
half the brain). To give reasonable correspondence, the data objects studied here
are unions of the 3, 4 or 5 (depending on the subject) actual trees which flow out
of the Circle of Willis. The leaves in the Brain Artery data occur when each artery
becomes too small to appear in the MRA images discussed in Section 2.2 (at about
1 mm in diameter). Hence, we do not consider the circulatory system as the closed
circuit that it actually is, because neither the capillaries (between the arteries and
the veins) nor the veins themselves show up in the MRA. Thus the Brain Artery
data is treated here as a set of trees.

There is a large literature on network (i.e. graph) analysis from various view-
points. See West (1996), Kolaczyk (2009) and Harary (2015) for much more in-
troductory material. Much of the intersection with statistics is about the variation
involved in constructing a single graph. Here we take a different approach by
thinking of graphs as data objects and studying sample / population properties.
Section 10.1 gives an overview of the literature on the arterial trees. Other exam-
ples of the analysis of tree structured data objects in biomedical applications in-
clude airways as data objects in Feragen et al. (2011, 2013); Amenta et al. (2015).
Other approaches to data sets of tree structured objects include the tree kernel idea
discussed in Vert (2002) and Yamanishi et al. (2007). Early work in this area was
done in Banks and Constantine (1998).

211
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Section 10.2 studies the analysis of samples of networks as data objects using
graph Laplacian representations, which are a subset of the space of covariance
matrices.

10.1 Arterial Trees as Data Objects

A deep and challenging set of tree structured data objects is the Brain Artery data
introduced in Section 2.2. A number of quite different approaches have been taken
to quantifying the variation in that data set, including combinatoric approaches
overviewed in Section 10.1.1, a phylogenetic point of view as taken in Section
10.1.2, the Dyck Path approach studied in Section 10.1.3, and a representation
using persistent homologies in Section 10.1.4. These methods are compared in
terms of performance on the Brain Artery data in Section 10.1.5.

10.1.1 Combinatoric Approaches

The first versions of PCA-like visualizations of these data objects are called com-
binatoric. In particular, they ignore all attributes such as branch length, thickness
and physical location, and instead only take into account the tree topology (the
original nodes and edges). These analyses are in Wang and Marron (2007) and
Aydin et al. (2009), which were also the first studies to explicitly use the terminol-
ogy OODA. Those early analyses involved embedding the trees which naturally
lie in a three dimensional ambient space, into a binary two dimensional data object
representation, as shown in Figure 10.1. Two arbitrary choices of branch location
involving either branch thickness or number of descendant branches (called de-
scendant correspondence in Section 10.1.3), were considered and gave different
results. The most statistically significant results from Aydin et al. (2009) appear
in the top row of Table 10.1 in Section 10.1.5, suggesting that the tree topology
alone does not provide enough information. Instead it is important to consider at
least some tree attributes, as done in the following sections.

Figure 10.1 Examples of 2-d embeddings as data objects, for 3 different subjects.

Two challenges with early versions of the brain artery tree data were the link-
ing of tree branches into a tree structure and the starting point of each tree. These
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issues have been addressed through careful data objects choices. Linking was ini-
tially done in Aylward and Bullitt (2002) using a thresholding operation combined
with manual intervention, and the starting point was arbitrarily chosen by the MR
operator. In subsequent analyses, arteries were more accurately linked using a vi-
sualization device invented in Aydın et al. (2011). As noted above, the starting
point issue has been addressed by only including arteries flowing out of the Circle
of Willis (a readily identifiable anatomical feature).

Wang et al. (2012) deeply investigated the relationship between age and artery
tree structure and found some unexpected age behavior, by inventing an analog of
kernel smoothing with a tree structured response variable. See Alfaro et al. (2014)
for another combinatoric approach to PCA of the Brain Artery data.

10.1.2 Phylogenetics

Another approach to the Brain Artery data, based on phylogenetic tree represen-
tations as data objects, can be found in Skwerer et al. (2014). Phylogenetic trees
are a model for evolution of species (or other biological units) over time. In ad-
dition to the branching structure of the combinatorial trees in Section 10.1.1, the
branches of phylogenetic trees have the attribute of length representing the time
between species splits and/or the present. The motivation for addressing the artery
data using phylogenetic tree methods is that the latter have been studied for a
very long time. In particular, the ideas go back to Darwin (1859) with interest-
ing early graphical representations already in Haeckel (1866), so much is known
about them which should be useful for the study of trees as data objects. The main
challenge is that in a typical phylogenetic setting, one works with a common set of
species (i.e. leaf set), and the goal is to explore (often to choose between) various
ways in which the species could be reasonably organized into an ancestral tree.
The main challenge to adapting this idea to the case of the brain artery trees is
that the latter do not have a common leaf set. Instead, as noted above, arteries are
collected only until they become too thin to show up reliably in the MRA (about 1
mm resolution). Hence each subject has a different number of arterial endpoints,
none of which correspond across individuals in a meaningful way. To create a set
of data objects appropriate for a phylogenetic type of analysis, common leaves
were artificially generated as a set of corresponding landmarks, based upon the
brain cortical surfaces of each subject (also collected in the original study), using
an elegant algorithm of Oguz et al. (2008). An example of this for one subject
appears in Figure 10.2, which is Figure 2.6 of the PhD dissertation Zhai (2016).
In the left panel the blue curves are the original arteries and the red dots are land-
marks on the cortical surface that correspond (with respect to shape of the surface)
across all subjects in the sample. The red lines in the center panel show the pro-
jections of each landmark onto the arteries. The cyan part of the artery curves in
the center panel show orphans, which are arterial portions that are beyond (with
respect to arterial flow) the last such projection. The right panel shows the result
of trimming those orphans which leaves the remaining parts as the blue tree repre-
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sentation. This representation is ideal for phylogenetic analysis, because all leaves
now correspond across subjects.

Figure 10.2 Illustration of common leaf set construction for use of phylogenetic tree meth-
ods on the Brain Artery data. Dots are landmarks corresponding across all subjects. These
are connected by projection to the artery tree shown as blue curves. Orphan curve seg-
ments, shown as cyan in the center panel, are trimmed to give the final tree in the right
panel.

Skwerer et al. (2014) go on to show that this approach gives some improved
statistical inference (about age and sex) as summarized in Table 10.1 in Section
10.1.5.

Phylogenetic tree space is another example of stratified spaces, as discussed
at the end of Section 2.3 and in Section 8.7 (both about covariance matrices as
data objects). The particular geometry of the space creates a number of surprises,
because it is locally flat (in fact exactly Euclidean on neighborhoods) almost ev-
erywhere, with a very notable exception being the origin. The singularity at that
point results in the whole space having very strong non-positive curvature. This
has some good consequences such as uniqueness of the Fréchet mean. However
as discussed in Skwerer et al. (2018), even calculation of the Fréchet mean is
quite challenging. For example the iterated pairwise weighted average algorithm
of Sturm (2003) did not converge after 10,000 steps, and had a larger Fréchet vari-
ance than the origin at each of those steps. This motivated Skwerer et al. (2018) to
develop a more sophisticated optimization approach to calculation of the Fréchet
mean in phylogenetic tree space, which ultimately showed that the origin is the
Fréchet mean of this data set. See Miller et al. (2015) for interesting related work.

Some interesting views of the strong curvature of phylogenetic tree space have
been provided using MDS (recall Multi-Dimensional Scaling from Section 7.2),
in the PhD dissertation Zhai (2016), as shown in Figure 10.3. Demonstration of
curvature effects in these examples has been enabled by the ability to quickly
compute geodesics using a clever algorithm invented by Owen and Provan (2011).
The data objects are the n = 67 trees for which corresponding landmarks were
found using the method of Oguz et al. (2008), represented as blue dots (with a
few as blue squares) in each panel. In each case the Fréchet mean is shown as
a red plus sign. The blue points in the left panel show the MDS distribution of
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the original data, suggesting an approximately Gaussian distribution with perhaps
an outlier. The center panel shows a much different MDS distribution of the same
data set. The green dots are additional data included in the MDS, which are chosen
as lying along equally spaced grids connecting three of the data points. Note the
addition of the green points gives a completely different MDS view, because the
additional points result in more overall variation in their direction. A triangle is
used here, because one characterization of non-positive curvature is that triangles
(connecting three points with geodesics) “bend inwards” in the sense of having
angle sums much less than the usual 180◦ of triangles in Euclidean space. This
particular triangle is representative in the sense of having the median angle sum
over all triples of data points. Those angles are between geodesics in the local
Euclidean plane containing each vertex point.

Figure 10.3 MDS views of Brain Artery data (blue symbols), together with the Fréchet
mean (red plus sign). The standard MDS is in the left panel. The MDS in the other two
panels are based on all of the blue data, the red mean, and the green points, which are
sampled along geodesics between a few data points. Inclusion of the green points shows
how the strong curvature of the space introduces huge distortions in the MDS view. The left
panel shows how the out of sample MDS can address this distortion by showing the same
green points from the right panel embedded in the original MDS

A related distortion is shown in the right panel of Figure 10.3. This time the
MDS was based upon the union of the data together with only one geodesic (cho-
sen to have the median pairwise distance), where the addition of the additional
points again creates a very large distortion of the view. Another viewpoint on this
is provided in Figure 8 of Skwerer et al. (2014), which shows a great deal of
shrinkage in branch lengths as one follows such geodesics. Note that this time
the distortion is so strong that the Fréchet mean actually lies outside the apparent
convex hull (with respect to this embedding) of the data. This distortion can be
effectively dealt with using the out of sample MDS approach (invented by Trosset
and Priebe (2008) and refined in Chapter 3 of Zhai (2016)) that was discussed in
Section 7.2. The result of this is shown in the left panel of Figure 10.3, where the
blue dots have their original MDS configuration. The green points are the same as
in the right panel, but do not influence the embedding because of the out of sample
calculation. These points now approximately lie along a line and the Fréchet mean
seems to be near the center.

See Nye (2011) for an early approach to PCA of phylogenetic tree data ob-
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jects, and Nye et al. (2017) for updated ideas. Other approaches to PCA, based
on tree lines, sample limited geodesics and principal rays (making repeated use
of the Owen and Provan (2011) fast geodesic algorithm) were proposed by Zhai
(2016). These unfortunately did not give reasonable insights into the population
structure of the Brain Artery data, apparently because of the strong curvature of
the space, and the broad spread of the artery data around the space. An interest-
ing open problem is to address these challenges by modifying MDS to target data
representations in a negatively curved space, instead of the traditional Euclidean
representations discussed in Section 7.2.

Asymptotic results have been established by Barden and Le (2018); Barden
et al. (2018). An interesting way to quantify uncertainty in phylogenetic tree space
can be found in Willis and Bell (2018), which was used to develop a notion of
Confidence Sets in Willis (2018). An important point of the overview of Feragen
and Nye (2020) is that phylogenetic tree space is another example of a stratified
space as discussed in Section 8.7. This viewpoint is the key to the discovery of
stickiness in Hotz et al. (2013) that seems to occur generally when studying limit
behavior of sample means in phylogenetic tree space.

10.1.3 Dyck Path

A quite different choice of data objects was made in Shen et al. (2014). The key
idea there was to use the Dyck Path idea of Harris (1952) (invented as a tool in the
stochastic processes literature for the asymptotic analysis of branching processes)
to represent each data tree as a curve, followed by the use of FDA techniques for
the resulting statistical analysis.

The Dyck path analysis uses more tree information than the combinatorial ap-
proach of Section 10.1.1, including length of each branch as an edge attribute. As
illustrated in the left panel of Figure 10.4, a challenge to that old approach was the
correspondence issue caused by the arbitrariness of the embedding of the 3-d arte-
rial trees into the plane. Different representations of the same tree can be obtained
by flipping vertices as shown. The most compelling way to handle this ambiguity
is through the concept of invariance discussed in Chapter 4 of Dryden and Mar-
dia (2016). Proceeding as in Sections 1.2 and 8.3 (recall their context was shape
analysis), the main idea is to call trees that can reached from each other by vertex
flips equivalent, and then to work with the equivalence classes (orbits with respect
to the group of flipping operations) as the data objects. Note the strong parallel to
the Fisher-Rao approach to curve registration taken in Section 9.1. Pursuing such
an approach to this analysis is an interesting open problem. This was not done
in Shen et al. (2014), who instead used the descendant correspondence idea of
Section 10.1.1, where each equivalence class was represented by its member with
most descendants on the left at each vertex.
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Figure 10.4 Illustration of vertex flipping as an equivalence relation (left panel) and Dyck
Path interpretation as an ant walking around a tree (right panel).

The Dyck Path is intuitively expressed in terms of “an ant walking around a
tree” in a two dimensional embedding, as illustrated in the right panel of Figure
10.4. The tree is shown near the top in blue with the path of the ant shown in
red. The lower plot shows the corresponding trace of the ant’s distance from the
root as a function of time (assuming uniform velocity). Such resulting red curves
(hence amenable to classical Euclidean FDA) are the representations of the tree
data objects. For better correspondence across data objects, Shen et al. (2014) also
incorporate the idea of support tree, essentially the union of all the trees in the data
set.

While the combinatorial approaches in Section 10.1.1 mostly focused on ex-
ploratory analyses, Shen et al. (2014) went on to do deeper confirmatory analyses.
These motivated the new idea of branch length representation, which resulted
in statistically significant correlations with age. This was not surprising as that
connection was also found in the simple summary based analysis of Bullitt et al.
(2005). However, a deeper analysis, based on tree pruning ideas found the first
statistically significant connection of gender with tree structure. Actual p-values
are summarized in Table 10.1.

10.1.4 Persistent Homology

A Topological Data Analysis (TDA) of the brain artery has been done by Bendich
et al. (2016). That paper uses various persistent homology representations as data
objects. In confirmatory analysis, these coordinate free representations have given
the strongest statistical significance found to date for both age and gender.

The basis of TDA is a filtration that can be viewed as extracting a topologi-
cal representation of the data. An example of a filtration is shown in Figure 10.5.
The input data points are the n = 13 plus signs in R2 shown in each panel. The
filtration records how topological properties of the union of discs centered at the
data points change as a function of disc radius (which is the filtration index). The
process starts with 0 length radii, where there are 13 disconnected components
represented as solid vertical bars in the right subplot of each panel (the dotted bars
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are explained below). In the top panel the radius is large enough that the eight
points on the left now lie in a single connected region. Thus at this radius, repre-
sented by the horizontal line in the subplot, there are 6 bars that touch. There are
7 shorter bars, that ended at the radius where the circles became tangent, resulting
in fewer connected components. The middle panel of Figure 10.5 shows a larger
disc radius (represented as a higher horizontal line in the subplot), where only two
connected components remain, since the 5 points on the left were connected up
at the radius shown as the top of the 5 bars in the middle. In the bottom panel
only one bar is still going, because the two circles of data have now been merged
into a single connected component. As the radius continues to grow this single bar
grows to infinite length.
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Figure 10.5 Demonstration of a TDA filtration, based on plus signs as data objects in R2.
Rows show different disc radii, i.e. filtration levels. Left panels show construction of bar
code representation of data. Homological properties (before and at each filtration level)
are displayed in the right panels: H0 bars are solid and H1 are dotted.
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The above discussed TDA representation of the data is based solely on con-
nected components, which in topological terms are called H0 (0-th order) homo-
logical properties. Also of use in TDA are higher order homologies, such as the
first order H1 (based on loops), the second order H2 (focusing on cavities in 3
and higher dimensions) and also higher orders. In addition to demonstrating H0

as solid bars, Figure 10.5 also shows an H1 filtration, using dotted bars. Because
there are no loops when the discs are disjoint the dotted bars do not start at the
bottom. The first one starts when the right circle of data points first merges, just
before the radius in the top panel. The middle row shows two dotted H1 bars re-
flecting the two loops present at that radius. One bar has ended before the radius
shown in the bottom panel as the right hand loop disappeared. When a feature
disappears, the convention is to end the shorter bar. Both loops disappear for large
enough radii.

The classical use of TDA, as discussed by Bubenik and Kim (2007), Carlsson
(2009), Zomorodian (2012) and Wasserman (2018), focuses on understanding the
relationships between data objects.

However, TDA filtrations are also very useful for data object representations,
as shown by Bendich et al. (2016), in an analysis of the Brain Artery data. The
filtration proposed in that paper is quite different from the growing balls illustrated
in Figure 10.5. It is instead based on the idea of filling a tank holding the arterial
system, as demonstrated in Figure 10.6. An H0 (connected component) filtration
is indexed by the level of the water. Bars start when the water level touches new
parts of the tree, and end when components merge together. Three such water
levels for the same data tree are shown in Figure 10.6.

Figure 10.6 Three water levels (submerged parts shown in red) of the H0 TDA filtration
for one brain artery system.

Bendich et al. (2016) used this and related object representations to explore age
and gender for the artery data. A challenge was finding a Euclidean representation
of the resulting bar graphs. A number of things were tried including various sum-
maries of the bar lengths, together with the bar start times. The best of these gave
results, using H1, quite competitive with other analyses, as shown in Table 10.1
of Section 10.1.5.

More sophisticated Euclidean summaries of the bar graphs are the persistence
landscapes studied in Bubenik (2015). A different approach to Euclidean repre-
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sentation of bar graphs are the rank functions of Robins and Turner (2016). An
interesting type of filtration with some inversion properties (not usual in topolog-
ical data analysis contexts) is the persistent homology transformation of Turner
et al. (2014).

10.1.5 Comparison of Tree Analysis Methods

An interesting question is how to compare these quite diverse ways of under-
standing the variation in the Brain Artery data set that were discussed in Sections
10.1.1 - 10.1.4. As noted in Section 2.2 it would be medically interesting to study
effectiveness at finding early cancer or quantifying stroke tendency, but that in-
formation is not available here. So instead we work with the given covariates of
age, sex and handedness. Handedness has around 95% right handed subjects, so
that is not studied further. However, it is interesting to investigate any brain arte-
rial structure associations with age and sex. To study age the first and third studies
used slope of a regression line (not reported here), while the others reported corre-
lations as shown in Table 10.1 (with blanks in cases where the correlation was not
reported). Another approach to comparison is based on the p-values of hypothesis
tests for a significant age effect, and also of significant sex effect. The sex data
include two trans-sexuals that were not included in the sex based calculations,
and no p-value was given in the first two studies (hence the blanks in the table).
Note that there is a general trend towards stronger statistical inference for more
sophisticated representations of the Brain Artery data objects.

Section Age ρ Age p-val Sex p-val

Comb. 10.1.1 - 0.0025 -

Phylo. 10.1.2 0.43 10−5 -

Dyck 10.1.3 - 10−6 0.033

TDA H0 10.1.4 0.53 10−7 0.11

TDA H1 10.1.4 0.61 10−10 0.031

Table 10.1 Summary of results from various studies of the Brain Artery data. Shows im-
provement using more sophisticated methods.

A mathematically compelling approach to statistical analysis of tree structured
data objects can be found in Guo and Srivastava (2020). This uses equivalence
classes as data objects ideas (discussed in Sections 1.2 and 8.3) to simultaneously
summarize both the topological structure as well as the individual branch shapes.
The latter is elegantly represented using the Fisher-Rao elastic registration ideas
discussed in Section 9.2. Direct comparison with the other approaches summa-
rized in Table 10.1 is unfortunately not possible, as that paper made a different
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choice of data objects (sub-trees as opposed to the full arterial system), but the
results appear to be fairly similar.

10.2 Networks as Data Objects

Networks are of wide interest and able to represent many different phenomena,
for example social interactions between individuals and white matter fiber con-
nections between regions in the brain, e.g. see Kolaczyk (2009) and Ginestet et al.
(2017). If a sample of networks is available then it is natural to carry out OODA
and, following the main theme of this book, important considerations are to decide
what are the data objects and how they are represented.

10.2.1 Graph Laplacians

Consider a dataset where each data object is an undirected graph (as introduced
at the beginning of this chapter) comprising a set of m nodes (i.e. vertices), V =
{v1, v2, . . . , vm}, and a set of edge attributes which are called weights, {wij :
wij ≥ 0, 1 ≤ i, j ≤ m}, indicating nodes vi and vj are either connected by
an edge of weight wij > 0, or else unconnected (if wij = 0). We call this type
of graph a weighted network. An unweighted network is the special case with
wij ∈ {0, 1}. Following Severn et al. (2019) we restrict attention to networks that
are undirected and without loops, so that wij = wji and wii = 0.

There are several representations of weighted networks that are very useful.
These include the weighted adjacency matrix A = {wij}, which is the matrix
of edge weights. In the unweighted case, A is the indicator matrix of edges. The
weighted degree of a node is the sum of all edge weights associated with it. These
are summarized on the diagonals of the degree matrix

D = diag(

m∑
j=1

w1j , . . . ,

m∑
j=1

wmj) = diag(A1m,1)

where 1m,1 is the m-vector of ones. Throughout this book, we will denote the
matrix of ones as

1d,n =

 1 · · · 1
...

. . .
...

1 · · · 1

 (10.1)

The degree matrix contains useful information about the importance of each node,
but it only contains partial information about the network. The weighted adjacency
matrix does contain all the information about the network, but the degree infor-
mation is only indirectly available. A representation that combines both adjacency
and degree is the graph Laplacian matrix L = (lij), defined as

lij =

{
−wij , if i 6= j∑
k 6=i wik, if i = j
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for 1 ≤ i, j ≤ m. The graph Laplacian matrix can be written as

L = D−A,

in terms of the adjacency matrix, A, and the degree matrix D. An advantage of
using the graph Laplacian matrix representation is that it explicitly includes both
the degree information on the diagonal and the edge weight adjacency terms (as
negative off-diagonal elements). Also, a graph Laplacian is a square symmetric
positive semi-definite matrix, and so we have methods available to deal with such
data objects as given in Section 7.3.5.

In more detail, the space of m ×m graph Laplacian matrices is of dimension
m(m− 1)/2 and is

Lm = {L = (lij) : L = Lt; lij ≤ 0 ∀i 6= j; L1m,1 = 0m,1}, (10.2)

using the notation 0d,n for the matrix of zeroes from (4.2). In fact the space Lm is
a closed convex subset of the cone of centered (meaning rows and columns sum
to 0) symmetric positive semi-definite m×m matrices and Lm is a manifold with
corners (Ginestet et al., 2017).

Figure 10.7 Red: Illustration of the cone structure of the space PSD2, using simulated
members plotted as red dots. Various rank 1 subcones are shown using colors. Blue dots
highlight the graph Laplacians L2. This shows this space (and hence that of the graph
Laplacians) is naturally non-Euclidean.

Figure 10.7 gives an indication of where the graph Laplacians, Lm, lie within
the space PSDm (positive semi-definite matrices, from Section 3.3) in the case
m = 2. The cone structure of PSDm is highlighted by plotting 10, 000 realiza-
tions of 2×2 positive semi-definite matrices constructed as XXt, where the entries
xij of the 2× 2 matrix X were generated as independent N(0, 1). The graphic is
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a 3-d plot of each realization as a red dot, of the form
(
y11 y12 y22

)t
, where

XXt =

[
y11 y12

y21 y22

]
,

recalling that XXt is symmetric. Important subcones of PSDm are revealed
by also plotting various rank 1 modifications of the coordinates of the red dots.
Edges of the cone are explored using green points

(
0 0 y11

)t
, yellow points(

y11 0 0
)t

and cyan points
(
y11 y11 y11

)t
. A more central subcone is

multiples of the identity matrix shown as gray points
(
y11 0 y11

)t
. Graph

Laplacian matrices, i.e. members of L2, are shown as blue dots of the form(
y11 −y11 y11

)t
.

10.2.2 Example: A Tale of Two Cities

An example of a type of network is where the language structure of phrases of
text or whole novels are studied using a network. In corpus linguistics, also called
natural language processing, it is common to record word co-occurrences, where
pairs of words occur within a scan of a number of neighboring words. Each distinct
word is a node in the network, and the edges of the network between two nodes
(words) have weights proportional to the number of co-occurences of that pair of
words. In Figure 10.8 we provide a network representation of the phrase It was
the best of times, it was the worst of times that opens the Charles Dickens novel ‘A
Tale of Two Cities’. Here the thickness of the line denotes the weight wij which
is the number of times the neighboring pair occurred. A neighbor pair is counted
as occurring when they are within a scan window of just one word here.
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Figure 10.8 A network representation of the phrase It was the best of times, it was the worst
of times. An edge occurs when words are neighbors in the phrase, and the thickness of the
edge is proportional to the weight.

The weighted adjacency matrix is given by:

A =



it was the best worst of times
it 0 2 0 0 0 0 1
was 2 0 2 0 0 0 0
the 0 2 0 1 1 0 0
best 0 0 1 0 0 1 0
worst 0 0 1 0 0 1 0
of 0 0 0 1 1 0 2

times 1 0 0 0 0 2 0


The degree matrix is:

D =



it was the best worst of times
it 3 0 0 0 0 0 0
was 0 4 0 0 0 0 0
the 0 0 4 0 0 0 0
best 0 0 0 2 0 0 0
worst 0 0 0 0 2 0 0
of 0 0 0 0 0 4 0

times 0 0 0 0 0 0 3
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Hence the graph Laplacian matrix is:

L = D−A =



it was the best worst of times
it 3 −2 0 0 0 0 −1
was −2 4 −2 0 0 0 0
the 0 −2 4 −1 −1 0 0
best 0 0 −1 2 0 −1 0
worst 0 0 −1 0 2 −1 0
of 0 0 0 −1 −1 4 −2

times −1 0 0 0 0 −2 3


Using such a representation with all the words in a novel provides a way of

representing a novel as a graph Laplacian matrix, and we provide an example of
analyzing the novels of Jane Austen and Charles Dickens in Section 10.2.4.

10.2.3 Extrinsic and Intrinsic Analysis

Since the sample space Lm for graph Laplacian data is non-Euclidean, as seen in
Figure 10.7, standard approaches to statistical analysis cannot be applied directly.
Severn et al. (2019) introduced a framework for extrinsic analysis of graph Lapla-
cian data, in which “extrinsic” refers to the strategy of embedding the data into
a Euclidean space, where analysis is performed, before mapping back to Lm. An
intrinsic distance for this manifold is the Euclidean distance restricted to the space
of graph Laplacians. Discussion of extrinsic versus intrinsic distances was given
in Section 7.3.3 (for shapes) and 8.1 (for directional data). Some advantages of an
extrinsic approach on a manifold were given in Section 8.1. The choice of embed-
ding enables freedom in the choice of metric used for the statistical analysis, and
in various applications with manifold-valued data analysis there is evidence of the
advantage in using non-Euclidean metrics, as discussed in Section 7.3.5.

10.2.4 Case Study: Corpus Linguistics

Severn et al. (2019) focussed on comparison of the novels of Jane Austen and
Charles Dickens, as represented by networks with edges based on a scan of 5
words. In that paper the top 1000 words were chosen and compared using several
of the distances that have been used for covariance matrices, that we described in
Section 7.3.5. Interesting distinctions were made between the authors’ styles. This
approach takes advantage of the fact that the graph Laplacians are a convex subset
of the space of covariance matrices. The data are from Mahlberg et al. (2016).

Here we consider some additional comparisons of the novels of Austen and
Dickens as data objects, using all the m = 48, 385 different words, as opposed to
the top 1000 words used by Severn et al. (2019). We use MDS (Multi-Dimensional
Scaling, Section 7.2) and hierarchical cluster analysis using Ward’s linkage (de-
scribed in Section 12.2) for different choices of metric, listed in Table 10.2. The
graph Laplacians are very high dimensional m ×m matrices here, although they
are very sparse. Hence these norms can all be efficiently computed using sparse
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Figure 10.9 MDS and cluster analysis for the Jane Austen (Blue, lower case) and Charles
Dickens (Red, upper case) novels. The sparse norms that are used are: a) Frobenius of
(7.9); b)-e) Entrywise norms of (7.10) for p = 1, 0.5, 0.75, 3; f) one norm (O) (maximum
absolute column sum); g) the infinity norm (I) (maximum absolute row sum); h) the max
norm (maximum modulus of all elements) (M). It can be see from the various MDS plots
that there is generally good separation between the Austen and Dickens novels. However,
on inspection of the clusters for some metrics (entrywise p = 3, O, I, M) the Dickens novels
Great Expectations (GE) and David Copperfield (DC) have been put in the same cluster as
the Jane Austen novels.
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Panel Index Symbol Description

(a) F Frobenius norm, from (7.9)

(b)-(e) E(p) Entrywise norms, from (7.10), for p = 1, 0.5, 0.75, 3

(f) O One norm, maximum absolute column sum

(g) I Infinity norm, maximum absolute row sum

(h) M Maximum modulus of all elements

Table 10.2 List of metrics, and indices, studied in Figure 10.9.

matrix arithmetic in R. The results of clustering these very high dimensional
sparse graph Laplacians appear in the indicated panels of Figure 10.9. For each
metric, the left panel is a dendrogram (also described in Section 12.2) showing
exactly now the Austen (represented using lower case abbreviations of the titles)
and the Dickens (upper case abbreviations) novels cluster. The left panel provides
another view of the impact of each metric, as a scatterplot of the MDS scores
with the Austen (Dickens) novels using the same abbreviated titles, colored blue
(red respectively). It is clear in Figure 10.9 that the MDS results vary widely us-
ing these choices of distances. Most choices of metric separate the Austen and
Dickens novels (colors) in the two dimensional MDS plot. However, careful in-
spection of the dendrograms shows that the only methods that put all the Austen
and Dickens novels in separate clusters are the Frobenius (F), and entrywise E(1),
E(0.75) metrics, so these would be preferred here. For the sparse norms (O, I and
M) and entrywise E(3) the Dickens novels Great Expectations (GE) and David
Copperfield (DC) have been put in the same cluster as Jane Austen’s novels. This
makes grammatical sense, because those Dickens novels were written in the first
person, which is not inconsistent with some aspects of Austen’s style. In the ear-
lier analysis of Severn et al. (2019) based on the top 1000 words, the square root
and Procrustes distances from Section 7.3.5 gave preferable clustering compared
to the Frobenius distance (which again clustered GE and DC with Jane Austen’s
novels). These examples all show that the data object choice of metric is very
important in such analyses.

Further extensions of regression models for network object data include the lo-
cal Fréchet regression of Petersen and Müller (2019); functional models for time-
varing networks of Dubey and Müller (2020); and non-parametric regression in
Severn et al. (2021) investigating changes in writing style in the Austen and Dick-
ens novels.

10.2.5 Labeled versus unlabeled nodes

In the above applications we have considered the nodes to be labeled, and the
role of each node (e.g. a word in corpus linguistics) is the same for each data
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object. In some applications it may be appropriate to compare networks where
the labeling of the nodes is also not of relevance. The network distances are then
obtained by minimizing over all permutations of the labels. Such optimization
is an NP-complete problem, although there are approximate algorithms available
for such graph matching. As the set of permutations is a subset of the space of
rotations the Procrustes distance provides another alternative approach. Statistical
analysis of unlabeled graphs has been considered by Kolaczyk et al. (2020), Guo
and Srivastava (2020) and Calissano et al. (2020).





CHAPTER 11

Classification - Supervised Learning

Statistical classification, also called discrimination is easily understood in the con-
text of data-driven automatic disease diagnosis. The process is based on a training
set consisting of patients with known labels such as the presence or absence of the
disease under consideration. The training data also includes a trait (i.e. feature)
vector of relevant data for each patient. The goal of classification is a data-based
rule for assigning new cases to either the disease present or absent classes on the
basis of their data vector.

As noted in Section 4.3 and even this chapter title, classification is also called
supervised learning in machine learning, see James et al. (2013) and Hastie et al.
(2009), where the given class labels constitute the supervision. This provides a
useful contrast with unsupervised learning, which is called by the more classical
name of cluster analysis in Chapter 12. Both focus on subsets of the data, that are
considered known in the former, and to be discovered in the latter.

Early work in this area, e.g. Fisher (1936), had strong connections with biol-
ogy, where the term “classification” refers to development and refinement of the
taxonomic organizational structure of kingdom-phylum-...-genus-species that has
been at the heart of that field for many years. Hence as the term “classification”
was already used, discrimination was once preferred terminology for the statistical
task studied here. However, that term has since become so socially charged that
classification has become more commonly used in statistical contexts. This may
be connected to “discrimination” having been coined by advocates of the widely
discredited area of eugenics. Another name, popular in the machine learning liter-
ature, is pattern recognition.

The general classification problem involves K classes, but for ease of notation
typically the binary classification case of K = 2 will usually be considered here.
There are many notational systems in use for discussing classification, but a par-
ticularly useful one (especially for linear classifiers) is to assume training data

(x̃1, ỹ1) , · · · , (x̃n, ỹn) , (11.1)

where x̃i ∈ Rd and ỹi ∈ {−1, 1} for i = 1, · · · , n. As discussed around Table 7.1
the tilde on top of scalars and vectors are used to indicate that these are random
quantities. . Let (x̃0, ỹ0) denote a separate test case. The goal is to find a classifi-
cation rule for using x̃0 to predict the corresponding class label ỹ0, i.e. a function
c (x) : Rd → {−1, 1}.

While not everyone in the machine learning literature does this, it is com-
mon to assume that the training data are drawn independently from an under-
lying joint probability distribution f (x, y). It is useful to think in a Bayesian

231
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way, starting with a loss function of 0 for a correct classification and 1 for incor-
rect. Next define prior probabilities to be the marginals p+ = P {ỹ = +1} and
p− = P {ỹ = −1} = 1− p+. Performance of a classifier, c, is assessed in a nat-
ural way using the Bayes risk (expected loss), P {c(x̃) = ỹ}. The likelihood ratio
rule,

cLR (x) =

{
+1, when f(x,+1)

f(x,−1) ≥ 1

−1, when f(x,+1)
f(x,−1) < 1

is Bayes risk optimal in the sense of minimizing the Bayes risk over all choices
of c. Of course f is typically unknown, but the Bayes rule still provides an ideal
to keep in mind and its Bayes risk is an upper bound on the classification perfor-
mance of all possible methods.

An important general class of methods are the linear classifiers. Given a direc-
tion vector w ∈ Rd (i. e. ‖w‖ = 1) and an intercept β ∈ R, define

cw,β (x) = 1− 2 · 1{wtx<β}, (11.2)

where 1{·} denotes the indicator function (in contrast to the boldface 1d,n notation
for the matrix of ones in (10.1)) that is 1 when the condition {·} is true, and is 0
otherwise. Note that cw,β assigns x to +1 exactly when it is on the positive (with
respect to the direction of w) side of the hyperplane whose normal vector is w
and intercept is β. I.e. there is a separating surface between the two class regions
that is a hyperplane.

An attractive aspect of linear classifiers, relative to some others discussed below
is that they tend to be quite interpretable. This is because the entries of the vector
w can be called classification loadings, in the spirit of PCA loadings as discussed
around Figures 3.2 and 3.3. Thus the drivers of the classification can be understood
using loadings plots of the type shown in Figure 4.11.

Fuzzy classification is a sometimes useful parallel to classification, where in-
stead of trying to predict the class, the goal is to instead estimate an analog of the
posterior probabilities P {ỹ = y|x}. This gives not only the class prediction, but
also a measure of confidence in that prediction. The terminology “fuzzy” in this
context seems to go back to Zadeh (1965).

A comprehensive reference to many important ideas and methods in classifica-
tion can be found in Duda et al. (2001). Another good overview can be found in
McLachlan (2004).

Section 11.1 studies some classical statistical approaches to classification, but
some non-standard ideas are revealed. Sections 11.2 and 11.3 provide a graphical
introduction to the kernel trick and Support Vector Machines, which were at the
heart of the early days of machine learning. An improvement of the Support Vector
Machine called Distance Weighted Discrimination is introduced and discussed in
Section 11.4.

Classification is an area where the “every dog has its day” quote in the preface is
particularly applicable, as a large number of methods (each with relative strengths
and weaknesses) are available.
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11.1 Classical Methods

Perhaps the simplest classification method is called one nearest neighbor, where
c (x0) is the ỹi of the closest training point to x0. An extension that generally has
better Bayes risk is the k nearest neighbors rule, where a vote is taken among the k
nearest neighbors to x0. Besides the appealing property of simplicity a convenient
aspect of these methods is that they are distance based as discussed in Chapter 5.
Thus they are easily constructed in any metric space. A serious drawback of the k
nearest neighbor rule is that it requires choice of k, which is generally as hard as
bandwidth selection as discussed in Section 15.3.

As discussed in Section 5.3, another very simple classifier is the Mean Differ-
ence (MD) or Centroid approach. One way of thinking of the MD is to simply
take the class whose mean is closest. But MD can also be thought of as a linear
classifier of the form (11.2). In particular the separating hyperplane has the line
between the class means as the normal direction, and intercept as the midpoint
between. A notational benefit of the ±1 class labels is that ŵ =

∑n
i=1 ỹix̃i

‖∑n
i=1 ỹix̃i‖

and

β̂ = n−1
∑n
i=1 x̃i, where here and in the following the hat symbol is used to in-

dicate an estimated quantity. When both classes are balanced and Gaussian with
identity covariance, the MD is the likelihood ratio rule so it is Bayes risk optimal.

In situations where the variables may have arbitrarily different scalings (e.g. are
measured in different units) it is sensible to first rescale each variable in the full
training data set by subtracting its mean and dividing by its standard deviation
(and applying the same standardization to x̃0). This variant of MD appears to
have been named Naive Bayes by Domingos and Pazzani (1997). This is Bayes
risk optimal in balanced Gaussian settings where the common covariance matrix
is diagonal. The same issues (about the strengths and weaknesses of accentuating
variables by standardization) raised during the analysis of the Two Scale Curves
data in Figures 5.13 and 5.14 apply in this context as well.

The MD and Naive Bayes methods work well when there is no correlation
among the variables, but otherwise they can often be substantially improved as
demonstrated in using the Shifted Correlated Gaussians example in Figure 11.1.
The left panel displays a d = 2 dimensional training data set with n+ = 20
class +1 data points colored red and n− = 20 labeled −1 colored blue, for a
total of n = n+ + n− = 40 points. Green circled x signs denote the two sample
means and the circled plus is the overall mean. The green direction vector from
the overall mean shows the MD direction. The MD separating hyperplane (normal
to the MD direction) is shown as the dashed green line. Projections of the training
data onto the subspace (line) generated by the MD direction are shown in the right
panel. Substantial overlap of the projected data indicates this is not an outstanding
direction for linear classification. The left panel suggests that a direction that is
more orthogonal to the point clouds could give much better performance.
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Figure 11.1 Left panel shows the Shifted Correlated Gaussians training data set with color
indicating classes, green direction vector (based at the circled plus sign) shows the MD
direction, and separating hyperplane is the green dashed line. Right panel is projections in
the MD direction. Shows poor class separation performance of MD when training variables
are correlated.

The above ideas can be used to give a graphical derivation of the widely used
and studied Linear Discriminant Analysis (LDA). In the case of binary classi-
fication, another common name for LDA is Fisher Linear Discriminant. Figure
11.1 suggests that MD failed because it only uses the class means and ignores the
clearly important covariance information. LDA was proposed by Fisher (1936)
who made the key observation that when both classes are assumed to be Gaussian
with common covariance matrices the likelihood ratio classifier is linear, i.e. of
the form (11.2). For this reason almost all (2 class) derivations of LDA are done
from a Gaussian likelihood viewpoint. As in other situations, this can lead to the
mistaken impression that LDA somehow requires Gaussianity to be effective. To
counter this, a fully nonparametric visual introduction to LDA is given in Figure
11.2.

The same Shifted Correlated Gaussians data appears in the upper left panel.
For simplicity of exposition, only the balanced case where the number of points
in each class are the same is treated here. It is straightforward but notationally
heavier to treat the general case by using appropriate class sample size weight-
ing everywhere. Critical components of LDA are the class means x+ and x−,
shown as circled x signs in both the left panel of Figure 11.1, and the lower left
of Figure 11.2. Also important are the two within class sample covariance ma-
trices, Σ̂

+
and Σ̂

−
(recall the definition (3.5)). Under the assumption that the

underlying population covariance matrices are the same, it make sense to estimate
that common matrix by pooling the within class sample covariance matrices to
get Σ̂

w
, by taking a weighted (according to class size) average of Σ̂

+
and Σ̂

−
.

Some algebra shows that Σ̂
w

can be written in a form that is quite similar to the
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overall sample covariance matrix Σ̂, with the important exception that the overall
mean is replaced by the respective class means. For this reason Σ̂

w
is called the

sample within class covariance. Note that Σ̂
w

effectively captures the covariance
structure (with strong positive correlation) that causes problems for MD in Figure
11.1. Hence it is natural to undo that by a sphering operation, i.e. transforming
each data point to

z̃i =
(
Σ̂
w
)−1/2

x̃i. (11.3)

The success of this is seen in the plot of the z̃i in the upper right panel of Fig-
ure 11.2, where each class indeed looks spherically distributed. That is the ideal
situation for the MD classifier, which is applied in the lower right panel. The
corresponding transformed class means z+ and z− are shown as magenta cir-
cled x signs, with the overall mean (just the average of the two class means)
shown as the circled plus. The MD direction in this transformed space is shown
as the magenta direction vector based at the overall mean, and the orthogonal
separating plane appears as the dashed magenta line. Classification of the data
in this space could be performed by applying the transformation to new data,
but it is more insightful to transform the linear classification algorithm back to
the original space. Note that the circled plus center point is transformed back

to
(
Σ̂
w
)−1/2 (

1
2z

+ + 1
2z
−), while the back transformed normal vector is pro-

portional to
(
Σ̂
w
)−1/2 (

z+ − z−
)
. Now inverting the sphering transformation

(11.3) gives the LDA centerpoint µ̂LDA = 1
2x

+ + 1
2x
− and the direction vector

ŵLDA =

(
Σ̂
w
)−1 (

x+ − x−
)∥∥∥∥(Σ̂w

)−1 (
x+ − x−

)∥∥∥∥ . (11.4)

Thus this is a linear classifier (11.2) where the intercept is the inner product
β̂LDA = ŵt

LDAµ̂LDA. The corresponding separating hyperplane is shown as
the magenta dashed line in the lower left panel, which is clearly sensible for this
data set.
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Figure 11.2 Graphical introduction to LDA. Top left panel shows the same Shifted Cor-
related Gaussians data. Top right panel shows the result of transforming using the within
class sphering operation. Bottom right panel shows the result of applying the MD classi-
fier to the transformed data. Bottom left panel shows the effectiveness of the MD classifier,
which is essentially an inversion of the sphering transformation.

This derivation of LDA is also interpretable in terms of the important idea of
Mahalanobis distance, proposed by Mahalanobis (1936). Given independent ran-
dom vectors x̃1, x̃2 ∼ Nd(µ,Σ), a natural distance measure is

dM =
[
(x̃1 − x̃2)

t
Σ−1 (x̃1 − x̃2)

]1/2
.

This distance is interpretable along the familiar lines of “standard deviations from
the mean”. Note that Mahalanobis distance is computable as the standard Eu-
clidean distance applied to the sphered variables Σ−1/2x̃1 and Σ−1/2x̃2. Thus
it is essentially Euclidean distance in the standardized space shown in the right
column of Figure 11.2.
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LDA has received far more attention than MD in the statistical literature, per-
haps because it was perceived as doing much better in situations such as those
studied in Figure 11.2, and being roughly similar otherwise. However that ignores
the increasingly important high dimensional case where d > n. This is a challenge
because then the sample covariance matrix Σ̂w is not invertible. Various domains
of high dimensional data are discussed in Chapter 14, where an important princi-
pal is that when matrix inverses are not available, often generalized inverses con-
tain the needed information. The Moore-Penrose generalized inverse (also called
pseudo-inverse) is a well defined version of generalized inverse that essentially
consists of inverting nonzero eigenvalues (while leaving zero eigenvalues as is).
See Section 17.1.2 for more discussion of eigenvalues. While use of the Moore-
Penrose generalized inverse gives a well defined version of LDA, performance in
high dimensions is rather poor, as seen in Figure 11.3.

The panels in each column of Figure 11.3 are based on the n+ = n− = 20
data vectors of dimension d = 10, 40, 200 dimensions in rows 1, 2, 3 re-
spectively. The d = 200 vectors in each column were simulated independently
from Gaussian distributions having mean vectors µ+ = (+2.2, 0, · · · , 0)

t and
µ− = (−2.2, 0, · · · , 0)

t for the +1 (red) and the −1 (blue) classes respectively.
To keep the realizations as similar as possible, the d = 10 and 40 versions are the
subvectors of the first few entries. Thus each data set has the same signal, with
noise level increasing with the dimension from left to right. Each panel shows the
projection of the training dataset onto a linear classification direction, i.e. a choice
of ŵ in (11.2). In the top row ŵ is the MD direction. Note that for d = 10 in the
top left panel, the projections seem close to what is expected from projection onto
the optimal direction wOPT = (1, 0, · · · , 0)

t. This is verified by displaying the
angle between this estimated ŵMD and wOPT which is a very small 16◦ in this
relatively easy case. Performance of MD remains good for d = 40, as seen in the
center top panel, although the angle to wOPT has grown somewhat. Even for the
quite challenging case of d = 200 (top right panel) the MD direction continues
to separate the classes, and perhaps surprisingly the classes seem to have actually
moved farther apart, while the angle to wOPT has also gotten larger. This phe-
nomenon will be explained using high dimensional concepts developed in Section
14.2. In the middle row, ŵ is the LDA direction ŵLDA. Performance in the mid-
dle left panel (d = 10) is reasonably good, although as expected (because of the
overhead of estimating Σ̂

w
) not as good as MD, neither visually nor in terms of

the angle towOPT . At first glance the d = 40 performance of LDA might be con-
sidered excellent, in the sense of separating the classes very well with respect to
the projected within class variances. But the angle towOPT of 80◦ gives substan-
tial pause as that suggests that this classifier will have very poor generalizability
properties when it is given new data. At d = 200, the LDA falls apart completely
with a very poor angle to wOPT as well as big overlap of the projected classes.
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Figure 11.3 Comparison of classification methods MD (top row), LDA (middle) and MDP
(bottom), over varying dimensions. Angles to the optimal in degrees for each direction
are included. Shows MD very robust, LDA has poor high dimensional performance, and
perhaps surprisingly good behavior of MDP.

The bottom row shows a method (that is not commonly considered in discus-
sions of classification methods) called the Maximal Data Piling (MDP) direction.
MDP was first defined and studied in detail in Ahn and Marron (2010). In Figure
11.3, MDP has quite different properties from the above two methods in the higher
dimensional cases. The d = 40 direction is quite spurious with an angle towOPT

of 89◦, yet the projections have a very systematic structure of all the red points
piled up at the same value, and similarly for the blue points. This piling of the two
classes happens with probability one (for distributions absolutely continuous with
respect to Lebesgue measure) for d ≥ n, and is where the name MDP came from.
In particular, as noted in Ahn and Marron (2010), out of all directions where both
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classes completely pile, MDP has the largest separation of the class piling points.
For higher d = 200 the piling points spread substantially, and once again perhaps
surprisingly the angle towOPT becomes quite comparable with that of MD. This
suggests that in high dimensions the generalizability of MDP is fairly comparable
to that of the optimal likelihood ratio rule, MD. Another high dimensional quirk
of MDP, shown by Ahn and Marron (2010), and explained in the PhD dissertation
Miao (2015), is that for auto-correlated errors, MDP actually performs better than
MD.

It is also seen in Ahn and Marron (2010) that the form of MDP is rather sur-
prisingly similar to LDA. In particular the only difference is that the within class
covariance matrix Σ̂

w
is replaced by the overall covariance matrix Σ̂, so that

ŵMDP =

(
Σ̂
)−1 (

x+ − x−
)∥∥∥∥(Σ̂)−1 (

x+ − x−
)∥∥∥∥ . (11.5)

In addition, it is seen that for d ≤ (n−2) the direction vectors ŵLDA and ŵMDP

are the same, despite the different numerators in (11.4) and (11.5). This can be
seen by a careful look at the d = 10 left center and bottom panels of Figure 11.3.
Note that both the horizontal and vertical coordinates of each symbol are exactly
the same. This is an example of when using order in the data as heights in jit-
ter plots conveys more information than using a random height, as discussed in
Section 4.1. Daniel Peña has explained this phenomenon as illustrated in Figure
11.4 using the above viewpoint. This uses the same Shifted Correlated Gaussians
data set as Figures 11.1 and 11.2 and this time only the corresponding bottom

row is shown. The sphering that occurs in the right panel is done by
(
Σ̂
)−1/2

(as opposed to the
(
Σ̂
w
)−1/2

used to get LDA above). Instead of individually
sphering each class separately (as done in the right column of Figure 11.2), now
the full data set is sphered. The two point clouds are still apparent, but they have
been adjusted so that the overall sample covariance matrix is the identity. Note
that this transformation also nicely handles the offset of the class means that was
the original problem with MD highlighted in Figure 11.1. In particular, the sample
means following this transformation are shown as magenta circled x signs, and the
corresponding separating hyperplane is very sensible. The result of back transfor-
mation, following the same lines as in Figure 11.2 result in the linear classification
rule in the lower left panel, which again is the same as in the LDA case.
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Figure 11.4 Visual introduction to MDP, using the same data and format as Figure 11.2.
Shows how (for d < n) overall sphering results in the same classification rule as LDA.

A natural conclusion of the above is that the ubiquitous LDA should be replaced
by MDP as the simple classifier of choice. This is because they are the same in
the case n < d, and when they are different MDP is superior. Furthermore MDP
is (very slightly) simpler to compute.

An unfortunately misleading presentation of these issues can be found in Sec-
tion 3.8.2 of Duda et al. (2001), where it is stated that LDA optimizes the ratio
of the difference between the means and the sum of the standard deviations of the
projections onto the normal vector. While the standard LDA formula is given, it is
in fact MDP that has the stated properties. That presentation is not mathematically
incorrect, because it is assumed in Section 3.7.2 there that d < n, in which case
all quantities are the same. But it is important to be aware that several statements
in Section 3.8.2 are incorrect when d ≥ n.

In situations where the within class covariance matrices are not similar, one can
still appeal to the Gaussian Likelihood Ratio to construct a classifier. While it is
straightforward to compute the classification rule cGLR the classification bound-
ary (separating surface) is determined by quadratic equations and explicit repre-
sentation is rather complicated and case-wise. This method is not treated further
here, as it has been the subject of many classical texts, and because its high di-
mensional performance is even worse than that of LDA as illustrated in Figure
11.3.

Another branch of classification methods reviewed in Chapter 4 of Duda et al.
(2001), assumes that each class has a smooth probability density, and uses smooth-
ing methods as discussed in Chapter 15 to construct classifiers. Early results on
optimal rates of convergence (of the type discussed in Section 15.2) were estab-
lished in Marron (1983). For much more on optimality in related contexts see
Devroye et al. (1996).

A point that will become relevant in Section 11.3 is that all of the methods
developed in this section can be thought of as being based on probability distribu-
tions.
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While the above discussion has been about binary classifiers for the sake of
simplicity, an extension to K class methods of LDA is well worth describing. In
the case of K > 2 the likelihood approach is no longer useful, but a direction
based approach is available. From Figure 11.2 and (11.4) it is clear that the LDA
direction vector points in the direction of the difference of class means after ap-
propriately adjusting by the pooled within class covariance structure. For multiple
means, the single direction between means can be usefully replaced by a PCA
of the set of mean vectors. That would be computed as an eigen analysis of the
covariance matrix of the set of class means, which is sometimes called the be-
tween class covariance matrix Σ̂

b
. As LDA got some benefit from adjusting the

MD using the within class covariance matrix Σ̂
w

, the same approach makes sense
here. This results in a set of direction vectors (analogs of the PCA loadings vectors
detailed in Figures 3.2 & 3.3 of Section 3.1), called Canonical Variate Analysis
(CVA) in Mardia et al. (1979) and Multiple Discriminant Analysis in Duda et al.
(2001), as previously mentioned in Section 6.5. Potential differences between the
Gaussian likelihood and algebraic derivation of these methods have been resolved
by van Meegen et al. (2020)

The canonical variates can be calculated as an eigen analysis of
(
Σ̂
w
)−1

Σ̂
b
,

by solving (
Σ̂
w
)−1

Σ̂
b
w = λw

In practice we use the eigen-decomposition of the matrix
(
Σ̂
w
)−1/2

Σ̂
b
(
Σ̂
w
)−1/2

which is symmetric (hence more amenable to standard eigenanalysis algorithms)
and has the same eigenvalues but with corresponding eigenvectors v related to the

canonical variate vectors w by w =
(
Σ̂
w
)−1/2

v. This computation is a type of
generalized eigen analysis, where eigenvectors of one matrix are computed with
respect to another matrix (see Dryden and Mardia (2016), page 298). Both the high
and low dimensional issues of the relationship between LDA and MDP based on
replacing Σ̂

w
with Σ̂ are likely to apply here, although this does not seem to have

been explored as yet.
An example of using Canonical Variate Analysis is seen in Figure 11.5. In this

dataset there are six groups of great ape skull landmarks: males and females for
each of Gorilla (gor), Chimpanzee (pan) and Orangutan (pongo). The dataset is
available in the shapes package in R, Dryden (2021). Generalized Procrustes
analysis (as discussed in Section 7.3.4) is carried out to remove location, rotation
and scale information to retain the shapes, which lie in the non-Euclidean shape
space. Tangent space coordinates are obtained at the overall mean and both PCA
and CVA are carried out. We plot the first two PC scores in the left hand figure
(which summarize 37.5% and 28.1% of the shape variability), and the first two
canonical variate scores are shown on the right. The CVA gives much better vi-
sual separation of the groups than PCA. For CVA it is clear that there is good
separation in shape for all six groups, except there is some overlap between the
male and female chimpanzees. Careful inspection of the axis labels reveals how
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Figure 11.5 PCA and CVA of a dataset of six groups of great apes: males (m) and females
(f) for each of Gorilla (gor), Chimpanzee (pan) and Orangutan (pongo). The left figure
shows the first two PC scores and the right figure shows the canonical variate scores.
There is much better separation of the groups using the canonical variates compared to
PCA.

PCA directions maximize projected variation which is quite different from max-
imizing class differences as done by CVA. Note that Canonical Variate Analysis
is equivalent to Canonical Correlation Analysis (Section 17.2.2) between the data
matrix X and a new dummy indicator matrix Y of zeros and ones to indicate
which group the observation belongs to (see Mardia et al. (1979), Exercise 11.5.4,
page 330).

11.2 Kernel Methods

Kernel methods, as developed in the machine learning community are usefully
viewed as a type of transformation, as discussed in Section 5.2, with the goal of
making data more accessible to linear analysis. The fundamental idea goes back
to Aı̆zerman et al. (1964). A canonical classification example called the Donut
2-d data is shown in Figure 11.6. Each panel is based on the same data set, with
n+ = 100 points in the positive class (donut hole) shown as red plus signs from
0.6 times a standard Gaussian distribution (i.e. N

(
0, (0.6)2

)
, and n− = 100 neg-

ative class points (forming the donut) appearing as blue circles generated using
polar coordinates that are 2.5 + 0.5 times a standard Gaussian (i.e. N

(
5, (0.5)2

)
)

in the radial component and uniformly over the angular component. Training data
points (x1,i, x2,i)

t for i = 1, · · · , 200 are plotted on the x1 (horizontal) and x2

(vertical) axes in each panel. Performance of the classifier based on each polyno-
mial embedding is shown by treating each background pixel (recall this terminol-
ogy from Section 6.1) as a new point and classifying it with yellow denoting a +
(red) classification and cyan indicating − (blue). Both colors are scaled towards
white for pixels near the boundary. In the upper left panel, LDA classification is
done in the original R2, where LDA has very poor performance because it is con-
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strained to be a linear classifier of the form (11.2), none of which can separate this
data well.
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Figure 11.6 Donut 2-d toy example, classified using LDA in various polynomial embedding
spaces. Background reflects classification of each pixel location. Shows increasing benefits
of higher order embedding.

The remaining panels of Figure 11.6 show the results of polynomial kernel
embedding, where data are nonlinearly transformed, i.e. embedded, in a higher
dimensional space where the linear method LDA is then applied. Again impact
of the embedding process on the classification is shown by classifying the back-
ground pixels in the same way. The upper right panel shows the results of em-
bedding into R3 by mapping the i-th data point to

(
x1,i, x2,i, x

2
1,i

)t
. That map-

ping puts the data onto a sheet that is warped in the x1 direction into a parabolic
cylinder. LDA slices that surface in R3 in a horizontal way so that pixels with x1
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coordinate near 0 are assigned to the + (red) class and the rest are− (blue), which
gives a marked improvement over the R2 version of LDA in the upper left panel.
The lower left panel is similar to the upper right, except now the embedding is
to
(
x1,i, x2,i, x

2
2,i

)t
, so the parabolic cylinder in R3 is now folded in the x2 di-

rection, resulting in a rotation of the classification results. The lower right panel
studies the embedding to R4, using

(
x1,i, x2,i, x

2
1,i, x

2
2,i

)t
. It is hard to conceive of

the 2-d sheet containing the data in R4, so interpretation is not so straightforward.
However, the yellow-cyan coloring makes it clear that classification is happen-
ing mainly in terms of x2

1,i + x2
2,i (i.e. squared distance to the origin), giving a

very good result in this case. In particular, this nonlinear transformation has taken
a data set that is clearly intractable to linear methods and renders it to be quite
amenable to the simple LDA.

While polynomial embedding is clearly ideal for the Donut 2-d toy data in Fig-
ure 11.6 it also has some drawbacks that include potential lack of flexibility as
well as poor interpretability and non-obvious choice of polynomial degree. This
is illustrated in Figure 11.7, which again starts with a data set in R2. But this time
the data follow a checkerboard pattern that is even less amenable to linear clas-
sification. The format of Figure 11.7 is the same as for Figure 11.6. Each class
consists of 8 standard Gaussian clusters of 25 points each, that are spaced 6 units
apart in both directions. The polynomial embeddings shown in Figure 11.6 were
not sufficiently flexible to give reasonable classification. Somewhat more flexible
is the cubic embedding to

(
x1,i, x2,i, x

2
1,i, x

2
2,i, x

3
1,i, x

3
2,i

)t
shown in the left panel

of Figure 11.7, which still gives very poor classification performance.
Much better performance appears in the right panel of Figure 11.7. This uses a

much different embedding, using kernel density estimation ideas as discussed in
Section 15.1. In particular the data are embedded in R49 by mapping (x1,i, x2,i)

t

to

(φ ((x1,i − g1,1) /h) · φ ((x2,i − g2,1) /h) , · · · , φ ((x1,i − g1,49) /h) · φ ((x2,i − g2,49) /h))
t
,

where φ is the standard Gaussian density, where (g1,1, g2,1) , · · · , (g1,49, g2,49) are
a 7× 7 grid of kernel centerpoints, and where the spread of each Gaussian kernel
is controlled by the bandwidth h = 1. This much more complicated embedding
results in excellent classification where each training point is correctly classified.
This shows why Gaussian kernels, a commonly used type of what are called radial
basis functions in the kernel machine literature, have been very popular.
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Cubic Polynomials Gaussian Kernels

Figure 11.7 Checkerboard 2-d toy example. Shows poor classification performance by a
polynomial embedding, but a much better performance using LDA on a radial basis func-
tion embedding.

A clever variation of the kernel embedding idea is kernel PCA, proposed by
Schölkopf et al. (1997). This is illustrated in Figure 11.8, based on the Four Cluster
toy data set which is the basis of several examples in Chapter 12. This data set has
two spherical clusters shown as blue circles and cyan squares, a stretched cluster
of green plus signs, and a small two point cluster (perhaps outliers?) shown as
red x signs. Kernel PCA starts with conventional PCA performed in the kernel
space, with visualization done in the original object space. The latter comes from
projecting every point in the object space (essentially each pixel value) onto each
direction vector, and coloring the image with the score, using gray for 0, and
intensity of black (white) for magnitude of positive (negative respectively) score.

Figure 11.8 Four Cluster toy example illustrating kernel PCA. Shows first three modes of
variation. First (left) contrasts green cluster with union of blue and cyan. Second (center)
contrasts blue and cyan clusters. Third (right) splits the stretched green cluster.

The first component (i. e. mode of variation, shown in the left panel) highlights
a coarse scale clustering which provides a contrast between the stretched green
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cluster, while treating the union of the blue and cyan as a single coarse scale clus-
ter. The second PC mode of variation refines the clustering view by separating
the blue and cyan clusters. The third mode seems to split the long green cluster
into two subclusters. The higher components (not shown here) are similarly inter-
pretable as a further split, into 3, of the stretched green cluster, followed by a focus
on the two point red cluster. Gaussian kernel PCA and also other kernel methods
depend on the choice of the window width. In Figure 11.8 this was chosen by trial
and error to give good interpretation of the modes of variation. See Ahn (2010)
for further useful ideas on this choice.

While examples like this are clearly compelling, this view of kernel PCA does
not seem to have had much impact on real data analysis. This appears to be due
to the fact that this visualization requires a low dimensional (really d = 2) object
space. A much more successful visualization based on kernel PCA is the t-SNE
(t-distribution Stochastic Neighbor Embedding) approach of Maaten and Hinton
(2008). This is usefully viewed as a type of inversion of the Gaussian kernel PCA,
using a Cauchy kernel (i.e. very heavy tails) analog of kernel PCA. Inversion here
is done much as in MDS (recall Multi-Dimensional Scaling from Section 7.2),
where the key idea was to find a set of representers (of each data object) whose
position best fits the set of distances between data objects. This approach is called
auto-encoding in the machine learning literature. In t-SNE the Cauchy kernel em-
beddings of the representers are fit to the positions of the data objects in the kernel
space. The heavy tails of the Cauchy kernel, relative to the Gaussian give a repre-
sentation which keeps nearby points close to each other, while somehow pushing
away points that are less close, which can visually accentuate clusters. This can
result in impressive looking graphics, although it does rely on choice of a tuning
parameter, and does not resolve issues such as which clusters represent true under-
lying structure, as done e.g. by the SigClust method of Section 13.2. Finally note
that the name t-SNE comes from the fact that the standard Cauchy distribution is
also Student’s t distribution with one degree of freedom.

Figure 11.9 shows three applications of t-SNE to the same Four Cluster toy
data set. The 3 panels show different values of the perplexity, which is a tuning
parameter. The default perplexity of 30 is shown in the center panel and gives
a reasonable view of the data, except for the placement of the two red points in
the small isolated cluster. The right panel, with perplexity 60, may be somewhat
better, although the blue and cyan clusters seem to be uncomfortably close. The
perplexity 12 visualization in the left panel has the red points even farther apart
and two of the blue points separated from the rest. An important aspect is that
the global structure is quite arbitrary, but the local clusters tend to be reasonably
highlighted, which is the goal of t-SNE.
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t-SNE, Perplexity = 12 t-SNE, Perplexity = 30 t-SNE, Perplexity = 60

Figure 11.9 Example of t-SNE visualization for the same Four Cluster data set, for differ-
ent values of the perplexity parameter. Default of 30 is in the center panel, but the most
reasonable choice may be 60 as shown in the right panel.

An application of t-SNE to the Osteo-Arthritis data set of Nelson et al. (2019) is
shown in Figure 11.10, which is Figure 4 of that paper. This data set has four dis-
tinct subpopulations, which are first dichotomized as patients whose disease pro-
gressed over time (blue and cyan) versus those who did not (red and green), and
second split on males (blue and red) versus females (cyan and green). The t-SNE
visualization nicely highlights these as four clusters, suggesting these are use-
ful partitions of this data set. However, the visual relationships between clusters
appear to be symmetric. The black lines and numbers show the results of a quanti-
tative investigation of the difference between these clusters, using the DiProPerm
hypothesis test (discussed in Section 13.1) of the difference between each pair of
subpopulations. The numbers are Z-scores which reflect statistical significance on
the standard Gaussian scale, so larger than 2 is statistically significant. Larger Z-
scores indicate stronger statistical significance. In Figure 11.10 this shows that the
male versus female subpopulations are actually far more distinct than progression
versus not. This highlights the fact that because of its stress on locality t-SNE can-
not be counted on to visually indicate strength of relationships between clusters.
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Figure 11.10 Application of t-SNE to Osteo-Arthritis data. Highlights four subsets in the
data, Red for male non-progressors, Green for female non-progressors, Cyan for female
progressors and Blue for male progressors. DiProPerm Z-scores show that, contrary to
t-SNE visual impression, some subgroups are actually much more distinct than others.

At the time of this writing, t-SNE visualization may be fading in popularity
in the bioinformatics community, in favor of UMAP proposed by McInnes et al.
(2018). Like t-SNE, UMAP seeks a set of visual representers of high dimensional
data, but deep ideas from differential geometry and fuzzy topology provide the
motivation for this method.

A fundamental issue is how a kernel embedding relates to the inner products
that lie at the heart of many data analytic methods such as PCA and LDA. In the
examples shown in Figures 11.6 and 11.7 an explicit kernel embedding is used
where the embedding to the kernel space is performed first, and then LDA is ex-
plicitly applied in that space. But there are major computational advantages to
first computing the matrix of inner products of the data objects, and then mapping
those to the kernel space, which is usefully labeled implicit kernel embedding.
The details of the relationship between explicit and implicit embeddings have
been carefully laid out in the kernel machines literature. A fundamental tool in
that area is Mercer’s theorem that relates embedding types. See Cristianini and
Shawe-Taylor (2000); Shawe-Taylor and Cristianini (2004) for a good introduc-
tion, and Schölkopf and Smola (2002) for a more detailed investigation.

One implicit kernel embedding is the use of the matrix of centered inner prod-
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ucts, which are used in the computation of distance matrices in MDS (Multi-
Dimensional Scaling, Section 7.2). In particular in classical MDS the “centered
inner product matrix” is formed to compute the matrix of pairwise Euclidean dis-
tances, see 14.2.1 of Mardia et al. (1979)). Although sometimes a horseshoe effect
may be present in such representations as mentioned at the end of Section 7.2, the
higher dimensional kernel embedding may be useful in classification tasks.

The great flexibility of kernel methods comes with great danger for overfitting.
The BiDirectional Discrimination ideas of Huang et al. (2012) overcome this with
a methodology that involves a product of two (or more) linear direction vectors
for a more controllable enhanced flexibility.

While the above examples make clear the strong data analytical advantages
available from kernel embedding, an interesting limitation has been pointed out
by El Karoui (2010). The fundamental result presented there is that, in the case of
very high dimension, kernel methods give the same classification performance as
conventional linear methods. In particular, the analysis of El Karoui (2010) uses
random matrix theory asymptotics, where both the sample size and the dimension
n, d→∞, as studied in Section 14.1.

11.3 Support Vector Machines

There is an important contrast to notice between the classical methodologies re-
viewed in Section 11.1 and the kernel embedding context of Section 11.2. The
methods in the former are strongly rooted in probability distributions (the foun-
dations of the popular likelihood approach to statistics), which are very well de-
veloped and best understood in flat Euclidean spaces Rd. However the key to the
improvements demonstrated in the latter is to map the data onto a curved manifold
(as studied in Chapter 8). For example the parabolic cylinders in the upper right
and lower left panels of Figure 11.6, as well as the harder to understand 2-d curved
surface in R4 that underlies the classification result shown in the lower right panel.
Because probability distributions on manifolds are far less well developed (e.g. re-
call the discussion about Central Limit Theorems on manifolds in Section 8.5) and
intuitively understood, it makes sense to consider non-probabilistic approaches to
the invention of classification methods.

Such considerations appear to have motivated the invention of the Support Vec-
tor Machine (SVM) by Vapnik (1982, 1995). A very readable short introduction
to the main ideas can be found in Burges (1998). While the SVM is aimed at data
lying on curved manifolds, its characteristics are best understood in a simple Eu-
clidean space such as the 2-d toy example shown in Figure 11.11. The data set
shown in both panels is similar in spirit to the Shifted Correlated Gaussians data
in Figures 11.1, 11.2 and 11.4 except there are now only n+ = 15 red circles in
the + class, and n− = 15 blue circles in the − class. These data are separable,
in the sense that there is a hyperplane between the classes with all of one class
on one side, and the other class entirely on the other side. In fact there are many
such separating planes, some of which are shown using colored dashed lines in
the left panel of Figure 11.11. A useful view of the linear SVM is that it seeks
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to find the “best” among all such separating hyperplanes. Note this way of think-
ing is quite different from the mostly probability distribution based approaches in
Section 11.1. The SVM notion of best is illustrated in the right panel of Figure
11.11, where given a candidate separating hyperplane the residuals r̃i from the
projection of each data point xi onto the plane are shown as thin magenta line
segments. SVM chooses the hyperplane which is farthest from every data point
in the sense of maximizing the smallest of these projected distances, as shown in
the right panel. The minimizing distance is called the margin, and planes shown
as black dotted lines parallel to the separating plane are shown. Note that there
are 3 points on these lines, which are the data points that achieve the smallest dis-
tances. These are called support vectors (hence the name of the method) and are
highlighted with black boxes.

Figure 11.11 Graphical introduction to the SVM. Left panel shows separable toy data,
together with several separating hyperplanes, Right panel shows SVM direction vector
(solid thick magenta line) and orthogonal SVM separating plane (dashed magenta line).
Thin magenta lines show projected residuals. SVM margins are dotted lines with support
vectors highlighted by black boxes.

To formulate the linear SVM as an optimization problem, let the d × n matrix
X = [x1, · · · ,xn] and similarly combine the class labels into an n×1 vector y =
[y1, · · · , yn]

t. Note that the tilde notation used above to denote random quantities
is deliberately not used here to reflect the common machine learning viewpoint
that the input data are just numbers and not random variables. Also let Y denote
the n×n diagonal matrix with y1, · · · , yn on its diagonal. Given a direction vector
w ∈ Rd (thus ‖w‖ = 1) and an intercept β ∈ R, the n vector of magenta
residual lengths in the right panel of Figure 11.11 can be written in the form ř =
Y Xtw + βy. The simplicity of this representation is due to the choice of ±1 as
class labels. In the separable case, the SVM optimization problem is then written
as max

w,β
min
i
ři. This can be solved using quadratic programming, by introducing

a new variable τ , and maximizing τ subject to ři ≥ τ for i = 1, · · · , n. Since
ř scales with w and β, the maximization of τ subject to ‖w‖ = 1 is equivalent
to minimizing ‖w‖ subject to τ = 1. When the data cannot be assumed to be
separable, nonnegativity of the residuals is maintained by the use of slack variables
ξ = [ξ1, · · · , ξn]

t which are incorporated into the modified matrix of residuals
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r = Y Xtw + βy + ξ. Given a tuning parameter λ, these modified residuals
are then constrained to be nonnegative in the more general version of the SVM
optimization:

min
w,β,ξ

(
‖w‖2 − λ11,nξ

)
(11.6)

subject to the constraints ri ≥ 0, ξi ≥ 0, for i = 1, · · · , n, using the notation from
(10.1) of 1d,n for a d× n matrix of ones. Small values of λ give a solution called
the hard margin SVM, which attempts to put as many data points as possible
outside the margins (essentially the dotted black lines shown in the right panel of
Figure 11.11). Larger values of λ relaxes that goal and allows more violators, i.e.
points not outside of the margins.

Much more on SVMs from a kernel learning viewpoint can be found in the
books by Cristianini and Shawe-Taylor (2000); Shawe-Taylor and Cristianini
(2004) and Schölkopf and Smola (2002). A more statistically oriented overview
can be found in Lin et al. (2002). For approaches to choice of the SVM tuning
parameter, see Joachims (2000) and Wahba et al. (2000, 2003).

A detailed analysis of several important properties of the SVM can be found
in Carmichael and Marron (2017). One is a study of the solution path, through
the space of linear classifiers (11.2), as a function of the tuning parameter λ for
a given data set. At one end of this path is the hard margin classifier studied in
Figure 11.11. At the other end of the path is a trimmed version of the MD, which
is exactly the MD when the classes are balanced. The path moves between these
ends only over a rather narrow range and computationally useful bounds are given
that guarantee the tuning parameter is in either ending state.

The SVM approach has been extended to image analysis data objects lying in a
curved manifold (in the sense treated in Chapter 8) by Sen et al. (2008).

Another important issue is extension of the SVM to the multi-class case K >
2. A simple extension involves repeated use of the binary SVM. There are two
common approaches. First one trains a classifier on each class versus all the rest
and chooses the class with the best result (in terms of projection onto the SVM
direction vector). The second one runs all of the pairwise classifications, and then
chooses a class by voting. As noted in Friedman (1996), the second option is
generally better. Lee et al. (2004) proposed integrating the multi-class task into
the SVM optimization problem.

While the SVM has become a workhorse method for many machine learning
tasks, especially its hard margin form (as in Figure 11.11) has a deficiency in
high dimensions that results in some loss of classification performance, as well
as poor visualization properties. This is illustrated in Figure 11.12, whose format
and data set are very similar to Figure 11.3. Again the same realization is used in
all panels and the data are essentially Gaussian with shifted means, but this time
the dimension is d = 50. Each panel is a projection of the data onto a direction in
R50.

The top left panel is the optimal direction, in the sense that this is the direction in
which the underlying population means have been shifted (recall the population
means have been shifted to ±2.2. Each panel displays an angle at the bottom,
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which is angle in degrees to this direction. Projections onto the MDP direction
are shown in the top right panel. As expected from the discussion in Section 11.1,
the data in each class pile up completely at a single point. To make this happen,
MDP must clearly exploit small scale noise artifacts particular to this realization
of the data, which should damage its generalizability as a classification rule. This
is reflected by the large angle of 64◦ to the optimal direction.
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Figure 11.12 Illustration of data piling for MDP (top right panel), SVM (lower left), DWD
(lower right) on 50 dimensional Gaussian data set with means shifted along the optimal
direction shown in the upper left. Angles to the optimal direction in degrees are shown for
each direction. Reveals that SVM shares some of the data piling of MDP, which is avoided
by DWD.

The SVM direction shown in the lower left panel gives a better separation be-
tween the projected data, because it optimizes the spacing between classes (thus
larger than MDP which must also make the data completely pile up). This will
clearly result in much better classification performance because the angle to the
optimal direction has now gone down to 37◦. However the SVM also reveals some
data piling in the sense of both classes having a fair number of points that project
to a common value at the SVM margin, shown as the thin black dotted lines in the
right panel of Figure 11.11. These are the support vectors (basically ties for best
in the SVM optimization) which tend to be quite numerous in higher dimensions.
As discussed for the MDP this also indicates a lesser extent to which the SVM
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feels small scale noise artifacts which should also cause some loss in classifica-
tion performance.

A related linear classification method, that has been motivated by this prob-
lem with SVM is Distance Weighted Discrimination (DWD) developed in Section
11.4. Note that projection onto the DWD direction (bottom right of Figure 11.12)
has a smaller angle with the optimal of only 29◦ suggesting generally better clas-
sification performance (which has been verified using simulations in Marron et al.
(2007)). Another useful property of DWD is the approximately Gaussian distribu-
tion of the projected classes, in sharp contrast to the apparently opposing triangle
distributions for the SVM. As discussed in Section 11.4 this has serious implica-
tions for both data visualization and batch adjustment, as discussed in Benito et al.
(2004) and Liu et al. (2009).

11.4 Distance Weighted Discrimination

The lower panels of Figure 11.12 demonstrate the high dimensional data piling
problem that is endemic to SVM, and that DWD can overcome it. The impact of
this on data visualization is explored in Figure 11.13 using the Pan Cancer gene
expression data from Figure 4.10. The left panel of Figure 11.13 is a zoomed
in view of the bottom middle panel of that figure, showing projections on the
DWD directions trained on BLCA vs. COAD and on BRCA vs. OV. The right
panel shows projections on the corresponding hard margin SVM directions. The
big picture view as to how the clusters relate to each other is the same. But quite
distracting to the human perception of these clusters in Figure 11.13 are the clear
vertical lines of data points in the yellow (COAD) and magenta (BLCA) clusters,
as well as the nearly horizontal lineups of points in the red (BRCA) and cyan (OV)
clusters, which are all consequences of SVM partial data piling. Note also that in
each of those clusters, the remaining data points all lie on the same side of the line
as expected from the ideas illustrated in the lower left panel of Figure 11.12. This
is why DWD is generally recommended for visualization tasks where the focus is
on potential differences between pairs of given subgroups of data.
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Figure 11.13 Left panel is the scatterplot view (projections on DWD directions) of the Pan
Cancer data from the bottom middle panel of Figure 4.10. Corresponding SVM version
appears in the right panel. Shows how data piling strongly impacts the use of SVM direction
vectors in high dimensional data visualization by creating spurious lines of data points.

As noted in Marron et al. (2007), DWD achieves this improvement through a
modification of the SVM optimization problem in (11.6). In the separable case, the
idea is to change the way that the residuals ři impact the result, by letting all of
them have some influence, instead of just the smallest ones. However, the smallest
ones should play a more important role, which is achieved by studying the inverse
of the residual, 1

ři
. As any residual approaches 0, the inverse becomes large, so

their sum works like a set of poles pushing the separating hyperplane towards
the middle of the region between the data sets. Thus, the separable version of
DWD uses the optimization problem min

w,β

∑n
i=1

1
ři
. This is extended to the general

case using the same slack variable approach used for the SVM in Section 11.3.
Employing notation there, the DWD optimization problem is: given the tuning
parameter λ

min
w,β,ξ

(
n∑
i=1

1

ři
+ λJ1,nξ

)
(11.7)

subject to the constraints ři ≥ 0, ξi ≥ 0, for i = 1, · · · , n. Note that this is
the linear version of DWD. As for SVM, there are also appropriate kernelized
versions.

The numerical solution to (11.7) proposed by Marron et al. (2007) is based
on the second order cone algorithm SDPT3, available at Toh et al. (2009). Like
the nominally simpler quadratic programming that underpins SVM, second order
cone programming is a fast greedy search algorithm. The computational speed of
this approach scales very well with respect to the dimension d, which was impor-
tant for earlier bioinformatics data sets. However, scaling with respect to sample
size n is much worse. This has motivated the development of FastDWD by Lam
et al. (2018), which uses a different optimization approach based on a semiproxi-
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mal alternating direction method of multipliers. The computational speed of Fast-
DWD scales very well with respect to both d and n, and is sometimes even more
efficient than the highly optimized LIBLINEAR and LIBSVM implementations
of SVM.

Another issue is selection of the tuning parameter λ in (11.7). As noted in Sec-
tion 11.3, the issue is quite important for SVM, because depending on the par-
ticular data set at hand, best performance can come from λ anywhere between
the hard margin SVM and a trimmed version of the MD. The situation is much
different for DWD, mostly because the analog of the hard margin in that situa-
tion gives much more broadly useful results. Thus Marron et al. (2007) recom-
mend achieving this with the choice λ = 100

d2t
(the number 100 is chosen as a

“large number”), where dt is a useful notion of scale of the data computed as
dt = median {‖xi − xi′‖ : yi = +1, yi′ = −1, }. An interesting open problem
is analysis of DWD of the type done in Carmichael and Marron (2017).

As first shown in Benito et al. (2004) DWD provides a useful direction for the
removal of batch effects from genetic data. At first this good performance was just
an empirical observation, but the underlying reason was later revealed in Liu et al.
(2009). The main idea is illustrated in Figure 11.14. The left panel shows a toy
data set that models a typical situation in the area of batch adjustment. Symbols
represent data objects with n+ = 200 plus signs data collected by one lab, while
n− = 200 circles come from another. Colors highlight two subtypes whose dif-
ference is the focus of the experiment. Note that for each lab separately (both the
plusses and the circles), there is a clear systematic difference between the colors,
but there is a 4 : 1 imbalance between the subtypes. To boost statistical power it is
natural to pool the data over labs, perhaps by subtracting the mean of the data from
each lab. While this works well when the subtypes (colors) are balanced within
each lab (symbols) it is challenging because of the imbalance here as shown by the
sample means (green x signs). Subtracting the mean from each lab corresponds to
bringing the labs together by shifting towards each other along the MD direction
(dashed green line). The result of this manipulation is shown in the bottom right
panel. Note that this MD adjustment is profoundly unsatisfactory because the dif-
ference between the colors (the goal of this study) has been seriously reduced to
the extent that the main body of the subtypes overlap.

Better performance is available from use of DWD for batch adjustment. The
DWD direction is shown in the left panel of Figure 11.14 as the dashed pink line,
which is much closer to the ideal vertical direction than the green dashed MD
direction. The result of sliding the labs along the DWD direction is shown in the
upper right panel of Figure 11.14. This shows much better performance of DWD
for pooling the labs (symbols) as now there is a substantial gap between the re-
sulting colors. The DWD direction works better for batch adjustment because it
is driven by the DWD separating hyperplane shown as the solid pink line. The
1
ři

poles at each data point pushes this plane away, which results in a much bet-
ter direction for batch adjustment. The reason that DWD adjustment was seen to
work well for cancer genetic data in Benito et al. (2004) seems to be due to the
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strong heterogeneity of cancer, which results in unknown unbalanced subtypes as
illustrated in Figure 11.14.
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Figure 11.14 Toy data set (left panel) showing value of DWD batch adjustment relative to
an MD approach. Colors represent important subtypes to be studied, while symbols reflect
irrelevant batch effects. MD shown in green, and poor results of simply subtracting the MD
from the batches appear in the bottom right panel. DWD direction shown as a dashed pink
line, with much better result of sliding the batches along the DWD direction in the upper
right panel.

Batch effects are becoming an increasingly important issue as there is a grow-
ing awareness that understanding very diverse diseases such as cancer need data
sets larger than any single lab can collect. This has led to collaborative efforts such
as The Cancer Genome Atlas, Weinstein et al. (2013), to integrate data across a
large number of labs. While great care is taken about protocols and many other
aspects of data collection, it is still impossible to completely eliminate uninten-
tional batch differences. Handling these issues is the domain of the statistical area
of data heterogeneity, discussed in Marron (2017a). Current approaches include
explicit approaches such as DWD and other approaches to batch adjustment such
as the empirical Bayes approach of Johnson et al. (2007), the Surrogate Variable
Analysis method of Leek et al. (2012), as well as implicit approaches to statistical
analysis that are robust against data heterogeneity as proposed by Meinshausen
and Bühlmann (2015); Bühlmann and Meinshausen (2015).

A sparse version of DWD can be found in Wang and Zou (2016). Wang and Zou
(2018) coined the term generalized DWD for a variation of DWD with important
ramifications for batch adjustment and robustness against heterogeneity, where
the impact of the poles 1

r̃i
created by the residuals is explicitly controlled using a

power q, i.e. 1
r̃qi

. The case q = 1 is conventional DWD as defined in (11.7), and
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larger values of q magnify the effect illustrated in Figure 11.14 in the sense of
pushing the solid pink line more towards horizontal. This results in a separating
direction (dashed pink line) closer to the optimal vertical direction, i.e. improved
robustness against heterogeneity. This also provides a connection between DWD
and SVM which seems to be essentially the limit as q →∞.

As discussed in Section 11.3, extension of DWD to the multi-class case can
be done by use of pairwise DWD in a one versus all scheme, or in the preferred
multiple pairwise vote scheme. An intrinsically multi-class version of DWD (in
the sense that the optimization problem is formulated in a multi-class way) has
been proposed by Huang et al. (2013).

As noted in Section 18.3, Xiong et al. (2015) addressed a challenge in virology
using data objects lying on the unit simplex. That challenge was a classification
problem aimed at using DNA to identify the presence of viruses in blood samples,
by aligning DNA in a given sample to the virus genome. The data objects were
vectors of counts of DNA-seq reads, that were divided by the total counts to handle
amplification effects. Such data objects are compositional data (i.e. lie on the unit
simplex, as discussed in Section 18.3) as they sum to 1. The special challenge of
that data was that while positive cases tended to lie fairly close to the center of the
unit simplex, the negative cases tended to go off in many very different directions.
The setting is essentially a very high dimensional version of the donut example of
Figure 11.6. However it is not clear that any of the kernel methods of Section 11.2
can handle the problem because test data tends to go off in directions that are not
present in the training data. This concern is well justified in the left panel of Figure
11.15 which is from Figure 6.2 of the PhD dissertation Xiong (2015), reproduced
as Figure 4 of Xiong et al. (2015), showing projections on the SVM separating
direction in the radial basis function kernel space of the data. That classifier is
trained on some positive cases shown as red plus signs and negative cases shown
as blue circles. As in many other graphics, the vertical coordinates of these points
are just jitter to give visual separation. The remaining symbols are independent test
cases. The pink asterisks are positive human samples which all tend to be close
to the center of the simplex and thus are correctly classified. The green asterisks
are approximately positive samples representing viruses related to the positive
class but from non-human mammals. Note that these are also correctly classified
(i.e. to the right of the classification boundary shown as the vertical dashed line).
More problematic are the cases shown as gray x signs, which are a large number
of negative cases. While many of these are correctly classified (to the left of the
boundary) a large number are not. These are cases that are far from the center of
the simplex, but in directions that are not present in the training data, and hence
are not reflected in the kernel space classification boundary. Xiong et al. (2015)
address this problem by replacing the separating hyperplane used at many points
above with a separating hypersphere. This is an option to keep in mind other
situations where one class is fairly centrally located and the other is spread very
widely around, in a large number of other directions. Xiong et al. (2015) formulate
a DWD-like approach to find the center and radius of the separating hypersphere
(other linear classifiers could be adapted to spherical versions in a parallel way).
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This results in Radial DWD whose performance on the virus data is shown in the
right panel of Figure 11.15. The horizontal axis is essentially the radius of a polar
coordinate system, that has been shifted so that 0 is at the separating hypersphere.
Cases shown at the left end (labeled “-inf”) are those with all 0 counts, which
are not on the simplex (and thus are naturally classified as negative). Colors and
symbols are the same as in the left panels, with red plus signs for positive training
data and blue circles for negative training cases. Once again, the positive test cases
(pink asterisks) and related positives (green asterisks) are all correctly classified.
But this time all of the negative test cases are correctly classified, verifying the
above idea about using a separating sphere to correctly capture negative test cases
that depart from the center in directions not present in the training data. An even
more dramatic simulated example can be found in Figures 5 and 6 of Xiong et al.
(2015).

Figure 11.15 Illustration of good performance of Radial DWD in virus detection in the
right panel, contrasted with poor performance of SVM using a classical radial basis func-
tion kernel. Demonstrates ability of Radial DWD to correctly classify test cases that are
very different from anything present in the training data.

11.5 Other Classification Approaches

There are other popular classification methods not treated in detail here. Neural
networks were very popular in the 1980s and 1990s. A great success of that era
was voice recognition software which went into widespread corporate use in the
early 2000s. That success led to gross over-advertisement of the methodology,
which resulted in many failed promises that in turn gave the whole field a bad
name. However neural networks have more recently come back in a very strong
way, under the new name of Deep Learning. While many of the basic ideas are the
same, much of the current success (which is becoming almost completely domi-
nant in fields such as computer vision) seems to be due to both size of modern data
sets and also the far greater computational resources that are currently available.
See Bengio et al. (2013) and Goodfellow et al. (2016) for good overview of this
area. A current major challenge to deep learning methods is interpretability, i.e.
the intuitive understanding of the drivers of differences between classes in classi-
fication contexts. In contrast, for simple linear methods, loadings plots as shown



OTHER CLASSIFICATION APPROACHES 259

using the Pan Cancer data in Figure 4.11, provide simple and direct insights into
the main drivers of class differences.

Another approach to good interpretability is the tree based approaches, such
as the CART algorithm proposed in Breiman et al. (1984) The basic tree algo-
rithms tended to get stuck in local optima, motivating many proposed solutions.
The most widely accepted solution of this problem is the random forest approach
of Breiman (2001). This is still widely used and is a frequent candidate in com-
parative classification studies, along with kernel SVM.

A quite different approach to combining a set of tree classifiers into a single
more powerful classifier is one case of the idea of “combining weak learners”
called boosting by Freund and Schapire (1995); Freund et al. (1999). See Fried-
man et al. (2000) for an interesting statistical perspective on boosting.

These many methods, all with their relative strengths and diverse properties
make classification an area where the “every dog has its day” principle quite clear.

As noted above, all classification methods have potential for overfitting, i.e. re-
sulting in a classification rule that is very effective on the training data but is not
very generalizable, i.e. useful for new data. This potential typically gets worse
for more complicated methods. This has led to a strong desire to measure per-
formance of a classification method. Basic measurement is typically done using
misclassification rates assessed on an independent test data set. This can be done
either theoretically, or using a simulation study. But misclassification rates assume
a particular relative weighting of classes. In situations where the desired weight-
ing is not clear, an approach that essentially considers all weightings is the Area
Under the Curve (AUC) summary of the Receiver Operating Characteristic curve
introduced in Section 5.3.

For the analysis of a single real data set an objective approach is cross-
validation, see e.g. Stone (1974), Kohavi et al. (1995) and Arlot and Celisse
(2010). The idea is to divide the data into separate training and testing subsets,
on which the method is respectively trained and independently tested. Random
choice is generally a good idea for this, and Monte Carlo variation should be
damped by repeating the process and averaging. One approach generates repeats
through independent random train-test divisions done at each step. Another com-
mon approach is k fold cross-validation where the data are partitioned into k sub-
sets of approximate size n/k. Repeats consist of each subset being used in turn as
the test set, with the others used for training. Choices for k can range from 2 to n.
The choice k = 2 is generally not recommended as the size of the training data
set is only n

2 which can be a substantially different classification problem than
that being studied. The choice k = n is essentially leave one out cross-validation.
Common choices of k are 4 or 5. Generally recommended is to explicitly choose
random subsets so that the classes are proportionally represented in the training
and testing sets, as opposed to using randomization to make this only approxi-
mately true. Cross-validation is commonly used for two distinct tasks: for evalua-
tion of the performance of a classifier and for choice of tuning parameters. When
both are done together, it is important to use none of the test set for the latter, but
instead to do a separate cross-validation completely within the training set. While



260 CLASSIFICATION - SUPERVISED LEARNING

cross-validation is broadly useful, it is important to keep in mind that it too can
suffer strongly from sample variation, as illustrated in the context of smoothing in
Section 15.3.



CHAPTER 12

Clustering - Unsupervised Learning

Clustering (unsupervised learning in the terminology of Chapter 11) is a broadly
useful data analytic operation for many purposes. The main idea is to highlight
cohesive subsets of the data that in some sense belong together. Major practical
successes of clustering methods include the discovery of cancer subtypes, such as
in Perou et al. (2000), which was a precursor to the currently very active research
area of precision medicine. Clustering shares the idea of grouping data with clas-
sification as discussed in Chapter 11, with the big difference that here the goal is to
determine the class labels. Hence clustering is also called unsupervised learning,
as noted in Section 4.3 and this chapter title.

As noted in Section 4.3, good overviews of clustering are provided in Harti-
gan (1975) and Kaufman and Rousseeuw (2009). There are very many clustering
methods and variations, some of which are discussed in the following sections.
These include the k-means approach in Section 12.1, hierarchical clustering in
Section 12.2 and simple visualization based methods in Section 12.3. An impor-
tant method not further discussed here is called model-based clustering, which
mainly uses Gaussian mixture models to identify clusters, see Bouveyron et al.
(2019).

Key concepts are illustrated using the Four Cluster toy data set in the left panel
of Figure 12.1. This data set has already been used in Figure 11.8. It features
several important issues to keep in mind when choosing a clustering method. One
of these is the elongated cluster of green plus signs, which could reasonably be
considered one or more clusters. In particular its points are spread over a wider
range than the distance between the round clusters of blue circles and the cyan
squares, which can be reasonably treated as two separate clusters. The red x signs
raise another relevant point. If there were only one it would usually be called
an outlier. But can two such points be considered a cluster? What if there were
more? It is useful to be aware of the conceptual fuzziness of the boundary that
exists between sets of outliers and clusters.
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Figure 12.1 Left Panel: Four Cluster data set for the illustration of the conceptual fuzzi-
ness and potential pitfalls of clustering. Right Panel: Another toy data set (shown twice:
in the top and also in the bottom) providing insight into the Cluster Index introduced in
(12.1). Sum of squared lengths of line segments in the top of the right panel are the Within
Cluster Sum of Squares, WCSS. The bottom of the right panel similarly demonstrates the
corresponding Total Sum of Squares, TSS. Their ratio forms the Cluster Index (CI).

12.1 K-Means Clustering

An intuitively appealing approach to clustering, named k-means by MacQueen
(1967), was proposed by Steinhaus (1956). Given a set of (random as denoted
by tildes) data x̃1, · · · , x̃n in Rd, the main idea is to choose cluster index sets
C1, · · · , Ck that partition the full index set {1, · · · , n} (i.e. each full index is
contained in exactly one of the Cj), in a way that minimizes the Within Cluster
Sum of Squares

WCSS =

k∑
j=1

∑
i∈Cj

‖x̃i − xj‖2 ,

where each within cluster mean is denoted xj = 1
#(Cj)

∑
i∈Cj x̃i. The WCSS

is illustrated in the top of the right panel of Figure 12.1, as the sum of the squared
lengths of the line segments, with the colored dots showing the within cluster
means. It can be conveniently rescaled by dividing by the total squared overall
residuals from the mean,

TSS =

n∑
i=1

‖x̃i − x‖2 ,

where x is the conventional overall mean of the full data set. The TSS is usefully
contrasted with the WCSS in the bottom of the right panel of Figure 12.1 (again
the black dot shows the overall mean). That rescaling results in the Cluster Index

CI =
WCSS

TSS
. (12.1)

Careful consideration of the right side of Figure 12.1 reveals that CI = 0 when
each data point lies at its cluster mean, and CI = 1 (largest possible value) when
all cluster means are the same as the overall mean. In between smaller values of
CI tend to indicate tighter clusters.
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Some properties of CI are illustrated in Figure 12.2, using just a toy data set in
one dimension. The toy data consist of four Gaussian clusters, two of which have 5
points centered at ±20 respectively, and two of which have 1000 points centered
at ±2 shown as black asterisks. The black curve is a kernel density estimate as
discussed in Section 15.1. The behavior of CI is shown by the red curve, whose
height is the value of CI for the clustering of the data set determined by the
horizontal coordinate. For example, at the coordinate shown by the vertical dashed
blue line, the first cluster is the set of points to the left, while second is those to the
right. The CI for that clustering is about 0.84, indicated by the height of the blue
circle. As the blue line is horizontally shifted, the circle traces out the red curve.
Note that CI = 1 at either end, because WCSS = TSS when one of the two
clusters is empty. As the blue line moves through the leftmost small cluster, the
red line comes down. It stays flat in regions where there are no data points. There
are two peaks near ±2 as the CI goes up in the middle of a cluster (because the
points in the cluster contribute to both terms of WCSS which has a major impact
on both cluster means). In the center region, both cluster means are essentially in
the middle of the respective clusters resulting in both terms of the WCSS being
much smaller. This shows both howCI can easily have multiple local minima, and
also the potential for many search methods to get stuck in a quite poor (in terms
of the resulting CI being far from the optimum value) local minimum. Note this
happens even in the simplest case of one dimension. It is natural to expect far more
treacherous behavior in higher dimensions.

-25 -20 -15 -10 -5 0 5 10 15 20 25
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1

Figure 12.2 One dimensional example, highlighting local minima challenges faced by CI .
Many random starts can be stuck in a local minimum whose CI is far from the global
minimum CI .

The standard k-means algorithm starts with some (perhaps random) set of can-
didate cluster means. The algorithm iterates through assignment of each data point
to the closest mean followed by re-computation of the cluster means. This iterative
process tends to converge to local optima, so sometimes several random restarts
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are used. There is a large literature on choosing initial values and restart methods.
A faster algorithm has also been proposed in Pelleg and Moore (1999).

The Four Cluster toy data set from Figure 12.1 is used to illustrate some of
the properties of k-means clustering in Figure 12.3. These graphics were created
using the Matlab function kmeans with default parameter choices. The upper left
panel shows the case k = 2. The optimal 2-means partition puts the green plus
signs into one cluster (still colored with the same green), and all the other points
into the other cluster (colored a common pink chosen as between the blue, cyan
and red colors). It is useful to imagine analogs of the right side of Figure 12.1
while interpreting these plots.

k = 2 k = 3

k = 4 k = 5

Figure 12.3 Demonstration of k-means clustering, using the Four Cluster data, for k =
2, 3, 4, 5. Shows care needs to be taken in interpretation.

The k = 3 panel in the upper right shows a reasonable 3 cluster labeling of this
data set, which nicely separates the 3 biggest clusters that were shown as green
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plusses, cyan squares and blue circles in the left panel of Figure 12.1. The latter
cluster is now colored magenta to reflect the union of the blue circles and the red
x signs.

One might hope that the lower left k = 4 clustering would yield the original
clusters as colored in Figure 12.1. However the stretch of the green plus signs
is such that the CI is made smaller by splitting that (note the darker and lighter
shades of green) while keeping the blue circles and red x signs in the same cluster.

The red x signs finally become their own small cluster in the case k = 5 shown
in the lower right panel, however the blue circles and cyan squares have now been
labeled as a single cluster colored an intermediate shade of blue, while the green
plusses are now split into three clusters indicated with different shades of green.
Deeper investigation showed that this is a local minimum of CI . Different starting
values gave a smaller CI , which gives the 4 colored clusters shown in the left of
Figure 12.1, with the green cluster split into two. This reveals an important aspect
of k-means clustering: care is needed about local minima, and the results can
be intuitively slippery, not always giving expected results. Hence it is best used
in situations where visual confirmation (e.g. with PCA or CVA, as illustrated in
Figure 11.5, scores distribution plots) can be done.

Cabanski et al. (2010) proposed the SWISS score (a renaming of the CI) for
comparison of various preprocessing methods in bio-informatics settings. It es-
sentially rates different approaches on how distinctly they allow a data set to be
clustered. A perhaps surprising finding is that when k > 2 clusters are of inter-
est, instead of using the k-means version of CI , it is better to use the average of
the pairwise CIs. This seems be related to the observation of Friedman (1996),
discussed in Section 11.3, that when extending a binary classification approach
to a multi-class context, a vote among pairwise classifications is better than the
one class versus the union of others approach. Permutation based inference for
SWISS, in the spirit of that described in Section 13.1, for assessing the statistical
significance of differences between preprocessing methods was also developed in
Cabanski et al. (2010).

The SigClust approach to confirming the presence of a cluster, described in
Section 13.2, uses k-means clustering in a direct and natural way. SigClust also
provides useful information when facing the challenging problem of choosing the
number of clusters k. A natural approach is to try several values of k. A drawback
of k-means clustering is that the clusters are not nested, i.e. there need not be
any relationship (such as inclusion or overlap) between clusters for a given k and
k + 1. An approach which does give a nested sequence of clusters is hierarchical
clustering discussed in Section 12.2.

12.2 Hierarchical Clustering

Hierarchical clustering gives a full dendrogram (i.e. nested set) of clusterings. An
example, again using the Four Cluster toy data set is shown in Figure 12.4. This
can be thought of in two equivalent ways.

One way of thinking, called divisive or top-down, is to start with the entire data
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set in one cluster, followed by a nested series of binary splits, until only singletons
(clusters with just one member) are left. Such splits are represented as horizontal
line segments in Figure 12.4, where the vertical line segments represent clusters.
Colored lines are used for those clusters which contain only points with that color
in the left of Figure 12.1. The length of each vertical segment indicates strength
of the cluster. The first split near the top separates the two red points from the
rest. The remainder is then split between the green cluster and the union of the
blue and cyan. Next, the blues and cyans are split. Vertical line segments above
this split are relatively long because the blues and cyans are closer together than
the other colored clusters. Remaining splits all happen within the colored clusters.
The corresponding vertical segments are relatively shorter because these smaller
clusters are much less distinct.

The other way to think of the dendrogram, called agglomerative or bottom-up,
is to start with all singletons (shown as the bottom of the dendrogram), and then
sequentially combine pairs of clusters until only the full data set in one big cluster
is left. As one moves up the dendrogram, first the points with common colors
are combined, and then finally those clusters get merged, with the blue-cyan and
green merge happening late which reflects the big distances between those.

As both ways of thinking result in the same dendrogram, either is fine for un-
derstanding the nested set of clusters. However, the difference becomes important
when considering computational issues.
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Figure 12.4 A dendrogram for the Four Cluster data, based on Euclidean distance and
single linkage. Reveals full nested series of clusters from one large cluster at the top to
singleton clusters at the bottom.

There are many ways to construct hierarchical dendrograms, most of which are
indexed by a distance (between data objects) and by a linkage (which basically
gives a notion of cluster separation). Several linkage functions are studied for the
Euclidean distance in Figure 12.5, for the same Four Cluster data set from the left
of Figure 12.1. In each case, the dendrogram has been cut at a level that mostly
results in four clusters (five in the lower right).

The upper left panel shows the results from Ward’s linkage (Ward (1963)),
which tends to target roughly equal splits. Hence the relatively large green cluster
is split (quite similar to the k = 4 results of k-means in Figure 12.3), and the
red and blue clusters are treated as just one. This is accomplished by minimizing
the within cluster WCSS as done by k-means. The results are generally different
(despite being similar in the bottom left of Figure 12.3 and the top left of Figure
12.5) because hierarchical clustering imposes nesting on the overall set of clusters,
minimizing WCSS only at each split.

The upper right panel shows average linkage, where the round but nearby cyan
and blue clusters are combined. The red points become their own small cluster,
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because average linkage does not prioritize similar cluster size. Finally because of
its length the long green cluster is split.

The lower left panel shows the result of single linkage. Single linkage essen-
tially takes the distance between clusters to be the minimum pairwise distance
between points, which gives the perhaps intuitively expected result in this two
dimensional case.

Single linkage is explored a little further in the lower right panel, where the five
cluster version is shown (corresponding to a lower cut in Figure 12.4). Note that
the fifth cluster comes from splitting the long green cluster. It is worth noting that
split is not near the center of the cluster as for some of the other linkages, but
instead happens at the biggest gap between green points as expected.

Euclidean, Ward, k=4 Euclidean, Average, k=4

Euclidean, Single, k=4 Euclidean, Single, k=5

Figure 12.5 Exploration of several common linkages in hierarchical clustering for the Four
Cluster data, all based on Euclidean distance. Shows single linkage gives perhaps the most
intuitive clustering in this 2-d case.

The distance measure also has a large impact on the clustering result, as shown
in Figure 12.6, for the same toy data set. All panels are again based on dendro-
grams (all using single linkage) cut at a level that results in four clusters. The
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lower right panel shows the result using the Spearman distance (one minus the
Pearson correlation between the vectors of the ranks), which is particularly un-
appealing, but makes the point that choice of distance measure can have a very
large impact on the result. The remaining panels are variations on cosine distance,
defined at (7.3). This is useful in situations where it is desirable to ignore scaling.
This distance is essentially based on angles (ignoring radii) in a polar coordinate
representation. The three panels make the point that choice of center (shown in
each case as the large black dot) of the analysis is critical to the result when us-
ing this cosine distance. In the upper left panel the center is taken as the overall
sample mean, which results in a fairly good clustering, that is very close to the av-
erage linkage result in the upper right of Figure 12.5. A deliberately poor choice
of center appears in the upper right panel of Figure 12.6, which results in com-
bining the blue and cyan clusters with most of the green, while pulling off small
bits of the greens and the reds as separate clusters. A better choice of centerpoint
appears in the lower left panel, resulting in the perhaps intuitively expected result.
This behavior is intuitively understood as dividing the data set into sectors whose
boundaries are determined by rays coming out of the centerpoint. The upper left
sample mean combined the blue and cyan clusters, as they must lie within the
same sector. The good clustering in the lower left used a center that exploits the
large gaps in angle (as targeted by single linkage) between the desired clusters.
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Cos Mean, Single Cos Bad, Single

Cos Good, Single Spearman, Single

Figure 12.6 Study, based on the Four Cluster data, of cosine distance with different choices
of center point, shown as a black dot. Mostly shows choice of centerpoint has a major
impact on the quality of the result. In addition the lower right panel demonstrates very
poor performance of the Spearman distance.

In summary, for this two dimensional toy data set, single linkage seemed to give
the most intuitively expected result, while Ward’s tendency to give even splits was
less useful. Other linkages such as average and complete (not shown here, but is
fairly similar to Ward’s) tend to lie between these extremes.

But this relative relationship between linkages changes markedly in higher di-
mensions, as shown using the High Dimensional Gaussian data in Figure 12.7.
That data set is n = 30 vectors of dimension d = 500 simulated from the standard
normal distribution. The clustering in both panels is based on Euclidean distance,
with single linkage used in the left panel, and Ward’s linkage in the right. Both
dendrograms are most easily interpreted from the viewpoint of starting at the top
and considering consecutive splits.

The single linkage (left) analysis starts by splitting off a singleton (one point
cluster), with all other points forming the remaining cluster. This pattern contin-
ues through most of the dendrogram. Because many such singletons is not a typ-
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ical goal of a cluster analysis, single linkage tends to be less appealing in higher
dimensions (despite the intuitively sensible 2-d performance in Figure 12.5).

On the other hand Ward’s linkage (right panel of Figure 12.7) shows a far differ-
ent behavior. This analysis favors splits which are relatively balanced, which may
be more useful, depending on the application. As for the 2-d examples considered
in Figure 12.5, other linkages (such as average and complete) tend to give results
that lie in between single and Ward’s linkage. It usually makes sense to try several
linkages, and ultimately use the one giving the most useful visual results for each
given situation.
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Figure 12.7 Dendrograms for the High Dimensional Gaussian data set (d = 500), using
Euclidean distance. Contrasts single linkage (left), which sequentially separates individu-
als, with Ward’s linkage (right), which tends to give more balanced splits. Colors highlight
important aspects in other plots.

Further insights into this clustering behavior comes from the scatterplot matrix
view of the High Dimensional Gaussian data set shown in Figure 12.8. Instead of
being based on PC directions as has been done in many other scatterplot matrices,
now the directions are chosen to highlight the first two singleton clusters corre-
sponding to the black vertical line segments in the left panel of Figure 12.7. This
is done using axes which are simply unit vectors pointing in the direction of each
of the two data points (shown as black circles in all panels), i.e. vectors of the form
x̃i
‖x̃i‖ . These points may seem surprisingly far from the rest (shown as red circles in
all panels) for Gaussian data. Also perhaps surprising is the orthogonality of these
outlier directions. However as shown in Section 14.2 this is actually quite natural
behavior for high dimensional Gaussian data. For contrast the third axis shows the
PC1 scores, i.e. the projections onto the PC1 eigenvector. Note that the sample
standard deviation of these scores is clearly larger than in the singleton directions,
which is why this is the PC1 direction. That sample standard deviation of these
PC1 scores may also appear to be surprisingly large for projections of standard
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normal data. This also turns out to be a natural aspect of high dimensional data,
as discussed in Section 14.1.
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Figure 12.8 Scatterplot matrix view of the (d = 500) High Dimensional Gaussian data in
Figure 12.7, using single linkage colors from the left panel. The first two axes show how
well the first two singleton clusters are separated from the rest of the data, which is why
they were chosen by single linkage clustering. The third axis is in the PC1 direction, for
contrast.

A quite different scatterplot matrix view of this same data set is shown in Figure
12.9, this time aimed at revealing the performance of the Ward’s linkage clustering
in the right panel of Figure 12.7. Colors come from the dendrogram in the right
panel of Figure 12.7, which was cut at a level resulting in four clusters. These
clusters are usefully visualized using Mean Difference directions as axes. The
first contrasts the Cyan vs. Blue clusters, and the second the Green vs. Red. Again
it is useful to compare with the PC1 scores shown as the third axis. As above, the
standard deviation in the PC1 direction is larger than for either of these two cluster
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differences. In parallel to the above discussion, the gap between these clusters may
appear to be quite large for standard normal data, but this turns out to be quite
natural using calculations as in Section 14.2.
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Figure 12.9 Another scatterplot matrix view of the High Dimensional Gaussian data as
Figure 12.8, this time illustrating the Ward’s linkage analysis, with colors from the right
panel of Figure 12.7. First two axes are based on colored cluster Mean Differences, Cyan -
Blue in the first direction, and Green - Red in the second. Third axis again shows the PC1
scores.

In summary, hierarchical clustering is a very flexible set of methods with great
potential for discovering interesting and important clusters in data. However, be-
cause there is no uniformly best clustering method (once again the “every dog has
its day” concept applies here), substantial prior knowledge is essential to use it
effectively. Also because there are so many choices and options available, con-
firmatory analysis becomes very important. The SigClust approach discussed in
Section 13.2 is useful for this.
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12.3 Visualization Based Methods

While formal clustering methods such as those described in Sections 12.1 and
12.2, are useful and direct ways to target clusters, the latter often appear naturally
in various data visualizations. Examples of this include the toy data set in Figures
4.3 and 4.4, as well as the Pan Can RNAseq data in Figure 4.7. Another exam-
ple of this is the Mass Flux data shown in Figure 12.10. This functional data set
(curves as data objects) was provided by Enrica Bellone of the National Center for
Atmospheric Research. Each curve is a characterization of an atmospheric cloud.
The top row shows the initial object centering operation, with the input curves
shown in the top left panel, the mean curve in the top center, and the recentered
data (the mean residuals) in the top right. The first mode of variation (best rank
one approximation of the centered data matrix) appears in the bottom left panel,
showing strong vertical variation mostly on the left side. The bottom center plot
shows the mean plus the largest (dashed) and smallest (dotted) of the curves in the
bottom left. Because of the sloping nature of the mean, this view reveals that this
mode of variation is actually about both the curve heights and also the location of
the peaks. The bottom right focuses on the scores (the coefficients of the curves
shown in the bottom left). The smooth histogram (kernel density estimate, Section
15.1) provides a strong indication of 3 bumps, suggesting clustering in this data
set. An important issue is whether or not these clusters represent important and re-
producible structure in the data, or are spurious sampling artifacts. This question
is addressed for this data set using the SiZer method in Section 15.4.3, where it is
seen that these three peaks are statistically significant in some sense. This turned
out to be consistent with three known important cloud types.
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Figure 12.10 PCA of the Mass Flux data. Top row shows impact of object mean center-
ing (raw data, mean and residuals). Bottom left shows the first mode of variation, center
shows relationship with mean, and bottom right shows the scores. Note smooth histogram
indicates 3 clusters in the PC1 scores.

Other visualization methods are also often used to discover clusters. In bioin-
formatics this is commonly done with t-SNE as illustrated in Figure 11.9, or with
UMAP as discussed in Section 11.2.

With any visual method for finding clusters, there are limits to how many clus-
ters can be perceived. In complicated situations, it can be useful to drill down.
That means to take each cluster found in an earlier step, and to separately visual-
ize that (e.g. using a new PCA on just the data in that cluster). Vidal et al. (2016)
have proposed an automated version of this called Generalized PCA.

A quite different approach to finding clusters is based on the Maximal Data
Piling (recall the acronym MDP) idea discussed in Figure 11.4 in Section 11.1.
Note that (with probability one for data from a distribution that is absolutely con-
tinuous with respect to Lebesgue measure) every binary partition of the data set
admits the MDP direction ŵMDP (as defined at (11.5)). The relative clustering
strength of each candidate partition is directly measured as the difference between
the two projection points of each class onto the ŵMDP vector, and the partition
that maximizes this can be regarded as the best partition in high dimensions. A
computational benefit to such an approach is that each ŵMDP can be computed
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relatively quickly, because the inverse of the sample covariance matrix,
(
Σ̂
)−1

,

only needs to be computed once. A major hurdle is that there are 2n−1 such bi-
nary partitions. An interesting open problem is to develop a heuristic to make this
approach computationally tractable.

12.3.1 Hybrid Clustering Methods

Clustering, i.e. unsupervised learning, has also been combined with other methods
in several interesting ways including
• Semisupervised Learning, see Chapelle et al. (2006). The idea here is that some

but not all of the class labels are known, which gives a methodology which is
somewhat between classification and clustering.
• Combining clustering with curve registration (as studied in Chapter 9), see

Bernardi et al. (2014b,a).
• Combining clustering with data integration (as studied in Section 17.2.3), see

Hellton and Thoresen (2014).



CHAPTER 13

High Dimensional Inference

Confirmatory analysis is a nearly completely dominant part of classical statistics,
as typically taught in modern courses. Much of this is based on fitting parametric
probability distributions to data, and basing inference such as hypothesis tests
and confidence intervals, on such distributions. As noted in Marron (2017a) and
Carmichael and Marron (2018), this approach lies at the roots of the scientific
method, which has provided great benefits to science over the years.

So far this approach has not been well developed in OODA contexts, often be-
cause in many OODA data settings such as the manifold data objects of Chapter 8
and the tree structured data objects in Chapter 10, suitable probability models are
not yet in common use. However as shown using the Overlapping Classes 1000
dimensional Gaussian data set in Figures 4.12 and 4.13, statistical confirmation is
a critically important task, to ensure that non-spurious and reproducible structure
has been discovered. Two main approaches to this are discussed in this chapter.
The DiProPerm hypothesis test, for testing the difference between two previously
labeled subgroups is discussed in Section 13.1. While it is tempting to use DiProP-
erm to assess the significance of subgroups found by clustering methods, it is
seen in Section 13.2 that this can be quite inappropriate. A test for significance of
clustering, that is appropriate in the challenging high dimensional context, called
SigClust, is described in Section 13.2.

13.1 DiProPerm - Two Sample Testing

A sensible way of understanding statistical significance of features observed in a
visualization is to use a hypothesis test directly related to that visualization. This
goal is achieved by the DiProPerm (for DIrection-PROjection-PERMutation) hy-
pothesis test proposed by Wei et al. (2016), discussed in Section 4.2. For example
the PCA scatterplot analysis of the d = 20, 000 dimensional Two Class Gaus-
sian data set in Figure 6.6 shows two distinct classes, which are not at all visually
apparent in the heat map view of the same data shown in Figure 6.5. Statistical sig-
nificance of this visual difference is investigated using DiProPerm in Figure 13.1.
The upper left panel shows the first step of DiProPerm: visualization based on the
MD (recall the acronym for Mean Difference from Section 11.1) direction and
projection of the data onto it, which clearly highlights this class difference. The
latter is quantified by subtracting the means of the projected classes, which gives
about 23.1, indicated using a vertical green line in the top right panel. Statistical
significance of this class difference is assessed using a permutation test.

The permuted null distribution comes from randomly relabeling the data, and
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for each of those recomputing both MD and the projections followed by recompu-
tation of the projected class mean differences. Two realizations of this process are
shown in the bottom panels of Figure 13.1. The colors and symbols indicate how
the permutation works. In the top left panel the magenta data are all indicated with
circles, with x signs for the green cases. In the bottom panels the same symbols
are used for each data point, but about half of the magenta circles have had their
label (i.e. class color) switched to green and similarly for the x signs. Note that the
horizontal scales in the bottom panels are different from the top left, and in fact
the two permuted group means, 20.04 and 20.02 are substantially smaller than
the 23.1 observed for the original data. Those are two of the black dots shown
in the permutation plot in the upper right panel of Figure 13.1, which are pro-
jected class differences from 1000 independent permutations. Note the black dots
reflect permutation differences that are all much smaller than the green line show-
ing this difference is strongly statistically significant. A quantification of this is
the empirical p-value, which is the proportion of the black dots to the right of the
green line, which in this case is 0. In situations where it is desired to compare
the significance of several DiProPerm results, empirical p-values are not useful
when both are 0, e.g. as for the Pan Cancer data shown in Figure 13.3. This issue
is usefully addressed with the Z-score, an alternate measure of significance. The
Z-score summarizes the distribution of the black dots using its mean and stan-
dard deviation, and measures significance of the DiProPerm test as the number of
standard deviations that the green line is above the mean, in this case about 30.5.
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Figure 13.1 DiProPerm analysis of the significance of the difference between the means of
the magenta and green classes (same symbols and colors) of the Two Class Gaussian data
shown in Figure 6.6. Upper left panel shows projections onto the MD direction, with class
contrast summarized by the difference of the class means (green line in the permutation
plot, top right panel). Bottom panels show two realizations of permuted class labels, whose
class mean differences are summarized in the top right panel. Shows class difference is
strongly significant, despite not being visible in the heat map view of Figure 6.5.

The choice of MD direction made in Figure 13.1 results in a hypothesis test
which is equivalent to a standard permutation mean test, i.e. projection is not
needed except for the visualization. However, as noted in Section 11.4 DWD
provides a direction which can be better in a number of senses, including data
visualization, in which case the projection step of DiProPerm is essential beyond
just visualization. The potential benefit of using the DWD direction in DiProPerm
is illustrated in Figure 13.3.

Figure 13.2 shows a DWD DiProPerm analysis of the Overlapping Classes data
from Figures 4.12 and 4.13. Recall the classes shown there were both sampled
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from the standard normal distribution, so there should be no significant difference,
yet the DWD projection suggested an apparent strong difference in the upper left
panel of Figure 4.13 (repeated in the left panel of Figure 13.2). The realizations of
the permutations (analogs of the bottom panels of Figure 13.1) are quite similar
to the left panel and are thus not shown here (and in other DiProPerm examples
in this section) to save space. The right panel shows the permutation plot with the
mean differences of the projections onto the DWD direction for 1000 permuta-
tions. Note that this time the green line lies in the middle of the null distribution
of black dots, as quantified by an empirical p-value of 0.82, showing this projected
difference is clearly not significant (again despite the contrary visual impression
in the left panel). As discussed in Section 4.2, this reveals how important it is for
exploratory data analysis to be complemented by confirmatory analysis.
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Figure 13.2 DiProPerm analysis of the Overlapping Classes data shown in Figures 4.12
and 4.13, using the DWD projection. Reveals that the apparent large gap between the
red and blue classes is not statistically significant. i.e. is an artifact of natural sampling
variation.

Given the goal of connecting inference with visualization by DiProPerm, there
are several reasonable choices of direction vector. E.g. the MD was used in Figure
13.1, while Figure 13.2 was based on DWD. An advantage of the MD is that it
is faster to compute. However the sharper class distinctions available from DWD
may be expected to give stronger inference, when there actually is a difference
between the groups. An example of this property is shown in Figure 13.3, using
the same log transformed Pan Cancer data (same colors and symbols) as in Figure
5.16. The top left panel shows the MD projection, which does separate the classes,
but the bottom left panel shows that projecting on the DWD direction gives a
cleaner separation. This can be seen from carefully studying the kernel density
estimates in the valley between the cancer types. This example also demonstrates
the value of the Z-score over the empirical p-value. In particular both of the latter
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are 0, yet the much larger Z-score (about 28.8 for DWD versus 15.9 for MD)
demonstrates that DWD gives much more powerful inference in this case. An
even more dramatic example of DWD giving stronger DiProPerm results appears
in the analysis of the Lung Cancer data discussed around Figure 13.12.

-40 -20 0 20
0

0.01

0.02

0.03

0.04

Projections on MD Direction

Mean-Diff = 44.8562

10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

1000 Mean-Diffs, from Permuted Labels

Mean-Diff = 44.8562

pval = 0

Z-score = 15.9288

-60 -40 -20 0
0

0.01

0.02

0.03

0.04

0.05

Projections on DWD Direction

Mean-Diff = 43.889

10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 Mean-Diffs, from Permuted Labels

Mean-Diff = 43.889

pval = 0

Z-score = 28.76

Figure 13.3 Comparison of MD and DWD directions in DiProPerm, using log Pan Cancer
data from Figure 5.16. The larger Z-score in the permutation plot (lower right panel) shows
that sharper class separation from DWD results in a more powerful hypothesis test.

Also important is the statistic used to summarize the difference between the
projected means, shown in green text in the projection plots and as a green vertical
line in the permutation plots. A perhaps natural choice is the 2 sample t statistic.
This is classical in conventional hypothesis testing because it incorporates sample
variability into the statistic. However, such incorporation is not needed here, as the
permutation already deals with this variation. Wei et al. (2016) showed that using
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the t statistic actually gives some instability causing a potential loss of power,
so the simple difference of the means is recommended instead. There are other
reasonable choices for quantifying differences in 1-d distributions, such as the
AUC from the ROC curve, discussed in Section 5.3.

Several DiProPerm analyses of the Drug Discovery data studied in Chapter 5
are summarized in Table 13.1. Recall from the full raw data PCA plot in Figure 5.3
a major goal for this data set was to contrast actives (red) from in-actives (blue), so
these are contrasted using DiProPerm hypothesis tests. All empirical p-values are
0, so again meaningful comparisons come from the Z-scores shown in the right
column of the table, with a relevant figure number shown for quick reference in the
middle. The second row shows the initial result of removing all variables with any
missings, which were coded as -999 (recall the finding of these was highlighted
in Figure 5.6). While the PCA for that data set has not been shown here, as it
is essentially the same as Figure 5.3, this shows that removal of these variables
actually has a meaningful effect.

Data Figure Number Z-score

Raw 5.3 10.4

No Missings 5.6 11.6

Binary Only 5.12 14.6

Standardized 5.15 17.3

Auto Log Trans’d - 17.8

Table 13.1 Summaries of DiProPerm Z-scores for various versions of the Drug Discovery
data studied in Sections 5.1 - 5.3. Shows improved separation of classes following improved
preprocessing.

The third row of Table 13.1 summarizes the application of DiProPerm to only
the binary data, whose PCA appears in Figure 5.12. Perhaps surprisingly this fil-
tering of the data contains more active - inactive information than the raw data,
as evidenced by the larger Z-score. The benefits of standardizing the non-binary
part of the data are clear from the larger Z-score in the fourth row (PCA in Figure
5.15). Some (fairly marginal) improvement comes from application of the auto-
matic shifted log transformation discussed in Section 5.3.

DiProPerm was motivated by the desire to quantify the reproducibility of
lessons learned from data visualizations. That goal is not standard in the area of
high dimensional hypothesis testing, where the focus is usually on optimization of
test power. Important references in that area include Bai and Saranadasa (1996),
Srivastava and Du (2008) and Chen and Qin (2010). A method quite similar to
DiProPerm was proposed by Ghosh and Biswas (2016). The statistical power of
DiProPerm has been substantially improved in strong signal cases by using bal-
anced permutations in Yang et al. (2021).
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13.2 Statistical Significance in Clustering

Another important type of confirmatory analysis is determining when clusters dis-
covered using say a method from Chapter 12 are “really there”, i.e. represent im-
portant and reproducible underlying population structure as opposed to being spu-
rious sampling artifacts. One might attempt to use a mean based hypothesis test,
such as the DiProPerm method of Section 13.1 to the discovered classes for this
purpose. However, as pointed out by Andrew Nobel, this is inappropriate as il-
lustrated in Figure 13.4. That analysis is based on the n = 100 two dimensional
standard normal data points displayed as a scatterplot in the lower right panel.
The colors and symbols used there show the result of an application of 2-means
clustering, which essentially splits the data in half. These can be considered to
be two classes whose mean difference can be tested with DiProPerm. Projection
onto the MD direction is shown in the upper left panel. One realization of the per-
mutation test is shown in the lower left panel, revealing a difference of projected
class means that is much smaller than in the upper left panel. This is born out
in the 1000 replication summary (upper right panel) where the Z-score of about
11.5 shows the red and blue class means are clearly different. However, because
the data are a single standard normal cluster, it does not make sense to conclude
that there are two distinct clusters here. The lesson is that DiProPerm is about
the difference in means of given classes, which is different from determination of
clusters, so another approach is needed for clustering applications.
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Figure 13.4 Simple 2-means clustering example to illustrate how DiProPerm applied in
clustering contexts may inappropriately indicate clusters. Raw data in the bottom right are
clearly a single (in fact Gaussian) cluster, yet the DiProPerm (applied to the two colored
groups in the lower right) result shown in the permutation plot (top right) is clearly strongly
significant.

The first major hurdle to construction of a test for statistically significant clus-
ters is to define the notion of cluster. Tibshirani et al. (2001) suggest thinking
about circular uniform distributions, as a conservative approach, but there are not
natural probability mechanisms which generate that. A reasonable null hypothe-
sis for naturally generated clusters is the Gaussian distribution, proposed by Sarle
and Kuo (1993). That idea underlies the SigClust hypothesis test proposed by Liu
et al. (2008) and substantially improved by Huang et al. (2015).

SigClust assesses how well a single Gaussian distribution fits the data set, by
measuring goodness of fit using the 2-meansCI (Cluster Index, defined at (12.1)).
A p-value (or Z-score) can be estimated by comparing the CI from the data with
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a null population generated by simulating data sets of the same size n from a fitted
Gaussian distribution. It is worth noting there are two useful SigClust tasks, which
are handled in a similar way.
1. Confirmatory SigClust. Testing whether a given clustering (i.e. set of labels)

is significantly different from a fitted Gaussian distribution. Such labels could
come from some extrinsic information, or just from a visual impression, when
there is interest in whether the clusters are “really there”. Here the focus is
on whether or not the given CI is smaller than those of the null Gaussian
distribution.

2. Exploratory SigClust. Investigating whether a data set should be considered to
be more than one cluster. In this case comparison is done between the 2-means
CI (recall the minimizer over all potential clusterings) for the data and the null
Gaussian CI distribution.

Such a p-value from this second approach, for the data in Figure 13.4, appears
in the lower right panel. This is clearly insignificant as expected from underlying
Gaussian data, so SigClust gives an appropriate answer of one cluster in this case.

The next major hurdle is estimation of an appropriate Gaussian null distribu-
tion. In most situations it will be inappropriate to use a spherically symmetric
Gaussian distribution. Thinking about the Four Cluster data set in the left panel of
Figure 12.1, the blue circles and the cyan squares each seem to constitute separate
clusters. But what about the collection of green plus signs? Using the definition in
terms of coming from a single Gaussian this is taken here to be a single cluster,
although others might prefer a different choice. Also thinking about the Gaussian
based definition of cluster, the two red points are regarded as their own small clus-
ter, as single sufficiently extreme outliers are also regarded as singleton clusters.

Various subsets of the two dimensional Four Cluster data in the left panel of
Figure 12.1 are used to build intuition for SigClust. The straightforward case of
just the blue circles and cyan squares is considered in Figure 13.5. Note that just
those two clusters are in full color in the left panel, while the other points are
gray because they are not used in this example. Also shown in the left panel is
an elliptical contour of the fit Gaussian density together with a sample of the
same size drawn from that density (black stars). Finally the CI using the blue and
cyan labeling (hence using SigClust in confirmatory mode) is shown near the top
(CI = 0.085), and also is the horizontal coordinate of the green line in the right
panel. As expected, that is much smaller than the CI of the black points shown
near the bottom (CI = 0.462). The cluster labeling used for the black points
comes from applying two means clustering, which aims to minimize the CI over
all possible class labelings, as discussed in Section 12.1. The comparison of the
data CI with the null distribution is shown in the right panel. The black dots are
1000 realizations of the CI from data drawn from the Gaussian fit. Generally in
SigClust, a real data CI (shown in green) that is smaller than the simulated null
CI population provides strong evidence of more than one cluster (in contrast to
DiProPerm where larger values are more significant). In this example, the green
line is much smaller than the simulated null distribution, indicating strong signif-
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icance. These SigClust results are reported in a similar fashion as in Section 13.1,
where the empirical p-value is the proportion of black dots to the left of the green
line, and the Z-score represents the number of standard deviations the green line
is to the left of the black dot null population (again being useful for comparing
results with 0 p-values).
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Figure 13.5 SigClust analysis, using the given cluster labels of the blue and cyan clusters
in the Four Cluster data. Shows a strongly significant result.

Potential splitting of the long green cluster is studied in Figure 13.6, using a
similar graphic. This time only the green points are not grayed out, and are used
in the calculation. Here SigClust is used in the exploratory mode described above,
so no input clustering is used, and instead SigClust only aims to assess whether or
not the long green cluster should be split. Because there is no input clustering, no
CI is shown in the left panel. However, everything else is similar to before, with
an overlay of the fit density contour, and a corresponding simulated Gaussian data
set of the same size. This time the distributional summary plot in the right panel
shows the data CI (green line) is well in the middle of the null population of
black dots. Hence there is no evidence for more than one cluster in this case, also
as expected.
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Figure 13.6 SigClust investigation of whether to split the long green cluster in the Four
Cluster data. Large p-value indicates a statistically significant split has not been found, i.e.
the green plus signs are a single cluster.

A much more challenging case is the union of the long green cluster and the red
outliers, shown in Figure 13.7. The format is the same as the two figures above,
but now the surprising feature is that the data CI is actually larger than the sim-
ulated null population. This is caused by the severe imbalance between the given
cluster sizes. The 2-means clustering based null distribution of CIs essentially
starts with the black points in the left panel, which are more spread than the green
points because of the influence of the red points on the sample covariance matrix
estimate. These black points are split in half (as shown in the right panel of Fig-
ure 12.1) and the correspondingWCSS is compared with the overall TSS (recall
this Sums of Squares notation from (12.1)). On the other hand the given clustering
CI (the vertical green line in the right panel) is relatively closer to 1 because the
very few red outliers have a relatively small impact on either the WCSS or the
TSS, which are thus close to each other. Note that the resulting hypothesis test in
this case is still valid, but it is important to realize that it can be quite conserva-
tive in the case of strongly unbalanced cluster sizes. An interesting open problem
is the development of a modified SigClust that gives better performance in the
unbalanced case.
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Figure 13.7 Challenging (subset of the Four Cluster data) case for SigClust, with the long
green and small red clusters input. Given CI (based on green (plus) vs. red (x) labels) is
actually larger than the null distribution, because of the severely unbalanced class sizes.

13.2.1 High Dimensional SigClust

The above two dimensional examples are relatively simple, since good estimates
of the fit Gaussian distribution, N2 (µ,Σ) on R2, are available. But construction
of decent estimates is much more challenging in higher dimensional cases. Some
serious reduction of this problem can be made by exploiting invariance properties
of the Cluster Index, CI . The first one is shift invariance, which is the fact that if
an entire data set is shifted in any direction by a constant amount the CI remains
the same. For this reason, there is no need to estimate the population expected
value µ of the Nd (µ,Σ) distribution, instead the simulations can equally well be
drawn from the Nd (0d,1,Σ) (using the zero matrix notation from (4.2)) distri-
bution. The second key property of the CI is rotation invariance, where a rigid
rotation of the full data set similarly leaves the CI unchanged (because all the line
segments in the right panel of Figure 12.1 will keep the same lengths in a rigid ro-
tation). The value of rotation invariance comes from the eigen (spectral) analysis
of the underlying population covariance matrix Σ = UΛU t where U ∈ O(d)
(the orthogonal group of matrix transformations defined in Section 7.3.5), and Λ
is the diagonal matrix of eigenvalues. See Section 17.1.2 for more discussion of
eigenanalysis. Hence by a suitable rotation of the data, it is enough to draw the
null hypothesis data from theNd (0d,1,Λ) distribution. Given a set of eigenvalues
λ1, · · · , λd along the diagonal of Λ, this simulation is straightforward by draw-
ing standard normal vectors and rescaling the jth entry by λj for j = 1, · · · , d.
Note that for high d this is computationally much more efficient than using pack-
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aged multivariate Gaussian data generation functions, because those tend to entail
working through a d× d covariance matrix, as discussed in Section 17.1.4.

It remains to estimate Λ, which is challenging in the case of d > n. There
are two major problems in this case. The first is that only the first n eigenvalues
(or maybe n − 1 when mean centering has been done) of the sample covariance
matrix are nonzero. The second is that the nonzero sample eigenvalues tend to
over estimate their corresponding underlying theoretical eigenvalues, because the
additional energy (quantified as sums of squares about the mean as discussed in
Section 3.1) generated by the theoretical eigenvalues that are not represented gets
added in. This seems to result in a conservative null distribution, first pointed out in
Liu et al. (2008), because simulating data in a lower dimensional subspace results
in a smaller CI despite the larger eigenvalues. An open problem is theoretical
verification that use of the sample covariance matrix Σ̂ (defined in (3.5)) always
leads to conservative inference in SigClust.

Some assumptions need to be made to address this. A common assumption,
which makes sense in many (but it is important to note not all) real data situations
is that there is essentially a strong low rank signal together with some relatively
small scale noise that is isotropic, i.e. has the same variance in all directions.
One model for isotropic noise is a Gaussian distribution with all eigenvalues the
same (i.e. diagonal covariance matrix). However this holds for any multivariate
distribution generated by independent marginals with the same variance (not even
the same distribution is needed). To see why, note that for independent random
variablesX1, X2 each with variance σ2, the variance of the projection of (X1, X2)
onto the arbitrary unit direction (cos θ, sin θ) is

var (X1 cos θ +X2 sin θ) = var (X1) cos2 θ + var (X2) sin2 θ = σ2. (13.1)

Similar calculations are straightforward for directions in higher dimensions. In the
isotropic errors case, the problem of estimating Λ has been effectively solved by
Huang et al. (2015).

An example where the assumption of a strong low rank signal plus additive
isotropic noise makes sense is the Pan Cancer gene expression data studied in Sec-
tion 4.1.4. Here only the n = 50 Kidney Cancer cases (blue diamonds in Figure
4.9) are studied. The data objects are vectors where each of the d = 12478 entries
represents activity of a gene. These entries are essentially counts measured with
random variation. Those counts are large enough that on the log scale the random
variation is roughly Gaussian. This (appropriate for high dimension eigenvalue es-
timation by SigClust) behavior is verified using the diagnostic plot in the left panel
of Figure 13.8. That graphic studies the distribution of all 50× 12478 = 623, 900
entries of the data matrix (called pixels in titles in Figures 13.8 and 13.11). Be-
cause the full jitter plot of this data set would result in massive overplotting, just
a random sample of 5000 green dots is shown. Those points show a distribution
which is highly concentrated near 0 with some substantial outliers. The latter is
driven by the low rank signal structure (much of which is appropriately captured
by the first principal components), while the smaller scale noise appears in the
middle. This behavior is nicely reflected by the blue curve which is a kernel den-
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sity estimate (discussed in more detail in Section 15.1). That suggests the random
noise part of this distribution is approximately Gaussian (i. e. suggests strong po-
tential for an isotropic background noise distribution). The variance of this back-
ground noise distribution is very useful for essentially interpolating those zero
sample eigenvalues.
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Figure 13.8 SigClust diagnostics for the Kidney Cancer type from the Pan Cancer data.
Left panel studies the distribution of all entries of the data matrix, suggesting an isotropic
Gaussian background noise distribution. Right panel is fit Gaussian Q-Q plot indicating
good fit of the suggested distribution within the quartiles.

The full sample standard deviation (about 1.15 for this data set) provides an
inappropriate estimate of the background standard deviation, because it strongly
feels the relatively few, but quite large, signal values. Scale measures that are much
less affected by large values have been developed in the field of robust statistics,
which is overviewed in Chapter 16. For the estimation of the background noise
standard deviation, it is desirable to use a method which nearly ignores values
outside the quartiles such as the (Gaussian rescaled) Median Absolute Deviation
(MAD) from the median, σ̂MAD. For a data set of size m (in Figure 13.8 m =
d× n), x̃1, · · · , x̃m, this is defined as

σ̂MAD = median
i=1,··· ,m

(∣∣∣∣x̃i − median
j=1,··· ,m

(x̃j)

∣∣∣∣) /Φ−1 (0.75) , (13.2)

where Φ denotes the standard Gaussian cumulative distribution function. The
purpose of that rescaling by Φ−1 (0.75) (which is the theoretical MAD of
the standard Gaussian distribution) is to put the σ̂MAD on a Gaussian scale
in the sense that when applied to a large Gaussian data set it appropriately
estimates the population standard deviation. The Gaussian density with stan-
dard deviation taken to be σ̂MAD = 0.781 (and centered at the sample me-
dian µ̂MED = −0.02 which similarly ignores the outlying values) is shown
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using the red dashed curve in the left panel of Figure 13.8. Note that it ap-
pears to fit the central “background noise” part of the distribution quite well. A
more precise view of this goodness of fit appears in the QQ plots shown in the
right panel of Figure 13.8. This version of the QQ plot shows the sorted data
x̃(1), · · · , x̃(m) on the vertical axis versus the corresponding estimated Gaussian

quantiles µ̂MED + σ̂MADΦ
−1
(

1
m+1

)
, · · · , µ̂MED + σ̂MADΦ

−1
(

m
m+1

)
on the

horizontal axis, as the red curve. When the given distribution fits the data, the QQ
curve should roughly follow the green curve, which is the 45 degree line. In this
case the fit is good for the part of the data between the quartiles, but quite bad
for the outlying data points (which again represent important signal in the data)
suggesting that the background noise standard deviation has been effectively esti-
mated.

Use of this isotropic background noise estimate to provide a reasonable full
set of estimated eigenvalues is shown in Figure 13.9. Each panel shows various
eigenvalues on different scales. The top two panels study the full set of d = 12478
eigenvalues, while the bottom panels are the same as the top, but are zoomed into
just the first 100 eigenvalues (as the structure of those important eigenvalues is
essentially squished into the vertical axis because 100� 12478). Both panels on
the left use the original variance scale on the vertical axis, while the log10 scale
is used in both right hand panels. In all panels the sample eigenvalues (this is the
scree plot introduced in Figure 3.5) are shown using black circles. Note that there
a few extremely large eigenvalues and many much smaller ones. Only 49 = n− 1
of the log scale sample eigenvalues appear (because the log10 0 is undefined and
thus not plotted).

The magenta horizontal line shows the background variance that is estimating
the variance of the noise part of the model. An important goal of the eigenvalue
estimation is to keep the total energy of the estimated eigenvalues (i.e. their sum)
equal to the total energy of the data (i.e. the sum of squares about the mean, which
is the sum of the eigenvalues). Replacing the 0 sample eigenvalues with the es-
timated background variance adds a lot to the total, which thus motivates some
shrinkage of the nonzero sample eigenvalues. Appropriate shrinkage formulas
have been developed in Huang et al. (2015), and the resulting estimated eigen-
values are shown as the red dashed curve in each panel of Figure 13.9. Note that
on the right side (indeed most) of each panel, this dashed red curve is the same as
the magenta line. It rises for the first few eigenvalues, but represents substantial
shrinkage from the black circle sample eigenvalues, again with the goal of making
the total energy the same. For some data sets, the total energy in the sample eigen-
values (their sum) may be less than d times the background variance. In this case,
the background noise is clearly not isotropic so this estimation scheme cannot be
used. Hence one must resort to simply using the sample eigenvalues. As noted in
Liu et al. (2008), this results in a conservative SigClust, so the result is valid but
the test may be less powerful in those situations.
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Figure 13.9 Various estimated eigenvalues for the Kidney Cancer data. Sample eigenval-
ues are shown as black circles. Improved estimates, that both incorporating the estimated
isotropic background noise variance (shown as the horizontal magenta line) and also keep
the total energy constant, are shown as the red dashed curve.

The results of using SigClust to investigate splitting the Kidney Cancer data
from Section 4.1.4 (thus working in the second mode described above) are sum-
marized in the p-value plots of Figure 13.10. The left panel uses Gaussian data
simulated from the carefully estimated eigenvalues shown as the red dashed curve
in Figure 13.9. Note that none of the Gaussian simulated black dots lies to the left
of the vertical green line, giving an empirical p-value of 0. This is strong evidence
that there are at least two clusters in the Kidney Cancer data indicating the ex-
istence of cancer subtypes, which is consistent with the results of Ricketts et al.
(2018) and with the analysis in Section 15.4.4.

The right panel of Figure 13.10 shows the result of replacing the careful eigen-
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value estimates (the red dashed curve in Figure 13.9) with the sample eigenvalues
(the black circles). With that estimate the p-value is only about 0.14, no longer
statistically significant in the classical 0.05 sense. So this is an example where the
method of eigenvalue estimation clearly matters and the sophisticated approach of
Huang et al. (2015) is worthwhile. It also is an example of the conservative nature
(especially in high dimensions) of the use of naive sample eigenvalues in SigClust
discussed above.
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Figure 13.10 SigClust p-values for the Kidney Cancer data. Left panel shows that careful
eigenvalue estimation (red dashed curve in Figure 13.9) gives a statistically significant
result, indicating this cancer type has potentially important subtypes. Right panel reveals
that naive sample eigenvalue estimation (black circles) gives a too conservative (not even
significant) result in this same case.

For effective use of SigClust it is also important to realize there are cases where
the sophisticated shrinkage eigenvalue estimates demonstrated in Figure 13.9 are
inappropriate. An example of this is the Lung Cancer data studied in Section 4.1.3
where clusters were seen to be of keen interest. Figure 13.11 investigates whether
the red and blue clusters visually brushed in Figure 4.7 are a statistically signif-
icant separation using the confirmatory version of SigClust (i.e. based on given,
in this case manually selected, cluster labels). The left panel is the first SigClust
diagnostic plot showing the distribution of all entries in the data matrix, which is
far different from that shown in Figure 13.8. While both distributions are based on
logs of counts (plus 1), here there are far more 0s and many other very small dis-
crete values (appearing at log10 of small positive integers), so no Gaussian back-
ground distribution is apparent. In this case it is recommended to use the conser-
vative sample covariance eigenvalues in the application of confirmatory SigClust.
One can plunge ahead with the formulas developed above for the isotropic back-
ground variance case, but there are serious consequences for this data set. In par-
ticular d times the estimated background noise is now larger than the total sum
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of squares about the mean (energy in the data), so the estimated eigenvalues are
all simply the background variance, i.e. the dashed red curve in the analog of Fig-
ure 13.9 is completely flat. This puts the simulated Gaussian data at the heart of
the SigClust p-value computation into the HDLSS isotropic domain that will be
studied in Section 14.2, where all simulated data are essentially equidistant from
each other, as characterized in (14.5). This results in simulated CIs being very
similar to each other, so the Z-score (whose denominator is the standard deviation
of the black dots) is unrealistically negative (in the thousands in this case, since
the standard deviation of the black dots is so small). Hence this violation of the
isotropic background noise distribution can result in a seriously anti-conservative
SigClust result. Thus the diagnostics are important in high dimensional situations.

The result using the sample eigenvalues, recommended when the isotropic
background diagnostics fail, is shown in the right panel of Figure 13.11. This
shows that the red and blue clusters in Figure 4.7 are clearly statistically signifi-
cant. This is consistent with the explanation of those clusters from the discussion
of Figure 4.8.
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Figure 13.11 SigClust for the red vs. blue clusters in the Lung Cancer data of Figures 4.5-
4.8. Diagnostic plot in the left panel reveals no underlying Gaussian background noise.
SigClust using sample covariance eigenvalues shows these clusters are statistically signif-
icant in the right panel.

Figure 13.12 shows another analysis of the Lung Cancer data studied in Figures
4.5-4.8. An application of SigClust, to separate the blue cluster from the union of
the red and gold (shown as an intermediate orange color in Figure 13.12) gave
a p-value of 1. The p-value plot looks much like the right panel of Figure 13.7,
and hence is not shown here. The scatterplots of Figure 13.12 show that this was
caused by the orange cluster really consisting of two clusters so the WCSS is
much bigger than the WCSS that results from just splitting all of the data. This
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shows that SigClust is best used together with data visualization, not as a blind
hypothesis test. This data set also provides an example where the DWD version
of DiProPerm (which had a Z-score of 55.3) gave a much stronger result than the
MD version (Z-score of 9.2). The left panel of Figure 13.12 shows the projections
of the data onto the orthogonal MD direction. Note that MD gives a rather poor
separation of the two classes. On the other hand, the projection onto the DWD
projection in the right panel (again together with the orthogonal PC1 direction)
shows much better class separation which is why the DWD Z-score is so much
better. Of course the use of DiProPerm is not really appropriate here as these
clusters were visually chosen.
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Figure 13.12 Scatterplots of projections of Lung Cancer data from Figures 4.5-4.8.

Other approaches to testing significance of clustering can be found in McShane
et al. (2002), Tibshirani et al. (2001); Tibshirani and Walther (2005) and Suzuki
and Shimodaira (2006). A different approach is Bayesian inference based on nor-
mal mixtures, as in Richardson and Green (1997) and Bouveyron et al. (2019).
Yet another interesting way to think of importance of clusters is via their stabil-
ity using consensus clustering proposed by Monti et al. (2003), with a Bayesian
variation by Lock and Dunson (2013).





CHAPTER 14

High Dimensional Asymptotics

A key insight of classical mathematical statistics is that asymptotic analysis pro-
vides a useful tool for understanding the fundamentals that underlie complicated
statistical contexts. Limiting operations as the sample size n → ∞ have been a
workhorse approach that has revealed very many foundational statistical discover-
ies, e.g. those related to laws of large numbers and the central limit theorem. These
have been so useful that some have developed the mistaken idea that asymptotics
should only be about growing sample sizes and their impact on statistical anal-
yses. A central theme of this chapter is that in the modern era of very large and
complex data sets, many less familiar but very useful insights are available from
the use of more general limiting operations involving both the sample size n and
the dimension d.

As noted in Shen et al. (2016b,a), there are several domains of quite different
and important asymptotic insights available, that are usefully indexed by the re-
lationship between the sample size n and the dimension d. Important early work
on the asymptotics of high dimensional statistical methods was done by Portnoy
(1984, 1985, 1988), who studied various robust methodologies using the limit as
n → ∞ together with the dimension d growing at the rate d ∼ n1/2. A different
domain is the large literature on random matrix theory, where n and d grow at the
same rate, some basics of which are briefly reviewed in Section 14.1. Perhaps sur-
prising is the idea that anything useful at all can be shown in yet another domain
where d → ∞ for fixed n (i.e. growing and hence increasing noise, but a fixed
number of data objects), as discussed in Section 14.2. A few ideas about the case
where both grow, but d grows more quickly than n are studied in Section 14.3.

It is worth noting that at the time of this writing, a number of the ideas and
views expressed here are directly contrary to the currently prevailing opinion of
the theoretical statistics community. The latter is perhaps summarized in Section
8.3 of Wainwright (2019): ‘does PCA still perform well in the high-dimensional
regime n < d? The answer to this question turns out to be a dramatic “no”.’
That view notably clashes with the experience of practioners who actually ana-
lyze data: PCA frequently gives useful visual insights for very high dimensional
data. Clear examples in this book include the Lung Cancer data in Section 4.1.3,
the Pan Cancer data in Section 4.1.4, and the GWAS data in Section 16.2.2. The
resolution of this apparent paradox, as well as some others also based on such
misinterpretations of the asymptotic theory, can be found in Section 14.2.

297
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14.1 Random Matrix Theory

Random matrix theory is centered on the eigenvalues of the sample covariance
of a d× n matrix of independent standard Gaussian random variables. Motivated
by a model for the nuclei of heavy atoms in nuclear physics, Wigner (1955) first
studied square d×dmatrices of more general independent random variables (with
common variance) as d → ∞, including providing a semi-circle law for the dis-
tribution of the eigenvalues of the random matrix. Marčenko and Pastur (1967)
explored the asymptotic distribution of the eigenvalues (studied around (17.21))
of sample covariance matrices (defined in (3.5)). Those matrices are based on
i.i.d. Nd

(
0d,1, σ

2Id
)

(using the notation of (4.2), 0d,1 is the d × 1 vector of ze-
ros) random vectors z̃1, · · · , z̃n ∈ Rd. The limiting operation lets both n → ∞
and d→∞ with d

n → c. The density of the asymptotic eigenvalue distribution is
given in (14.1). That distribution tends to Wigner’s semi-circle law as c → 0 and
also (ignoring zero eigenvalues) as c→∞.

Figure 14.1 provides an illustration of the basic ideas. For simplicity, all panels
are based on a d×nmatrix X̃ of independent standard Gaussian random variables
where the common variance σ2 is taken to be 1. An approximation of the sample
covariance matrix, which is particularly simple to work with, is the outer product
Σ̃ = 1

nX̃X̃
t
. This is not quite the d×d sample covariance matrix (when thinking

of the columns of X̃ as data objects), because the sample mean has not been
subtracted. However, because the expected value of each entry is 0, this is still
a reasonable estimate of the underlying theoretical covariance matrix, Σ = Id.
In fact it is the maximum likelihood estimate of Σ under the assumption that the
sample mean is 0d,1. The left panel of Figure 14.1 shows scree plots (recall from
Figure 3.5 this is a plot of the sorted eigenvalues of Σ̃ as a function of the PC index
j = 1, · · · , d) in the case d = 100, for several values of n. Since Σ̃ estimates Id,
each eigenvalue can be viewed as an estimate of 1, shown as the horizontal dashed
line. For the very large n = 10, 000 (shown in green) the eigenvalues are rather
close to 1, although there is some natural variation as seen. That variation grows
as n is reduced to 1000 (shown in red) and to 300 (blue). There is a growing
asymmetry which becomes especially strong at n = 100 (black). The asymmetry
can be thought of as being caused by the constraint that eigenvalues must be non-
negative (actually positive in this case).

While the left panel of Figure 14.1 explores differing matrix shapes, the case
of constant matrix shape is considered in the center panel. The shape is constant
in the sense that d

n = c, with c = 1
5 there. While sampling variation is visible

for the magenta eigenvalues for n = 500 and d = 100, it diminishes for the
cyan case where n = 2000 and d = 400, and looks essentially like a smooth
curve for the yellow n = 8000 and d = 1600. To make this apparent convergence
occur, the horizontal axis has been rescaled to j

d for each case. The right panel
shows a useful conceptual viewpoint of the limit of this process, by studying the
distribution of the cyan (n = 2000 and d = 400) eigenvalues. The vertical axis
shows the binning of these into a 50 bin histogram. That histogram approximates
the c = 1

5 version of the Marčenko-Pastur distribution, which essentially reflects
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the limit of the apparent curves in the center panel as n, d → ∞ (with d
n = 1

5 ).
Good overview of many aspects of Marčenko-Pastur theory can be found in the
monographs Bai and Silverstein (2010) and Yao et al. (2015).

Figure 14.1 Scree plots motivating Marčenko-Pastur distributions, using i.i.d. standard
Gaussian samples. Left panel illustrates differing distributional shape over n = 100
(black), n = 300 (red), n = 1000 (blue) and n = 10, 000 (green), all for d = 100.
Center panel shows stability of distribution for common c = d

n
= 1

5
, in the cases n = 500

(magenta), n = 2000 (cyan) and n = 8000 (yellow), using decreasing symbol size for
clear visibility. Right panel shows how binning of eigenvalues generates a histogram esti-
mate of the Marčenko-Pastur distribution (shown as the thin curve) for the cyan n = 2000,
d = 400 case.

Generally in that limit as n, d → ∞ with d
n = c the vertical histograms, as

illustrated in the right panel of Figure 14.1 converge to the Limiting Spectral Den-
sity (LSD) shown as the thin curve, which is the density of the Marčenko-Pastur
distribution indexed by c. First consider the case c < 1 (i.e. d < n), where the
sample covariance matrix Σ̂ has no zero eigenvalues (with probability one). Fig-
ure 14.2 shows the LSD for several values of c. In the more general case where
the Gaussian variance is σ2, the LSD has the form

LSDc,σ2 (x) =
1

2πcσ2x

√
(b− x) (x− a)1[a,b] (x) , (14.1)

where 1[a,b] denotes the indicator function (defined at (11.2)) on the interval [a, b],
a = σ2 (1−

√
c)

2 and b = σ2 (1 +
√
c)

2. This probability distribution has the
perhaps surprisingly simple expected value σ2 and variance cσ4. The LSDc,1 (x)
curves (note the case σ2 = 1) for several values of c are plotted in Figure 14.2.

The red curve shows the case c = 1
3 = 100

300 , which gives the LSD corresponding
to the red scree plot in the left panel of Figure 14.1. The lower density height on
the right corresponds to the increased spacing between red circles on the left side

of the scree plot. The upper end of the support of the LSD, b =
(

1 +
√

1
3

)2

≈
2.49, also fits well with the top red circle. The higher density to the left of 1.0 is
essentially caused by the eigenvalues being constrained to be positive. Note that
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there is a distinct lower support point a =
(

1−
√

1
3

)2

≈ 0.18 to the LSD as well,

i.e. even in the limit as n, d→∞ (with c = d
n = 1

3 ) these eigenvalues are bounded
above 0. Another aspect of the LSD that is visually clear is that it is vertical at the
support points, in the sense that its slope is infinite there (recall the unit semi-
circle has the same property where it intersects that horizontal axis). This can be
mathematically checked by calculating limx↓a and limx↑b of the derivative of the
LSD.
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Figure 14.2 Marčenko-Pastur distribution LSDs for examples in the left panel of Figure
14.1 using same colors; black for c = 1, red for c = 1

3
, blue for c = 0.1 and green for

c = 0.01. Shows wide array of shapes of this distribution.

The black curve in Figure 14.2 is the LSD for c = 1, which explains the
structure of the black scree plot in the left panel of Figure 14.1. Note that the
highest black circle is around the upper support point b =

(
1 +
√

1
)2

= 4.
This LSD is very strongly skewed and in fact has a pole at its lower support
point a =

(
1−
√

1
)2

= 0. That again can be checked by calculating the
limx↓0 LSD1,1(x).

The case of c = 0.1 = 100
1000 is the blue curve, which models the blue scree

plot in the left of Figure 14.1. As the larger sample size n = 1000 results in the
blue circles having much less variation, the support points have moved towards 1
(indicated by the vertical dashed line in Figure 14.2). In particular, they are now
a =

(
1−
√

0.1
)2 ≈ 0.47 and b =

(
1 +
√

0.1
)2 ≈ 1.73, which fits with the top

and bottom blue circles in the left panel of Figure 14.1. Also note that the shape
of the LSD has now changed substantially, in particular it is concave everywhere,
versus having the convex region that was present for the smaller values of c.

The support points come even closer to 1 in the case c = 0.01 shown as the
green curve, again predicting the structure of the green scree plot in the left of
Figure 14.1. Note that now the shape is becoming rather symmetric, as it converges
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to a rescaled version of Wigner’s semi-circle distribution as discussed above. Also
the support points a =

(
1−
√

0.01
)2 ≈ 0.81 and b =

(
1 +
√

0.01
)2 ≈ 1.21 are

now becoming closer to equidistant to 1.
A parallel Marčenko-Pastur theory for the alternate matrix shape case of c > 1,

i.e. d > n, can also be derived. In this case the sample covariance matrix Σ̂ (de-
fined at (3.5)) has (with probability one) d−n+1 zero eigenvalues (the +1 is due
to object mean centering). Hence the limiting spectral distribution of the eigenval-
ues is a mixture of a discrete point mass at 0 (with weight 1 − 1

c ) together with
a continuous density which is a rescaling of (14.1) (with weight 1

c ). Using Sin-
gular Value Decomposition ideas as in Section 17.1.2, the nonzero eigenvalues of
X̃X̃

t
are the same as the eigenvalues of the corresponding Gram Matrix X̃

t
X̃ ,

i.e, the matrix of inner products of the columns of X̃ . The normalization factor
of 1

n in the sample covariance matrix results in diagonal entries which are sample
variance estimates (of the underlying theoretical variances which are all 1) com-
puted as sums of squares of n Gaussians. In the Gram Matrix case, the n diagonal
entries are now sums of squares of d Gaussians, so a normalization of 1

d is needed
for these n diagonal entries to estimate 1, i.e. the sample variances essentially es-
timate c = d

n . This calculation reflects the fact that for d � n there is far more
variation being summarized by each of the n nonzero eigenvalues in the d × n
matrix. Hence, the nonzero eigenvalues are roughly c = d

n times those following
LSD 1

c ,σ
2 . Several elegantly symmetric facts follow from this. First considering

the mixture structure, the expected value of the full mixture LSD is still σ2 (this
comes from

(
1− 1

c

)
0+ 1

c (cσ2)) and similarly the variance remains at cσ4. Second
the above formulas for support points a = σ2 (1−

√
c)

2 and b = σ2 (1 +
√
c)

2

require no modification in this new case of c > 1. Finally the continuous density
part of the LSD has exactly the same form (14.1) scaled by 1

c .
This theory can be used in the analysis of hierarchical clustering in Section

12.2 to understand the standard deviation of PC1 of the Overlapping Classes data
in Figure 4.12. As the largest principal component, the PC1 variance should be
at the upper support point of the Marčenko-Pastur LSD. In particular, that is b =

σ2 (1 +
√
c)

2
= 12

(
1 +

√
1000
100

)2

≈ 17.3. Taking the square root (to get back to
the standard deviation) gives 4.16 which fits well with the spread of points in the
upper left panel of Figure 4.12 and the center panel of Figure 4.13.

A novel data based approach to choosing the number of non-noise principal
components, which is based on Marčenko-Pastur mathematics, has been proposed
by Choi and Marron (2018).

Random matrix theory in general was brought to the statistics literature by John-
stone (2001). A particularly useful tool has been the null distribution of the largest
eigenvalue, derived by Tracy and Widom (1994). See Zhou et al. (2018a,b) for a
deep application of the Tracy-Widom distribution in genetics.

An interesting issue is the extent to which the assumption of Gaussianity can
be weakened and still obtain the Marčenko-Pastur distribution for the PCA eigen-
values. Figure 14.3 explores this using scree plots based on three data sets with
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d = 100 and n = 1000. Each data set consists of a matrix of independent ran-
dom variables all with expected value 0 and variance 1. But the data sets differ in
terms of the marginal, with a Gaussian marginal scree plot shown as black circles,
an exponentially distributed plot shown as magenta plus signs, and the Bernoulli
scree plot in green x signs. Note that all three are very similar, except for some
natural sampling variation. In particular the Marčenko-Pastur LSD is not affected
by either the strong skewness of the exponential distribution or the strong dis-
creteness of the Bernoulli. Except in the case of heavy tails, marginal distributions
matter very little, but essentially independence of all entries of the matrix (thus in
particular independence of the variables forming the data vectors) is crucial.

0 20 40 60 80 100
0

0.5

1

1.5

2

index j

e
ig

e
n
v
a

lu
e

Figure 14.3 Scree plots indicating LDS is the same for different marginal distributions.
Gaussian is black circles, Exponential shown as magenta plus signs, Bernoulli using
smaller green x signs.

However there are important situations where classical Marčenko-Pastur theory
does not hold, such as scale mixtures of Gaussians. The simplest of these are of
the form

f (x) = ωφd
(
x, σ2

1

)
+ (1− ω)φd

(
x, σ2

2

)
(14.2)

where the weight ω ∈ (0, 1) and where φd
(
x, σ2

)
denotes the multivariate Gaus-

sian density with expected value 0d and covariance matrix σ2Id. Recall from the
discussion around Figure 11.14 that mixtures of Gaussians are quite natural in ap-
plications where data heterogeneity is an important issue. Note that scale mixtures
of normals also provide good illustration of the important point that 0 covariance
does not imply independence. In particular the covariance matrix of (14.2) can
be shown to be a multiple of the identity matrix (so all pairwise covariances are
0), yet entries of the vector can be strongly dependent. E.g. when σ2

1 � σ2
2 a

large entry suggests the vector came from the first component, so all other entries
tend to be relatively large as well. Li and Yao (2018) have discovered an analog
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of the Marčenko-Pastur distribution for more general scale mixtures of normals.
In simple cases, these can be computed using the numerical solution of integral
equations of Dobriban (2015) (see Choi and Marron (2018) for a gentle introduc-
tion).

14.2 High Dimension Low Sample Size

As noted in the survey paper Aoshima et al. (2018), the study of High Dimension
Low Sample Size (HDLSS) asymptotics, where d → ∞ for fixed n, was popular-
ized by Hall et al. (2005). However, earlier work on that type of asymptotics was
done in Casella and Hwang (1982), in the context of Stein estimation.

Interesting HDLSS insights arise even in the apparently straightforward case of
a single standard Gaussian random vector

z̃ =

 z̃1

...
z̃d

 ∼ Nd (0d,1, Id) .

It is natural to think that observations drawn from this distribution lie relatively
near the origin, because the probability density

fZ (z̃) = (2π)
−d/2

e−z̃
tz̃/2 (14.3)

has a peak there and decreases very rapidly in all directions as
∥∥∥ z−→∥∥∥→∞. How-

ever, using the notation (7.2), the Euclidean distance from z̃ to the origin is

δ2 (z̃,0d,1) =

 d∑
j=1

z̃2
j

1/2

,

whose distribution is easy to understand, since
∑d
j=1 z̃

2
j has a Chi Squared distri-

bution with d degrees of freedom. That distribution has expected value d and vari-
ance 2d (i.e. standard deviation

√
2d). A simple Taylor series (sometimes called

the delta method) calculation shows that in the limit as d→∞ (for fixed n)

δ2 (z̃,0d,1) =
√
d+Op (1) . (14.4)

This shows that most of the distribution of z̃ lies near the surface of a grow-
ing sphere of radius

√
d in Rd, and perhaps paradoxically there is essentially no

chance of finding z̃ anywhere near the origin, 0d,1. This apparent contradiction to
the density (14.3) being much larger near the origin is resolved by recalling that
this is density with respect to Lebesgue measure. To see how Lebesgue measure
can give perhaps non-intuitive results such as (14.4) consider the calculation of the
volume of the (solid) unit ball in Rd. This is most easily calculated as an integral
using polar coordinates. Writing the integral with respect to radius last, that inte-
grand goes up extremely rapidly near the end of the interval [0, 1] for large d. This
shows that high dimensional Lebesgue measure tends to strongly push probability
mass outwards. The balance point between this effect and the rapidly diminishing
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tails of the Gaussian density (14.3) to keep mass near the origin is seen to be at√
d in (14.4). This has interesting implications for individuals in that when enough

measurements are made (i.e. d is sufficiently large) it is essentially impossible for
any individual to be “average”, i.e. near the population expected value vector. The
result (14.4) also explains the perhaps surprising observation in the discussion of
Figure 12.8 that two standard Gaussian data points are so far from the rest of the
data. Recall that d = 500 and n = 30 for that High Dimensional Gaussian data
set. Thus

√
500 ≈ 22.4 well explains the distances from the two “outlying” points

to the origin in the first diagonal panels of Figure 12.8.
A result in the same spirit as (14.4) holds for independent z̃1, z̃2 ∼

Nd (0d,1, Id),
δ2 (z̃1, z̃2) =

√
2d+Op (1) . (14.5)

This is not surprising since the difference of independent standard normals is again
normal with standard deviation

√
2. Applying this idea to a sample z̃1, · · · , z̃n

results in the idea that all of these points are equidistant from each other. Thus
for n = 3, they lie at vertices of an equilateral triangle (a similar phenomenon
was discovered by Kendall (1988) in the context of shape diffusion), and for n =
4 at vertices of a regular tetrahedron. Even conceptualizing this for n > 4 is
challenging because the point configuration lies in a space with dimension higher
than 3. Humans tend to be good at perception in three dimensions, but quite poor
at higher dimensional perception. This may be because our perceptual systems
come from our ancestors for whom a major task was finding food. Food exists in
three dimensions which seems to be why we are so good at understanding three
dimensional space.

One more related result in this spirit comes from studying the angle (with vertex
at the origin) between independent vectors z̃1, z̃2 ∼ Nd (0d,1, Id),

∠ (z̃1, z̃2) = 90◦ +Op

(
d−1/2

)
. (14.6)

Note that this right angle completes the Pythagorean relationship in terms of the
right triangle with both leg lengths

√
d from (14.4) and hypotenuse

√
2d from

(14.5). The orthogonality of data directions observed in the High Dimensional
Gaussian data in the top center panel of Figure 12.8 is also explained by (14.6).

Equations (14.4), (14.5) and (14.6) have some interesting implications for the
very nature of high dimensional variation. While letting d→∞ (for a fixed set of
n data objects) clearly adds more and more noise to a Gaussian data set, that noise
manifests itself in a rather special way. In particular, given a sample z̃1, · · · , z̃n
consider the subspace of dimension n generated by the data. This is a hyperplane
of dimension n passing through the origin. This plane can be rotated in Rd to
the subspace of the first n coordinates. Within that subspace, all data points are
essentially distance

√
d from the origin, and

√
2d from each other and can be again

rotated so that each data point is close to a coordinate axis. This results in the data
lying near the vertices of the

√
d rescaling of the n-dimensional unit simplex in Rd.

Hence while increasing d creates increasing variation, that goes mostly into very
random rotation. Modulo that rotation and scaling, the data actually converge to a
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rigid deterministic structure. This HDLSS phenomenon has been called geometric
representation by Hall et al. (2005).

A simple illustration of geometric representation is shown in Figure 14.4. The
top left panel shows a conceptual model of n = 2 points in R3 as red circles. The
top right panel shows the subspace generated by these points (i.e. the 2-d plane
containing them and the origin) in cyan. Red solid lines are also used to depict the
concept from (14.4) that each point is approximately distance

√
d from the origin.

Similarly a dashed line illustrates the roughly
√

2d distance between points from
(14.5). The first step of geometric representation is to rotate this cyan subspace
into the coordinate system of the first n = 2 axes in R3 as shown in the lower
left panel of Figure 14.4. The second rotation happens within this R2, to move
the points close to the axes, resulting in the unit simplex (in this case just a line
segment) approximation.
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Figure 14.4 Illustration of HDLSS geometric representation using just two data points.
Shows how added noise from increasing dimensionality goes mostly into random rotation,
while modulo rotation data points (red circles) converge to vertices of a rescaled unit sim-
plex (black circles).

Another illustration of geometric representation is shown using a small sim-
ulation study in Figure 14.5. Each panel shows seven (the number of colors in
Matlab’s default color palette) Nd (0d,1, Id) data sets of size n = 3, in the di-
mensions d shown above each panel. Each data set determines a hyperplane of
dimension 2, which is rotated into the R2 shown in each panel. Next within that
R2 each data set is rotated so the first two data points are equidistant from the ver-
tical axis, with the minimum of those two below the origin. These two operations
result in modding out the increasing amount of random rotation, so the points co-
alesce to vertices of the 3 dimensional unit simplex, which in this view are the
vertices of the shown equilateral triangle in R2 with side length

√
2d. For d = 2

shown in the upper left panel, the points appear to be rather random. Yet at only
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d = 20 in the upper right panel the points are already beginning to coalesce. In
the lower left panel for d = 200 the points are now quite close to the vertices of
the triangle. The much larger d = 20, 000 is used in the lower right panel to show
how the points are now so close to the vertices that the seven different data sets
are barely distinguishable due to over-plotting.
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Figure 14.5 Simulations demonstrating geometric representation for several dimensions d,
each with seven data sets (shown in different colors) of size n = 3. Shows for increasing
dimension that modulo rotation and rescaling data points converge to vertices of a rescaled
unit simplex.

Geometric representation calculations can explain a number of the apparently
strange phenomena observed earlier. For example in the discussion of the Over-
lapping Classes data analysis in Figure 4.13, it was stated (and verified by the
DiProPerm test) that the perhaps surprisingly distinct DWD difference observed
between the two classes (which were generated from the same probability distri-
bution) in the top left panel was simply the result of natural variation in Gaussian
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data. The first observation is that the n1 red points determine a hyperplane of di-
mension (n1 − 1), and similarly for the n2 blue points. The pairwise distance
relationship (14.5) indicates that all pairs consisting of one red and one blue point
are approximately

√
2d apart. This shows that the red and blue hyperplanes are

essentially parallel. Applying DWD to such data will result in a direction vector
that is essentially in the direction of the common normal vectors of the planes,
explaining the two very distinct clusters in the top left panel of Figure 4.13. Fur-
thermore the distance between the clusters can be approximated by the distance
between the hyperplanes. The first step of that computation is to find the distance
from the origin to each plane. It follows from (14.4) that each point is distance

√
d

from the origin. To understand how this can be used to calculate the distance from
the origin to the plane, rotate say the red plane so that the data points essentially
lie in the first n1 positive coordinate directions (which is possible because of the
approximate orthogonality result (14.6)). Thus the red data points can be thought
of as lying near the vertices of the

√
d rescaled, n1 dimensional unit simplex( x1 · · · xn1

0 · · · 0
)t ∈ Rd :

n1∑
j=1

xj =
√
d, xj ≥ 0

 .

A good approximation of the mean of the red points can be found from the value of
c for which the vector

(
c · · · c 0 · · · 0

)t
lies on the rescaled simplex,

which entails
∑n1

j=1 c = n1c =
√
d, i.e. c =

√
d

n1
. Note that the distance from this

approximate mean to the origin is

√∑n1

j=1

(√
d

n1

)2

=
√

d
n1

. A similar idea applies

to the approximate simplex of n2 blue points in Figure 4.13. In particular the dis-

tance from the mean of the blue points to the origin is approximately
√

d
n2

. Note
that this is very consistent with one of the key concepts from the Central Limit
Theorem that averaging n independent random variables reduces the standard de-
viation by a factor of n−1/2. Now the direction separating the red and blue clusters
in the upper right panel of Figure 4.13 is essentially driven by the difference be-
tween these two means. Since the points in the two clusters are all orthogonal, by
(14.6), their respective subspaces are orthogonal as well. It follows that the two
mean vectors are orthogonal to each other, and thus the distance between them can

be computed using the Pythagorean theorem,

√√
d
n1

2

+
√

d
n2

2

=
√

d
n1

+ d
n2

.

Plugging in the values d = 1000 and n1 = n2 = 50 results in approximate dis-

tance between the means of
√

d
n1

+ d
n2
≈ 6.3. This fits well with the observed

cluster means shown in the upper left panel of Figure 4.13. A related HDLSS
analysis of clustering, as defined in Chapter 12, can be found in Borysov et al.
(2014).

A parallel calculation similarly predicts the apparently very large distances be-
tween the colored clusters, for the d = 500, n = 30 High Dimensional Gaussian
data shown in Figure 12.9. For the cyan - magenta clusters the mean difference
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(left column) prediction is
√

500
8 + 500

5 ≈ 12.7, while for the green - red (center

column)
√

500
7 + 500

10 ≈ 11.0.
A similar explanation of the behavior observed (for MD using a simple Gaus-

sian toy data set) in the top row of Figure 11.3 is a little harder because the under-
lying theoretical means are not 0, but instead are 4.4 units apart in the first coordi-
nate direction. Again reflecting the approximate orthogonality of the first coordi-

nate with both means the Pythagorean relationship is
√

d
20 + 4.42 + d

20 . Plugging
in d = 10 (top left panel of Figure 11.3) gives about 4.5, while d = 40 (top
center) yields around 4.8 and d = 200 (top right) gives about 6.3. An interesting
open problem is similar explanation of the differences (for the more complicated
classifiers LDA and MDP) in the other panels of Figure 11.3.

The above calculations all assumed a standard Gaussian Nd (0d,1, Id) distribu-
tion for simplicity of illustration. Hall et al. (2005) extended this to non-Gaussian
distributions by allowing dependence in the form of a mixing condition along the
data vector. Mixing conditions are a natural way to allow some dependence in
the laws of large numbers that lie at the heart of geometric representation. See
Bradley (2005) and White (2014) for good overviews of the large literature on
mixing conditions. The first submission of Hall et al. (2005) was rejected by a top
statistical journal on the grounds that the reviewers were unaware of applications
where such a dependence assumption was sensible. That later turned out to be an
ironic decision, as that same year of 2005 was the date of the first publication on
Genome Wide Association Studies (GWAS) by Klein et al. (2005). As discussed
in Zhou et al. (2018a,b) and in Section 16.2.2 GWAS is an excellent example
of a data analysis context where geometric representation ideas have given clear
insights, and the mixing condition assumption of Hall et al. (2005) is a very natu-
ral consequence of the splitting and merging of chromosomes that constitutes the
reproductive process.

A number of other assumptions beyond normality for geometric representation
have been developed by Ahn et al. (2007) and Yata and Aoshima (2012). It was
pointed out by John Kent that when exploring sufficient conditions for geometric
representation a useful example to keep in mind is the scale mixture of Gaussians
in (14.2). In that case the sharp

√
d in (14.4) becomes just Op

(√
d
)

because with

probability ω the observation is σ1

√
d from the origin, and at distance σ2

√
d oth-

erwise. However it is important to note that geometric representation is more a
property of the dependence structure than of the marginal distribution (consistent
with the ideas of Figure 14.3). As noted in the discussion of (13.1), an impor-
tant consequence of assuming independent variables is the joint distribution has
common variance of projections in all directions. Another consequence is that in
the case of GWAS discussed above, the marginal distributions are discrete (often
binary), yet geometric representation ideas still give useful insights.

Because visualization of PCA scores has been so useful at many points above,
the HDLSS mathematical underpinnings of these are considered here. In view of
the tendency of angles to converge to 90◦ (as seen in (14.6)) a natural starting
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point is the behavior of the direction vectors used for projection in PCA, i.e. the
eigenvectors of the sample covariance matrix as detailed in (17.21). For this as-
sume the random sample x̃1, · · · , x̃n is drawn (independently) from the Gaussian
distribution Nd (0d,1,Σd), where the d dimensional theoretical covariance ma-
trix Σd has eigenvalues λ1,d, · · · , λd,d and first eigenvector u1,d ∈ Rd. Further
assume a spike covariance model, in the spirit of Paul (2007), where most eigen-
values are fixed, but the first eigenvalue grows with the dimension. In particular
assume

λ1,d = dα, λ2,d = · · · = λd,d = 1, (14.7)

where α > 0 controls the growth rate of the first eigenvalue. This distribution has a
hot dog shape, with a single long axis in the directionu1,d, and smaller spherically
symmetric variation in all orthogonal directions. Next let Σ̂d denote the sample
covariance matrix defined at (3.5), which is a natural estimate ofΣd and similarly
define estimators û1,d, λ̂1,d, · · · , λ̂d,d using the corresponding sample eigenanal-
ysis of Σ̂d (again see (17.21)). Because u1,d and û1,d are unit vectors, it is natural
to study their relationship using angles. Jung and Marron (2009) showed that the
power α is critical to this angle. In particular, in the limit as d→∞ with fixed n,

∠ (û1,d,u1,d)→

{
0◦

90◦
α > 1

α < 1
. (14.8)

The first part of (14.8) has the form of standard consistency, in the sense that
when the first eigenvalue is large enough the empirical eigenvector û1,d appropri-
ately converges to the underlying true eigenvector u1,d. The second part of (14.8)
is much less standard in mathematical statistics. It says when the eigenvalue is
too small, not only do these directions not converge, but in fact they diverge to the
greatest extent possible (recall eigenvectors are determined only up to± sign flips,
so angles > 90◦ should be replaced by their supplements). Hence this condition is
called strong inconsistency. To understand why α = 1 is critical here, recall from
(14.4) that Standard Gaussian data tend to lie near the surface of the unit sphere
with radius

√
d. When α > 1 the stretched Gaussian distribution has standard

deviation dα/2 �
√
d, where the exponent is α/2 because eigenvalues are on the

scale of variance. Thus most of the probability mass of the stretched Gaussian
is outside the sphere of radius

√
d pulling the empirical eigenvector û1,d in the

direction of u1,d. Furthermore when α < 1, it follows that dα/2 �
√
d so essen-

tially all of the mass due to the spike lies within the standard sphere. In this case
û1,d will take some random direction, but according to (14.6) random directions
tend to be orthogonal, resulting in the 90◦ part of (14.8). Important extensions of
these results, including to more than one spike eigenvalue and also to a broader
range of asymptotics can be found in Shen et al. (2016a,b).

Note that (14.8) leaves open the boundary case of α = 1. That was resolved in
Jung et al. (2012b) with the establishment of appropriate limit distributions that
appropriately meld the two results in (14.8). That set of mathematics provides the
basis for an important proposal for selection of the number of eigenvalues in PCA
by Jung et al. (2018).



HIGH DIMENSION LOW SAMPLE SIZE 311

Jung and Marron (2009) also studied the behavior of the first eigenvalue and
showed that under the eigenvalue assumption (14.7), again in the limit as d→∞,

λ̂1,d

λ1,d

d→ χ2
n

n
. (14.9)

Thus the first spike sample eigenvalue is inconsistent, although in a rather con-
trolled and interpretable way. For example Eχ2

n = n, so λ̂1,d is unbiased in a
crude sense. This issue, together with a broad set of different conditions for con-
sistency and strong inconsistency along the lines of (14.8) has been explored in
a series of paper by Yata and Aoshima (2009, 2010a,b, 2012, 2013). Some land-
marks of those results are proposed variations of PCA that features a consistent
first eigenvalue, thus overcoming the perhaps disappointing result (14.9), as well
as obtaining consistency for some values of α < 1 in (14.7). A less elegant way
to overcome the inconsistency of (14.9) is to follow the lim

d→∞
with a lim

n→∞
as dis-

cussed in Section 14.3.
Given the popularity of sparse methods (those that approach high dimensional

challenges by assuming large numbers of 0s) in the world of mathematical statis-
tics, it is natural to investigate parallels of (14.8) in sparse contexts. Shen et al.
(2013) developed a complementary theory based on a sparsity index β (in addition
to the signal strength parameter α), and laid out interesting regions for consistency
and strong inconsistency in the α, β parameter space.

Results of the form (14.8) and (14.9) have generated some considerable skep-
ticism. An interesting objection is that (14.8) holds even for sample size n = 1.
This may be surprising, however in that case the direction û1,d points in the di-
rection of the single data vector x̃1. The stretch of the spiked Gaussian density
described above in the direction u1,d then explains why (14.8) holds. Discussing
consistency in the case n = 1 is certainly not typical, and one might interpret this
as an indication that the spike assumption (14.7) is too strong to have any prac-
tical relevance. However the two sides of (14.8) reveal that when no assumption
in the spirit of α > 1 holds, PCA cannot give any useful results. Yet at many
points above, e.g. Figures 4.5 - 4.8, PCA in very high dimensions (d = 1709 in
that case) clearly gives nonrandom, useful results. Hence while (14.7) may appear
strong to those theoreticians whose thoughts are unencumbered by real data, in
fact it evidently is reasonable in interesting practical contexts.

Another potential objection to this theory is that (14.9) hints at potential incon-
sistency of PC scores in high dimensions. To investigate this, for i = 1, · · · , n
let ŝi,j denote the ith PC score for the jth component, i.e. the projection of x̃i
onto the eigenvector û1,d. Now ŝi,j can be viewed as an estimate of the theoreti-
cal score si,j , which is the projection of x̃i onto the theoretical eigenvector u1,d.
Using results from Shen et al. (2016b), it can be shown that under the appropriate
analogs of the eigenvalue assumption (14.7)

ŝi,j
si,j

d→ Rj , (14.10)

as d → ∞, where Rj is a non-degenerate random variable. Consistency of PC
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scores would correspond to a degenerate Rj = 1, thus revealing general inconsis-
tency of PC scores in HDLSS settings. This seems like an apparent contradiction
to the clear usefulness of PCA in finding interesting structure in data, e.g. as in
Figures 4.6 and 4.7. That is resolved by noting that while the limiting random
variable Rj depends on the component index j, it does not depend on the data
index i = 1, · · · , n. Thus for each data point, it has the same realization, so while
the scores are indeed off by a random factor of Rj , it is the same factor for each
x̃i. Hence in PCA scatterplot matrices in high dimensional situations, such as
Figures 4.6 and 4.7, the numbers on the axes do not reflect the underlying prob-
ability distribution. However the relative positioning of the data points is correct
which is why PCA is very useful in high dimensional data analysis. In addition
to the results mentioned above, Yata and Aoshima (2010a, 2012) have proposed
modifications of PCA which are consistent in the sense that Rj = 1.

Another point of skepticism that has been raised is that it is unclear how to
check assumptions such as (14.7) “in practice”. But this loses sight of the fact
that these results are merely mathematical statistics, and such issues exist almost
everywhere in that area. For example, the Central Limit Theorem also relies on
assumptions such as independence and second moments which similarly cannot be
proven from any data set, yet its value in explaining naturally observed phenomena
is unquestioned. This same principle applies as well to the asymptotics described
here, as indeed it applies to all of mathematical statistics.

A particularly interesting HDLSS characterization of the usefulness of PCA
scores can be found in Hellton and Thoresen (2017), which explores the impact
of measurement error on HDLSS scores. Interesting work generalizing rank based
nonparametric statistics to HDLSS contexts can be found in Biswas et al. (2014,
2015, 2016) and Ghosh and Biswas (2016).

As noted in Aoshima et al. (2018), the mathematics behind many of these re-
sults can be established using the theory called concentration of measure, which
has a large literature started by Talagrand (1991, 1995). See Ledoux (2001) for
good overview, and Koltchinskii and Lounici (2017b, 2016, 2017a) for useful di-
rectly related results. This is the theory that seems to have generated the common
misunderstanding, typified by the quote from Wainwright (2019) at the beginning
of this chapter.

Closely related asymptotics also based on fixed sample size n, but following
the tangential path of hypothesis testing for repeated measures, have have been
explored by Pesarin and Salmaso (2010), who propose a notion called finite sam-
ple consistency.

14.3 High Dimension Medium Sample Size

An asymptotic domain that lives between the random matrix theory discussed in
Section 14.1 and the HDLSS context of Section 14.2 is where both d, n→∞with
d � n. This has been called High Dimension Medium Sample Size (HDMSS) by
Yata and Aoshima (2013) and ultra high dimensionality by Fan and Lv (2008).
The added lim

n→∞
results in a theory that corresponds somewhat more with con-
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ventional mathematical statistics. In particular some of the inconsistency results
such as (14.9) and (14.10) turn into more conventional consistency statements.
There is still a sharp boundary between consistency and strong inconsistency of
the sample eigenvectors of the type in (14.8), but as clearly expressed in Figure
1 of Shen et al. (2016a), the α = 1 threshold that was critical to the boundary is
now replaced by one driven by the relative rates at which d and n tend to∞.

A conceptual issue is the parameterization of the asymptotics in the HDMSS
domain. Fan and Lv (2008) took a conventional approach working with the limit
as n→∞ and taking for example d ∼ nθ. On the other hand, Yata and Aoshima
(2013) base their analysis on the limit as d → ∞ and working with n = dρ.
Of course they are essentially the same domain but note that the Yata-Aoshima
formulation gives a much more natural interface between the HDMSS and HDLSS
worlds.





CHAPTER 15

Smoothing and SiZer

Smoothing methods are useful approaches to obtaining information from low di-
mensional (often just 1-d) sets of data. They are often called nonparametric be-
cause they do not rely on typical parametric models, instead aiming to produce
a useful visual interface for data analysis. The two main smoothing contexts are
density estimation and nonparametric regression.

Density estimation starts with a random sample (recall independent and iden-
tically distributed from Section 7.1) of scalars x̃1, · · · , x̃n (using notation from
Table 7.1) from an unknown probability density curve f(x). The goal is to re-
cover f which as noted in Section 3.3.1 often provides useful population structure
insights. The first thing most people would try is a histogram, but as noted in
Section 15.1 that approach has problems that are not all that widely understood.

Regression starts with a random sample of pairs (x̃1, ỹ1) , · · · , (x̃n, ỹn) and
the goal is to recover the conditional expected value (i.e. regression function)
m(x) = E [ỹ|x̃ = x]. Again the smoothing approach is nonparametric in the
sense that instead of imposing an assumed parametric structure by something
in the spirit of a classical linear model, the data are allowed to speak for them-
selves. Smoothing methods provide a much more flexible view, which can lead
to unexpected discoveries that can be totally obscured by an inappropriate rigid
parametric structure. An elegant example is the discovery of pre-pubertal growth
spurts in human growth data, in a series of papers summarized in Müller (1988).

In both cases, for the target to be identifiable, some assumptions must be made.
Such assumptions are almost always some variant of the theme of smoothness.
This can be defined in terms of continuity and differentiability, or in terms of
various function spaces such as Sobolev and Besov spaces.

Perhaps because of the intuitive appeal and elegant simplicity of smoothing,
there is a very large literature. Important monographs on density estimation in-
clude Tapia and Thompson (1978) who point to a biblical reference for early
density estimation, Devroye and Györfi (1985) who present compelling reasons
why theoretical analysis should be based on the L1 norm, Silverman (1986) who
gave a very accessible early account, Scott (2015) whose treatment is very com-
prehensive and Klemelä (2009) who proposed some novel high dimensional vi-
sualizations. Monographs on regression are more diverse and tend to advocate
specific methods, such as Müller (1988) and Härdle (1990) for two different ker-
nel smoothers, Fan and Gijbels (1996) who made a strong case for local poly-
nomial methods, Wahba (1990), Eubank (1999), Green and Silverman (1994),
Wang (2011) and Gu (2013) who advocated smoothing splines, Stone et al. (1997)
who make a compelling case for regression splines, and Györfi et al. (2002) who

315



316 SMOOTHING AND SIZER

take a distribution free approach. Additional accounts of smoothing generally can
be found in Prakasa Rao (1983), Thompson and Tapia (1990), Wand and Jones
(1995) who provide a very accessible introduction to kernel smoothing methods,
Simonoff (1996), Hart (1997), Efromovich (1999) and Schimek (2013).

15.1 Why not Histograms? - Hidalgo Stamps Data

When faced with a density estimation task (i.e. the need to visualize the probabil-
ity distribution underlying a set of numbers), most people construct a histogram.
Many users appreciate the fact that features discovered in a histogram are im-
pacted by choice of the binwidth. That point is illustrated in Figure 15.1 showing
various histograms of the 1872 Hidalgo Stamps data using different binwidths.
That data set was brought to the statistical literature by Izenman and Sommer
(1988). It consists of n = 485 paper thicknesses of the Hidalgo postage stamp.
The question of interest to philatelists is how many paper thicknesses appear in
the data, which is unknown as the relevant records have been lost. This question
is sensibly rephrased as: how many modes are in the density?

Figure 15.1 makes it clear this is not a simple issue, and in fact each panel
reflects node numbers that have been suggested in the literature. In particular, at
least two modes was the conclusion using bootstrap ideas in Section 16.5 of Efron
and Tibshirani (1993). Three modes were found by Walther (2002), four were
flagged as statistically significant by Sommerfeld et al. (2017), 3-5 by Chaudhuri
and Marron (1999) and five by Minnotte (2010). Seven modes in this data were
concluded by Izenman and Sommer (1988), Basford et al. (1997) and Fisher and
Marron (2001). Minnotte and Scott (1993) suggested there might be up to 10
modes.
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Figure 15.1 Histograms of the Hidalgo Stamps data for various binwidths. Shows that the
number of modes is strongly driven by choice of binwidth.

Note that several different choices for the vertical axis are commonly used. One
is simple bin counts, another is the relative frequency, while a third is to make
the total area of the bars equal to 1. For investigating a single data set, the choice
usually does not matter much as sensible scaling gives the same impression as long
as the bins all have the same width. However for comparing data sets of different
sizes, the second and third options are generally preferred. For density estimation,
it is only the third (used in all histograms here) that results in an actual probability
density. The difference becomes visually important in the case of unequally spaced
bins (for example equally spaced in terms of distribution quantiles) where it is
most interpretable to choose areas to correspond to amounts of probability mass
because areas are most naturally perceived by the human visual system.

Figure 15.1 makes it clear that too large a histogram binwidth can result in
missing important discoveries in data, and a small binwidth appears to be strongly
driven by random sampling variation. However, as pointed out by Mats Rudemo,
the human perceptual system is rather good at visually smoothing. So in the
hands of an experienced analyst who understands the issue of spurious small scale
spikes, a small binwidth can lead to good results in terms of data discovery. It
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may be worth keeping in mind that this notion does not seem to be a factor in
the default histogram choice of most common software packages. For example, as
noted in Section 3.3 of Scott (2015), the Sturges (1926) method tends to grossly
oversmooth. Nor does Scott’s recommendation give an undersmoothed binwidth
because it targets the uni-modal Gaussian distribution.

While many users understand the impact of the binwidth on features discovered
using histograms, as illustrated in Figure 15.1, less well understood is the bin
edge effect, which was elegantly pointed out in Section 4.3 of Scott (2015). This
is demonstrated in Figure 15.2, which shows histograms of the Hidalgo Stamps
data that both have the same binwidth of 0.005 (same as in the lower left panel of
Figure 15.1). The obvious difference between these histograms is entirely driven
by horizontal shift, which clearly has a major impact on the number of modes
(from 6 in the left panel, to 2 on the right).
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Figure 15.2 Histograms of Hidalgo Stamps both with binwidth 0.005, but shifted to the
right by half a bin in the right panel. Shows number of modes can also be very sensitive to
bin location.

One approach to handling this bin edge effect is to average the histograms over
many shifts, resulting in the Average Shifted Histogram, studied in Chapter 5
of Scott (2015). This can be represented as a variant of the very popular kernel
density estimator. Given a kernel function K with integral one (e.g. a probability
density), and a bandwidth h > 0,the Kernel Density Estimator (KDE) is

f̂(x) = n−1
n∑
i=1

Kh (x− x̃i) , (15.1)

where Kh(·) denotes the area preserving rescaling 1
hK

( ·
h

)
. Three KDEs, show-

ing how the bandwidth h controls the smoothness, for the Hidalgo Stamps data
appear in Figure 15.3. As done many times in earlier chapters, the density esti-
mates are overlayed with the raw data as a jitter plot (as discussed in Section 4.1).
Note that for this data set, the jitter plot gives a reasonable impression of regions of
high density. The three bandwidths were manually chosen to give an impression of
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oversmoothing (red, h = 0.005,showing just two modes), undersmoothing (blue,
h = 0.0006,with many spurious modes) and a perhaps good amount of smooth-
ing (green, h = 0.0016,with 7 modes as found in several of the above references).
The small kernel functions at the bottom of Figure 15.3 also give an indication of
how the KDE is constructed as a sum of shifts of such functions. These kernels
have been vertically rescaled so they are all visible, but essentially each KDE is a
sum of such functions shifted to be centered at each data point.
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Figure 15.3 Illustration of kernel density estimation. Raw Hidalgo Stamps data are shown
using a jitter plot. Colored curves for three different bandwidths showing over (red), un-
der (blue) and about right (green) levels of smoothing. Corresponding vertically rescaled
component kernels appear at the bottom.

Figure 15.3 shows that choice of bandwidth is critical, and more about this
choice can be found in Sections 15.3 and 15.4. Here bandwidth selection was
done using what Bradley Davis has termed the Goldilocks principle. Following a
theme of the popular children’s story the idea is to find bandwidths that are both
clearly under and over smoothed, which then provide a context in which the one
in the middle seems to be about right.

Less critical is the choice of kernel, although there are many views on that as
well. Computational issues were once an important consideration, but much less
so now with the ready availability of fast computation. There have been several
approaches to optimal kernel choice, with the most sensible based on decoupling
the bandwidth and kernel choices using the canonical kernel idea (see Marron
and Nolan (1988)). For actual data analysis the Gaussian kernel is recommended,
both because it tends to produce the fewest distracting small scale visual artifacts,
and because of the variation diminishing property (it is the only kernel where
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the number of modes is a decreasing function of the bandwidth) as discussed in
Chaudhuri and Marron (2000).

The KDE can also give clear insight into the perhaps surprising behavior of
histograms highlighted in Figure 15.2. This is done in Figure 15.4, which simply
adds a KDE overlay. The peaks in the KDE clearly show why there are so many
modes in the histogram in the left panel (the peaks in the KDE fall nicely within
histogram bins) and why there tend to be so few in the right panel (the peaks are
split between bins). Since the KDE so clearly diagnoses the bin edge problem, it
follows that the KDE (not the standard histogram) should be the method of first
choice for visualizing univariate distributions of data. This convention, together
with the jitter plot overlay as in Figure 15.3, has been followed at most points in
this monograph. An exception is where each bin has a specific meaning, such as
for the heat-map color distributions shown in Figures 6.9 - 6.12.
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Figure 15.4 Understanding of the histogram bin edge effect shown for the Hidalgo Stamps
data in Figure 15.2, by overlaying a KDE (black curve). Shows many histogram modes
when the KDE peaks fall mostly within single bins (left panel) and few histogram modes
when the peaks are split between bins (right).

KDEs have already been extensively used in earlier chapters, most notably in
the scatterplot matrix visualizations introduced in Figure 4.4 (for the Twin Arches
data), in the marginal distribution plots described in Section 5.1, and even as early
as Figure 1.4 (Spanish Mortality data). An issue deserving a little more discussion
is that of subdensities as introduced in the Lung Cancer PCA example of Figure
4.7. Figure 15.5 studies an alternative to those sub-densities, which is to use full
densities (recall curves with area one underneath) for each of the sub-populations
of the Pan Cancer data. The left panel is essentially a replot of the top left panel
of Figure 4.10. Recall that view studied the gene expression of 6 different cancer
types (highlighted using colors and symbols) compared in the direction of the
projection on the DWD direction trained on HNSC (Head and Neck Squamous
cell Carcinoma) vs. KIRC (KIdney Renal clear cell Carcinoma). Note that the left
panel gives a clear impression of how the subpopulations combine to form the full
population (whose density is the black curve). In particular, the blue KIRC group
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forms really all of the left hand bump (even overlaying the black curve). While
the green HNSC is most of the bump on the right, there are clearly a few magenta
BLCA (Bladder Urothelial Carcinoma) cases mixed into that bump as well. It is
also visually clear how the other classes make up the main bump of the black
density. Plotting each colored curve as a density itself is much less useful. One
problem is that, because the curves are narrower, the constraint of having area one
makes them much taller than the black curve. A simple fix is to scale them to all
have the same height, which is shown in the right panel of Figure 15.5. This gives
a generally much less intuitive impression of how the subgroups relate to the full
population. Exceptions to this principle include when some subgroups are much
smaller than others (so the curves can be hard to see), and when it is desirable to
think of subgroups in a relative way (independent of subgroup sizes)
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Figure 15.5 Comparison of sub-density plots (left panel) and subset density plots (right),
for the same Pan Cancer data as in the top left panel of Figure 4.10. Indicates sub-density
scale is usually more intuitive.

A perhaps non-obvious issue in overlaying density estimates is that use of a
common bandwidth h can be very important. A critical case is sub-density dis-
plays as in the left panel of Figure 15.5 which are most interpretable when the
subdensities sum to the overall density (this happens naturally for a common band-
width). Due to the high noise level inherent to bandwidth selection discussed in
Section 15.3, this is generally far from the case using separate default bandwidth
selectors for each. Marron and Schmitz (1992) proposed use of a sensible common
bandwidth hwhich is the geometric mean of the individually selected bandwidths.
A reasonable alternative (especially when subgroup sizes are very unbalanced) is
to use the union of the data to choose the common bandwidth.

Some other key ideas about smoothing are reviewed in Section 15.2. Section
15.3 contains an overview of data driven bandwidth selection. An alternate ap-
proach, based on scale space ideas, together with a fundamental approach to sta-
tistical inference appears in Section 15.4.
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15.2 Smoothing Basics - Bralower Fossils Data

As discussed above the main contexts of statistical smoothing are density esti-
mation and nonparametric regression. An example of the latter is the Bralower
Fossils data in Figure 15.6. The data set comes from Bralower et al. (1997), and
was collected for the study of global climate over very long time periods. Each
plus sign represents a microscopic fossil shell found in a core drilled into the floor
of the ocean. The shells are dated by the surrounding material, and the ages range
over about 30 million years, around a hundred million years ago. Strontium is an
element that naturally occurs in two different isotopes with about 70% prevalence
of one. These shells are climatic indicators because during an ice age, much of
the sea water is frozen in the ice caps, so chemicals in the ocean are more concen-
trated. When the temperature warms, melting results in dilution. The shells absorb
the strontium isotopes at differing rates under varying dilutions, which results in
the observed data. This may sound like a serious stretch of the data (e.g. the num-
bers on the vertical axis only differ in the 4th decimal place), but note that there
are clear systematic patterns in the data as opposed to being driven by pure ran-
dom noise. Furthermore, there is not any natural choice of parametric model here
so it is appropriate to approach the data with smoothing techniques.

The Bralower Fossil data are smoothed in Figure 15.6 using a local linear
smoother, which is generally not far from a simple moving average (except that a
line is fit to the data within each window). Each fit is weighted by a Gaussian win-
dow function (playing the same role as the kernel K in (15.1)). As noted in Fan
and Gijbels (1996), one difference between the local linear and local average can
be seen at the edges, where these smooths track the local slope quite effectively,
in contrast to local averages which tend to inappropriately level off at the edges.
As for the KDE, the bandwidth plays a critical role, and the Goldilocks approach
to manual selection has again been used here. The red curve, using h = 4, seems
clearly oversmoothed. In particular it does not follow the data well through the
very large valley around 115 million years ago, but is also somewhat low at the
peak around 105 million years ago. The blue curve, for h = 0.4, has many wig-
gles that seem to follow fine scale noise driven variation, and thus appears under-
smoothed. This curve also reveals another property of the local linear smoother: it
can leave the vertical range of the data, e.g. at around 96 million years ago. This
is a consequence of sparsity in the data together with tail properties of the Gaus-
sian kernel. In large horizontal gaps between data points, the local linear smoother
tends to follow the lines determined by the two closest data points on each side,
and to smoothly connect those regions in the middle of the gap. The green curve,
based on h = 1.3 may be about the right amount of smoothing, in terms of follow-
ing the overall trends in the data, while not responding to apparent measurement
error. Note that this value of h = 1.3 is between h = 4 and h = 0.4 in a mul-
tiplicative (not additive) sense, i.e. it is close to the geometric mean. Generally
smoothing parameters are best thought of in a multiplicative way as discussed
around Figure 15.8. An important question is which of these observed features are
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“really there”, in the sense of statistical significance? This critical inferential issue
is addressed in Section 15.4.
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Figure 15.6 Local linear analysis of the Bralower Fossils data. Plus symbols are ratios
of strontium isotopes as a function of age. Three curves are estimates of the regression
function, with bandwidths that are oversmoothed (red), undersmoothed (blue), and about
right (green) for seeing important underlying structure in the data, in a situation where no
parametric model is available.

As noted in the above referenced monographs, many papers have been written
that analyze smoothing methods using asymptotics as the sample size n → ∞.
Appealing lessons from them include insightful quantification of how excessive
sampling variation (i.e. wiggliness of the curves) is a consequence of a small
bandwidth, while bias which appears as under-estimation of peaks and valleys is
exacerbated when the bandwidth is too large. When these effects are jointly stud-
ied, it is natural to combine them into a trade-off resulting in an optimality theory,
which then characterizes smoothing methods in terms of rates of convergence.
Early on it was noticed that for a given amount of smoothness, various methods
had the same rate of convergence. This motivated the idea that these rates may be
the best possible, which has been elegantly established using lower bound theory.
Landmark papers of that type include Farrell (1972), Stone (1982) and Pinsker
(1980). Particularly insightful was the geometric view of optimal rates discovered
by Donoho and Liu (1991).

An interesting twist on these results was started in the statistical community
by Donoho and Johnstone (1994); Donoho et al. (1995), who essentially showed
that conventional smoothing methods had poor spatial adaptivity properties. They
went on to show that wavelet thresholding provided an elegantly straightforward
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way to overcome this problem. This generated a large amount of research, includ-
ing the Bayesian wavelet approach of Kohn et al. (2000).

An important and sometimes controversial aspect of such mathematical analy-
ses has been choice of error criteria. For nonparametric regression the most com-
monly used criteria tend to involve squared error such as the L2 norm, which is
natural for a number of reasons including the fact that the regression function it-
self minimizes the theoretical squared error. Another advantage of squared error
measures is that their Hilbert space inner product structure allows for straightfor-
ward analysis, including direct quantification of the smoothing trade-off in terms
of variance and bias. Less clear is the case of density estimation. As noted above,
Devroye and Györfi (1985) present a number of compelling reasons why the L1

norm is a more sensible criterion. However that comes at substantial cost in terms
of technical tractability, which has meant that most discoveries such as perfor-
mance of bandwidth selectors have first been discovered using L2 and then with
much more effort adapted to L1. A weakness of most error criteria is that their
optimal bandwidths can be quite far from what human experts would select as
discussed around Figure 7.9.

While asymptotic results have been very popular and insightful, they do leave
open the question of how large a sample size is needed before they take effect
(some of which can be dubious such as the so-called higher order kernels). A
number of such questions were answered using exact risk analysis in the context of
univariate density estimation by Marron and Wand (1992), and in the multivariate
case by Wand and Jones (1993). See Marron et al. (1998) for exact risk analysis
of wavelets.

With the advent of massive modern computer resources, computational time is
no longer the consideration that it once was. However for large data sets it can
still sometimes be an issue worth considering. In the days of slower computers,
substantial effort was invested in this issue. A path-breaking approach was Sil-
verman’s Fast Fourier Transform computation of the KDE, see Silverman (1982).
Another very interesting and effective approach was the updating idea of Seifert
et al. (1994). Fan and Marron (1994) analyzed all of these, and discovered that
surprisingly the speed of Silverman’s method was more due to the binning pre-
processing than to the Fast Fourier Transform computation.

15.3 Smoothing Parameter Selection

Given the importance of the bandwidth to what is seen in a KDE as demonstrated
using the Hidalgo Stamps data in Figure 15.3 (parallel issues exist for all other
types of smoothing method), it is natural to believe that the fundamental issue in
smoothing is selection of the tuning parameter (the bandwidth h for the KDE).
That idea led to a large amount of research on data based bandwidth selection. For
surveys of that area see Marron (1989), Jones et al. (1996a,b), and many of the
monographs referenced above, as well as Cao et al. (1994) and Park and Turlach
(1992).

As is clear from several of the contributions to the discussion edited by Härdle
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and Schimek (1996), there was never a consensus among researchers in the area
as to how smoothing parameters should be chosen. Using terminology from Jones
et al. (1996a), opinions were divided mostly between first generation methods
which included familiar ideas such as cross-validation and AIC and more sophis-
ticated second generation methods, such as the recommended Sheather and Jones
(1991) Plug In method, and the bootstrap approach of Jones et al. (1991).

Strong motivation for the development of second generation methods came
from deep asymptotic analysis revealing a surprisingly large amount of sam-
pling variation, first discovered by Hall and Marron (1987a,b). For example, us-
ing the notation ĥ for a first generation data driven bandwidth, and h0 as some
type of optimal bandwidth such as a minimizer of the Integrated Squared Error,´ [

f̂(x)− f(x)
]2
dx,the bandwidth variation is quantified as

ĥ− h0

h0
∼ n−1/10,

in the limit as n → ∞. Many variants of this were later developed. This very
slow rate of convergence was very discouraging, yet did confirm an empirically
known fact that methods such as cross-validation occasionally result in unaccept-
ably poor bandwidths, which has also been observed in many other contexts. This
also motivated the development of second generation methods. However the latter
sometimes required very large sample sizes for their benefits to be felt, and seemed
to be less useful in other contexts such as spline smoothing. This apparently led
to the lack of consensus discussed above.

A perhaps surprising property of cross-validation and other first generation
methods is that they have a tendency to actually be negatively correlated with
various optimal bandwidths, such as the minimizer of the integrated squared er-
ror. See Chiu and Marron (1990) for a detailed analysis of this phenomenon.

For practical bandwidth choice, the recommended bandwidth selection method
depends on the context. In situations where sufficient time and effort are available,
the best approach is subjective visual trial and error by an experienced analyst.
When there is analysis time but less expertise available, the Goldilocks approach
suggested in Section 15.1 (and as applied in Figure 15.6) is recommended. In
situations where insufficient human resources can be employed (e.g. when many
estimates need to be constructed, such as for the marginal distribution plots intro-
duced in Section 5.1), automatic choice is needed. Following the recommendation
of Jones et al. (1996a), the plug-in method of Sheather and Jones (1991) is used
here as a default here for KDEs. Similarly the Ruppert et al. (1995) plug-in method
is used here for local linear regression, when a default is required.

Smoothing parameter selection issues are similarly important for the kernel ap-
proaches to classification discussed in Section 11.2, especially in the case of the
radial basis function, an example of which is a Gaussian kernel. See Ahn (2010)
and Oliva et al. (2016) for interesting work in that direction.
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15.4 Statistical Inference and SiZer

As noted in Section 15.2, and visually clear from Figures 15.3 (Hidalgo Stamps
data) and 15.6 (Bralower Fossils data), a central issue for any actual data analysis
using smoothing methods is which observed phenomena (usually peaks and / or
valleys) are “really there”. More precisely, which represent important and repro-
ducible underlying structure (thus real scientific discoveries), as opposed to which
are spurious artifacts of the sampling variation.

A natural approach for statisticians is to attempt to generalize the idea of confi-
dence interval for studying the uncertainty in a parameter estimate to some type of
confidence bands. In the context of smoothing methods, this has three fundamental
flaws:
• Variation in a bundle of curves is almost always far richer than can be under-

stood through simply studying bands. For example think of how the rich modes
of variation displayed through PCAs at many points in this monograph, such
as Figures 1.1 - 1.6 (Spanish Mortality data) and 4.5 - 4.8 (Lung Cancer data),
would be totally missed by simply putting bands around the set of curves in the
original data.
• As noted in Härdle and Marron (1991), a major challenge to correct cover-

age of confidence bands in smoothing is correctly modeling the inherent bias.
Doug Nychka pointed out that if one could adequately model this bias, one
could just subtract it from the estimator and then be back in the same position.
While a number of alternate approaches have been proposed none has been
completely satisfactory. Despite this, confidence bands are still widely used. It
is recommended that their inherent crudeness as an approximation be kept in
mind when interpreting these.
• All existing confidence bands are based on the choice of the smoothing pa-

rameter, which is problematic as discussed in Section 15.3. This issue could
be mitigated by taking the Goldilocks approach to bandwidth selection and ap-
plying confidence bands to all three choices of bandwidth, although this would
result in a busy graphic that may be hard to interpret. That challenge could be
handled with multiple panels, although the preference in the literature seems to
be to ignore this issue.

These three challenges motivated Chaudhuri and Marron (1999, 2000) to seek a
completely different approach to statistical inference in smoothing via the SiZer
(SIgnificance of ZERo crossings) method. SiZer tackles the bandwidth choice is-
sue by taking a scale space approach. As elegantly detailed in Lindeberg (2013),
scale space was a model for human visual perception that was explored in the
early days of the field of computer vision. The human perceptual ability to per-
ceive both macroscopic big picture aspects as well as fine scale details in the same
visual field, was modeled as a family of Gaussian kernel smooths. In particular, the
large bandwidths put the focus on large scale features while the small bandwidths
focus on small scale details. Note that from this perspective bandwidth selection
(as discussed in Section 15.3) is not a sensible pursuit, because it is the full col-
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lection of curves that contain the useful information, not any particular individual
member.

Lindeberg (2013) was also very notable for providing a detailed exploration of
the variation diminishing property. Stated in kernel smoothing terms, this idea
is the property that the number of modes in a smooth should be a decreasing
function of the bandwidth. As noted in Chaudhuri and Marron (2000), Lindeberg
(2013) showed this property always holds if and only if the kernel is Gaussian, in
two different ways. One approach is using total positivity ideas, and the other is
based on a heat equation representation of smoothing. Parallel applications of heat
equation ideas are discussed in Section 8.5 in the context of central limit theory
on manifolds.

15.4.1 Case Study: British Family Incomes Data

The top panel of Figure 15.7 shows a scale space KDE analysis of the 1985 British
Family Incomes data from Marron and Schmitz (1992). As is common in income
analysis, inflationary aspects are controlled by dividing by the sample mean. The
sample size n = 7145 after 56 cases with scaled income larger than 3 have been
truncated (allowing more attention to be paid to the main body of the distribu-
tion). The green points are a jitter plot of the raw data, highlighting a weakness
of the jitter plot: visual impression is strongly affected by sample size, e.g. in this
case population structure is obscured by too many data points. The family of blue
curves are KDEs with bandwidths logarithmically equally spaced from h = 0.01
to h = 1. Logarithmic spacing is natural when working with bandwidths (note
the evenly spaced visual impression among the blue curves) because bandwidths
work as scale factors. For example one more naturally considers doubling the
bandwidth than adding two to the bandwidth.

As expected, the KDEs indicate that the distribution of incomes is strongly
right skewed: most people have small to moderate incomes, while relatively few
have far larger incomes. However the smaller bandwidths suggest an unexpected
feature: there appear to be two modes to this distribution. This was a potentially
ground-breaking discovery, because the standard parametric model for incomes
(there are several of these, all of which were strongly rejected by goodness of fit
tests) are all entirely unimodal. The existence of this bimodal structure was con-
firmed in the PhD dissertation of Heinz-Peter Schmitz, by stratifying the popula-
tion so that the first peak corresponded to families on fixed government incomes
and the second was driven by three other income categories, each of which were
reasonably fit by standard income distributions. The resulting mixture distribu-
tion then revealed that the bimodal structure is actually an inherent aspect of the
population. Marron and Schmitz (1992) studied this behavior over time, revealing
an interesting time trend in these peaks. As noted in Section 15.1 that paper also
pointed out that when using multiple data-driven bandwidth choices the noise in-
herent to those choices (described in Section 15.3) can be usefully mitigated by
using the common geometric mean of the selected bandwidths in each smooth.
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Figure 15.7 SiZer analysis of British Family Incomes data. Reveals that both apparent
large bumps represent important population structure worthy of deeper investigation, while
smaller bumps may be only spurious sampling artifacts.

While this example highlights the potential for scientific success using smooth-
ing methods, it also reveals a potential risk. Had the discovered feature been a
sampling artifact (not reproducible in other data sets), much analytical time and
effort could be wasted. This underlines once again the importance of confirmatory
analysis, i.e. of doing proper statistical inference when using smoothing methods
to make discoveries using real data.

The scale space way of thinking also provides a natural solution to the second
drawback of confidence bands: the bias inherent to smoothing. This is done by
regarding the family of data smooths as targeting not the true underlying curve
(f for density estimation or m for regression), but instead targeting the curve at
the level of resolution of the bandwidth. The natural multi-resolution scale space
representation of the underlying curve is its convolution with the kernel at each
bandwidth, which is also the expected value of the estimator, so bias free esti-
mates are available. This comes at the price of a revised interpretation of the goal
of the analysis. That interpretation has not yet been embraced by theoretical statis-
ticians, however it is quite natural for scientists who actually analyze data and are
thus quite accustomed to understanding data simultaneously at various levels of
resolution.

The first flaw of confidence bands (that bands only poorly reflect variation in
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curves) is addressed by another shift in the focus of the analysis. The key idea
is that most important scientific discoveries by smoothing result from finding un-
expected peaks and / or valleys in data, so that should be the direct focus of the
inference. There is a mode testing literature, started by Good and Gaskins (1980),
and including Silverman (1981), Müller and Sawitzki (1991), Fisher and Marron
(2001) and a number of others.

But the SiZer approach proposed by Chaudhuri and Marron (1999) directly
connects the statistical inference with the scale space visualization. The main idea
is that a peak is determined by the curve going up on one side, and down on the
other. Hence SiZer focuses on the derivative, and showing when it is significantly
different from 0. Zero crossings between both types of significant regions indicate
significant peaks and valleys. This type of statistical inference is shown in the
SiZer map in the bottom panel of Figure 15.7. Each row corresponds to one scale
of resolution (bandwidth), and colors across each row flag statistical inference (in
terms of a hypothesis test whose null is a zero derivative). In particular, red is used
for significantly decreasing, blue for significantly increasing, and the intermediate
color of magenta when the hypothesis test is indeterminate. One more color used is
gray, which indicates not enough (essentially < 5) points in the Gaussian window
for reliable inference. The top rows of the bottom panel show blue (increasing)
followed by red, so both the up and the down are statistically significant. At the
finest scales (wiggliest blue curves) many peaks and valleys are present, yet the
corresponding rows of the SiZer map are almost all magenta, indicating that those
bumps can not be distinguished from spurious sampling variation. The black line
across the SiZer map indicates the bandwidth h = 0.08, chosen to focus attention
on the apparent bimodal structure, which also gives the thick black KDE among
the family in the top panel. That row shows blue - red - blue - red indicating that
both peaks are statistically significant. While the magenta indicates the small scale
bumps are spurious, a common question is: “does this analysis show there are one
or two bumps in the underlying distribution?” The answer is “yes”, because from
the scale space perspective modality depends entirely on the level of resolution.
At the coarsest scales there is one mode, at medium scales two significant modes,
and at the finest scales many insignificant modes.

Of course careful attention needs to be paid to multiple comparison issues be-
cause SiZer is based on many simultaneous hypothesis tests. The first version
accomplished this using some relatively crude approximations, that resulted in
somewhat anti-conservative inference. Much more precise inference was devel-
oped using deeper probability theory in Hannig and Marron (2006), which is the
current default and used in all examples here.

Insight as to the amount of smoothing that is done at each scale, i.e. row of the
SiZer map, is provided by the dashed white curves. These indicate ±2 standard
deviations of a centered Gaussian kernel at each scale.

The choice of red for down and blue for up is arbitrary. That scheme makes
intuitive sense for say economic applications. However, for climatological appli-
cations where red is associated with warm and blue with cooler trends, it makes
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sense to reverse the colors, as done by Holmström and Erästö (2002); Erästö and
Holmström (2005).

15.4.2 Case Study: Bralower Fossils Data

SiZer has also been developed for nonparametric regression, as demonstrated in
Figure 15.8, which is a SiZer analysis of the Bralower Fossils data from Section
15.2. This time at the coarsest scales the blue curves are not far from linear, but
are slightly steeper on the left. The top rows of the SiZer map reveal that the
decrease is statistically significant on the left side. The level of resolution h = 1.3
is highlighted using the horizontal line in the bottom panel, and the thick black
curve in the top. The SiZer colors show a significant increase on the left, and
also flag the importance of the large valley that bottoms out around 115 million
years ago. While the corresponding smooth green curve in Figure 15.6 seductively
suggests a second valley around 98 million years ago, the gray in the SiZer map
indicates that the data in this region are too sparse to draw any such conclusion.
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Figure 15.8 SiZer analysis of the Bralower Fossils data from Figure 15.6. Indicates the
main valley at around 115 million years ago is statistically significant, but the smaller
valley around 98 might be an artifact of random variation.
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15.4.3 Case Study: Mass Flux Data

The Mass Flux data set was introduced in Figure 12.10. Recall that the PC1 scores
indicated 3 bumps in the distribution, that suggested 3 clusters. A SiZer analysis
of the scores is shown in Figure 15.9. As in the above analyses the input data
are shown as green in a jitter plot. But this time instead of dots, green circles are
used to be more consistent with Figure 12.10. The blue-red patterns in the SiZer
map show that all three modes are strong underlying features of the data, which
is consistent with the three cloud types as discussed in Section 12.3. Note also
that different bumps actually are significant at different bandwidths (scales). In
particular the center bump is only really there at bandwidths around h = 100.4 ≈
2.5 to 100.6 ≈ 4.0, while the right bump needs h ≈ 100.75 ≈ 5.6 (highlighted
with the horizontal black line). Thus this example highlights how the inference
done by SiZer is truly multi-scale in nature.
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Figure 15.9 SiZer analysis of the PC1 scores for the Mass Flux data. Shows three bumps
are important underlying features that are significant at different scales.

Of course clustering in the Mass Flux data could also be analyzed using the for-
mal clustering methods described in Chapter 12. Both 3-means clustering and also
hierarchical clustering (Euclidean distance with either average or Ward’s linkage)
gave very similar results. Consistent with the SiZer analysis in Figure 15.9, these
are statistically significant using the SigClust method described in Section 13.2.
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15.4.4 Case Study: Kidney Cancer Data

The Kidney Cancer part of the Pan Cancer data introduced in Section 4.1.4 illus-
trates a variation of SiZer. Unlike the analysis there (and also in Section 13.2.1),
instead of considering only a subset of n = 50, here the full n = 551 data set
of KIRC cases is analyzed. The first mode of variation scores from the PCA of
that data set are shown as green dots in the top panel of Figure 15.10. The pattern
in these dots, as well as the overlaid kernel density estimates, suggest an apparent
cluster on the right which is a potential distinct subtype of Kidney Cancer. The im-
portance of cancer subtypes discovered by finding clusters in gene expression was
demonstrated by Perou et al. (2000), who discovered clinically relevant subtypes
that since motivated the development of different treatment regimes.
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Figure 15.10 Slope and curvature SiZer analyses of PC1 scores of the full Kidney Cancer
data. Jitter plot and family of kernel density estimates in the top panel suggest bimodality.
Curvature analysis (bottom panel) confirms statistical significance of bumps, suggesting
subtypes that are not flagged as significant using the slope version (middle panel).
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The middle panel of Figure 15.10 investigates this potential subtype using a
Sizer analysis. The large peak in the area of PC1 scores around -20 is clearly in-
dicated as statistically significant by the nearby blue and red regions in the SiZer
map. However, the smaller peak suggested by the cluster of PC1 scores near 100
is not indicated as statistically significant. The reason is that the density is gen-
erally sloping downwards, and the cluster is not large enough for a statistically
significant upwards slope to appear.

The bottom panel of Figure 15.10 addresses this challenge by modifying the
conventional SiZer analysis, from inference about slopes (first derivatives) to a
parallel inference based on statistical significance of curvature (second deriva-
tives), in an analysis first done by Tom Keefe. In particular, using the method
proposed in Chaudhuri and Marron (2002), regions in the scale space map (with
location on the horizontal axis and bandwidth scale, i.e. log10 h, on the vertical
axis) of significant concavity (f ′′ < 0) are colored cyan, regions of significant
convexity (f ′′ > 0) are orange shaded, and inconclusive regions are colored green.
The horizontal black line at the scale h = 20 passes through two substantial cyan
regions, leading to the conclusion of two significant bumps (hence subtypes) in
the Kidney Cancer data, despite its on-going downward tendency on the right side
of the main peak.

This result is consistent with the SigClust discovery of two clusters in a random
subsample of n = 50 of these data points in Section 13.2.1. An important point is
that since SigClust directly targets modes it is a more powerful test of modality.
In particular it found the subtypes in the Kidney Cancer data with only a small
subset (n = 50) of the full data (n = 551). Subtypes in a larger set of KIRC data
from TCGA have been studied in detail by Ricketts et al. (2018).

15.4.5 Additional SiZer Applications and Variants

There are a number of variants of Sizer, for example the inference can be based
on the 2nd derivative, instead of the 1st (i.e. curvature not slope). The curvature
version of SiZer found important population structure (modality) that was not
available from the slope version in the analysis of tree structured data objects of
Shen et al. (2014). SiZer has been modified to handle the specific case of jumps
(i.e. change-points) by Kim and Marron (2006). Li and Marron (2005) developed
a local likelihood version of SiZer. A smoothing spline version can be found in
Marron and Zhang (2005). A wavelet version was invented by Park et al. (2007).
An interesting application to establish the existence of code decay in software
engineering can be found in Eick et al. (2001). Analysis of internet traffic data
motivated variations of SiZer that can handle dependent data, see Hannig et al.
(2001), Park et al. (2004) and Rondonotti et al. (2007).

SiZer type ideas have also been adapted to the two dimensional case, which
thus includes significance of features in images to give a methodology called Sta-
tistical Significance in Scale-space by Godtliebsen et al. (2002, 2004). The un-
derlying inferential techniques are basically the same, but the visual interface is
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much different, mostly because of the challenges of extending the basic notions
of increasing and decreasing to more than one dimension.

The scale space ideas that underpin SiZer are not unrelated to the persistent
homology filtrations that are the basis of Topological Data Analysis as discussed
in Section 10.1.4. This connection has been studied in Sommerfeld et al. (2017),
who use it to propose an alternate approach to inference for bumps, based on the
bootstrap ideas of Fasy et al. (2014), that is seen to be slightly more sensitive than
SiZer.



CHAPTER 16

Robust Methods

As discussed at many points in previous chapters, robustness issues arise fre-
quently in OODA. Good overview of a large body of research done in this area
can be found in the monographs Hampel et al. (2011), Huber and Ronchetti (2009)
and Staudte and Sheather (1990), with a more recent survey in Clarke (2018). A
general view of the area is that it studies, and recommends remedies for, violation
of various classical statistical modeling assumptions.

The great bulk of this work has been motivated by the fact that under the very
typical assumption of a Gaussian error distribution outliers occur with vanishingly
small probability. Yet they can be rather common in real data, and have strong
potential to seriously disrupt classical statistical methods which tend to ignore
them, as illustrated in Figure 16.1. The left panel shows a toy example of n =

10 simulated realizations from the N2

([
2
−2

]
,

[
0.49 0.49
0.49 0.03

])
distribution

shown as + signs, with one point deliberately moved far away. Note that the sample
mean, shown as the thick + sign with a circle around it, is a poor approximation of
the center of the remaining point cloud, because the outlier has a strong influence
on it (in particular with weight 1

n = 0.1). This pulls it far outside the elliptical
contour of the Gaussian density that contains say 95% of the probability mass,
hence the sample mean is a very poor estimate of µ =

[
2 −2

]t
.

A parallel impact of an outlier on PCA is shown in the right panel of Figure

16.1. This time n = 40 points were drawn from theN2

([
−2
−2

]
,

[
1 1
1 0.152

])
distribution (also + signs), one of which was similarly moved away. While the
sample mean (at the intersection of the heavy dashed line segments) is somewhat
affected, it at least lies within the point cloud of the bulk of the data. However
the first PC direction (indicated by the longer dashed line segment) clearly does
not reflect the dominant mode of variation in the overwhelming majority of the
data set. That is because PC1 finds the direction of maximal projected variance,
and sample variance (which is driven by squared distances, recall how that had a
strong impact on the toy data set on S2 in Figure 8.3) is notoriously impacted by
outlying data points. Here this happened to the extent of actually being larger than
the sample variance along the major axis of the remaining data cloud, thus pulling
off the PC1 direction as seen. Scores plots (first seen in Figure 1.4 and used in
many different ways above) provide a very effective diagnostic for detecting un-
due influence from outliers, as seen in the right hand column of Figure 16.2. The
second PC in Figure 16.1 is shown as the shorter dashed line segment to give an
impression of these as axes of the PC coordinate system. In robust statistics many
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approaches to dealing with such challenges have been considered from a number
of interesting perspectives.

−4 −2 0 2 4
−4

−2

0

2

4

−4 −2 0 2 4
−4

−2

0

2

4

Figure 16.1 Toy examples illustrating impact of outliers on the sample mean and PCA. The
single outlier in the left panel pulls the mean (circled + sign) actually outside of the convex
hull of the remaining Gaussian data points. On the right the single outlier pulls the PC1
direction (longer dashed line) almost orthogonal to the major axis of the rest of the again
Gaussian point cloud.

While the study of outliers has dominated research in the area, robustness
against other violations has been studied as well, such as the violation of the typ-
ical independence assumption, as studied in Beran (1994), Beran et al. (2013)
and Clarke and Hall (2009). Another important violation of typical (i.e. Gaussian
error model) assumptions is treated in the area of robustness against data hetero-
geneity, as discussed in Section 11.4. The fundamental idea there is that modern
large data sets are often created by combining smaller data sets, that are frequently
not identically distributed. In such cases a Gaussian mixture error model can be far
more appropriate than the common single Gaussian. See Marron (2017a) for more
discussion, and Bühlmann and Meinshausen (2015); Meinshausen and Bühlmann
(2015) for leadership research in that area.

An overview of some controversial robustness issues is in Section 16.1. Specific
discussion of robust methods that have proven to be useful in OODA, e.g. tech-
niques well suited for handling high dimensional data, appears in Section 16.2.
Two specific case studies, involving dealing with surprisingly different types of
outliers in high dimensions are presented in Sections 16.2.1 and 16.2.2. A few
other robustness topics are discussed in Section 16.3.

16.1 Robustness Controversies

Perhaps because of the many potential ways to approach it, the field of robust
statistics has seen its share of controversy and very robust debate over the years.
One topic is outlier deletion versus robust methodology. From the former view-
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point, it is the responsibility of the data analyst to find outliers, and after careful
consideration to delete them from the data set when that is sensible. A number of
approaches to this can be found in Barnett and Lewis (1994). The latter approach
has been to shift away from explicit identification of outliers towards the devel-
opment of methods that are simply far less sensitive to them. The large majority
of researchers in robust statistics have chosen this latter approach for a number of
reasons, including:
• Outliers can be quite challenging to even define, making them difficult to delete

in an objective way.
• Outlier can also be difficult to discover, especially in high dimensional and

complex data situations such as arise in OODA.
• Outlier deletion is a time consuming process in a world where all too many an-

alysts tend to be increasingly pressed for time, as is apparent from the fact that
so little data visualization is frequently done in many modern data analyses.

• Outlier deletion may involve just too large a part of the data set, including some
data objects that still contain useful information, as illustrated using the Cornea
data in Section 16.2.1.

There has also been strong controversy even among those who advocate develop-
ment of robust statistical methods over outlier deletion. The key to understanding
the two sides in the debate is to consider the potential genesis of the outliers. One
natural source is recording errors, which can easily happen while writing down
numbers (e.g. missing a decimal point), or else through unnoticed failure of a
measuring device. In that case, outliers are simply bad data (i.e. contain no use-
ful information), so the statistical methods should aim to completely ignore them
(i.e. give them weight 0) as done by outlier deletion. But outliers also naturally
appear as just atypically large values, that are not a mistake but are an unusual yet
genuine part of the data being studied, e.g. as illustrated using the Drug Discovery
data in Figure 5.3 and the Pan Can data in Figure 5.16. In such cases the outliers
contain useful information, but robust methods should keep them from unduly
dominating the analysis (as happened for both Gaussian toy examples in Figure
16.1). The canonical example of such a method is the sample median in R1, which
feels a small but appropriate influence from every data point, even those that are
very far from the rest of the data. The former position of implicit outlier removal
was strongly advocated by the Hampel school (e.g in early editions of Hampel
et al. (2011)), while the latter of accommodating yet downweighting outliers was
equally strongly pushed by Huber (e.g. in early editions of Huber and Ronchetti
(2009)). Of course from a broader perspective, each approach can be appropriate
depending on the context. The challenge for the data analyst is to determine which
to use in any particular case.

16.2 Robust Methods for OODA

As noted above the challenges of OODA have motivated the re-thinking of some
robust statistical ideas. An important example is the notion of mean outliers versus
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shape outliers in FDA, as introduced by Dai and Genton (2018, 2019); Dai et al.
(2020) (who give several interesting examples clarifying how challenging it can
be to even define outliers). The latter concept is illustrated in Figure 16.2. The toy
data set there starts with the n = 50 10-d Tilted Parabolas in Figures 4.1 and 4.2
shown in black. The additional red curve that has been added demonstrates the
concept of shape outlier. Note that the values of the red curve lie entirely in the
vertical range [0, 30] while the black curves occupy a larger range of [−10, 40].
However, instead of having that generally very smooth parabolic shape it has a
much higher frequency (it is actually a coarsely discretized sinusoid) which puts
it into a far different region of the space of curves. Perhaps as expected from the
right panel of Figure 16.1, this red outlier has a strong impact on PCA (especially
compared to Figure 4.2). A careful look at the sample mean in the top center panel
of Figure 16.2 shows that the outlier has some influence there, in terms of some
quite angular corners corresponding to the valleys in the red curve compared to
the mean of the Tilted Parabolas data in Figure 4.1. The first mode of variation is
generally similar to the original analysis in terms of mostly being an overall up and
down mode, although the red outlier clearly has a strong influence on the shape of
the loadings vector. The second mode of variation is completely dominated by the
outlier. There is hardly any variation among the black curves in the loadings plot in
the left panel of the third row. The outlier also stands out starkly in the scores plot
on the right of the third row, highlighting how far the outlier is from the Gaussian
bulk of the data in the 10-d feature space. As noted above, in general such scores
plots are a good diagnostic for indicating the presence of the outlier. The third
mode of variation (fourth row) is essentially the random tilt mode which appears
as the second mode in Figure 4.2, although again there has been some corruption
by the outlier. As in the bottom row of the earlier analysis, the residuals from the
first three modes (bottom center panel) are relatively much smaller (recalling the
lesson of vertical axis choice conveyed by Figures 4.1 and 4.2).
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Figure 16.2 Parabolas and Outlier toy example in the same format as the PCA of Figure
4.2. Tilted Parabola data from there are shown in black, with a red shape outlier added, il-
lustrating how outliers can have a major impact on PCA, and how scores plots can provide
useful outlier diagnostics.

Among the many approaches to mitigation of outliers that have been proposed
in the literature, two approaches that are intuitively appealing (and are seen in
Section 16.2.1 to have good high dimensional properties) are illustrated in Fig-
ure 16.3. The toy data sets in the two panels are the same as in Figure 16.1. The
left panel shows a robust median that, as noted in Section 7.1, appears to have
been re-discovered and re-named several times. Haldane (1948) named it the ge-
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ometric median. It was shown to be unique in the case d > 1 (for d = 1 this is
the ordinary median which of course is not unique for n even) by Milasevic and
Ducharme (1987). That paper used the name spatial median, which is common
in the multivariate rank statistics literature, see Möttönen and Oja (1995) and Oja
(2010). In the robustness literature it is usually called Huber’s L1 M-estimate, us-
ing terminology from Huber and Ronchetti (2009). From that perspective it is the
p = 1 special case of the Lp M-estimate defined for random vectors x̃1, · · · , x̃n
centered at θ ∈ Rd as

arg min
θ∈Rd

n∑
i=1

‖x̃i − θ‖p2 . (16.1)

Note that for p = 2 this is the Fréchet mean defined at (7.5) with respect to
Euclidean distance. Another important special case is p = 1, the Fréchet median
from (7.6).

A simple iterative algorithm due to Gower (1966), provides insight into the
workings of this estimator of centrality and why it is robust. In the case p = 1,
it is based on setting the vector of d partial derivatives of the sum in (16.1) to
0. Using the notation θ =

[
θ1 · · · θd

]t
and x̃i =

[
x̃i1 · · · x̃id

]t
this

gives, for j′ = 1, · · · , d

0 =
∂

∂θj′

n∑
i=1

 d∑
j=1

(x̃ij − θj)2

1/2

=

n∑
i=1

1

2

 d∑
j=1

(x̃ij − θj)2

−1/2

2 (x̃ij′ − θj′) .

Multiplying by 1
n and putting these back into vectors gives

0 =
1

n

n∑
i=1

x̃i − θ
‖x̃i − θ‖2

. (16.2)

Insight into this quantity comes from the example in the left panel of Figure 16.3.
The + signs are the points x̃1, · · · , x̃n, and a candidate value of θ is the bold
x sign at (1, 2). Note that each x̃i − θ is the vector pointing from θ to x̃i, and
dividing by its norm (i.e. length) projects it onto the circle of radius 1 centered
at θ. For the case of θ at that x sign, these θ centered projections are shown as
small circles lying on the large dashed circle centered at θ. The equation (16.2) is
solved by the choice of θ that makes the average of these projections, shown as a
bold circle, equal to θ. That is not achieved by θ at that x sign. Gower’s algorithm
is iterative movement of θ to the bold circle at each step, until convergence. The
final result is shown using the the bold circled x sign, and its corresponding large
dashed circle with projections is also shown. This gives a much more sensible
notion of center of this data set than the sample mean (shown as in Figure 16.1
using the bold circled + sign).

The key to the robustness of this notion of center is that the outlier becomes
downweighted by projection onto the circle. Note that this estimator is indepen-
dent of the radius of the circle (equation (16.2) can be arbitrarily rescaled), and
in fact the circle shown in the figure has a radius larger than 1 to give a better
visual impression of the projected small circles. As noted in Section 7.1, a version
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of this robust notion of center - the Fréchet median - that is especially adapted
to data objects on a manifold as discussed in Chapter 8, can be found in Fletcher
et al. (2009).
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Figure 16.3 Illustration of Huber’s L1 M-estimate of the mean (left panel) and Spherical
PCA (right panel). Toy Gaussian data sets are the same as Figure 16.1.

The right panel of Figure 16.3 shows how this basic idea can be simply ex-
tended to give a robust version of PCA. Recall that straightforward PCA applied
to this data set gave a first PC direction pointing towards the first quadrant in Fig-
ure 16.1 while the bulk of the data objects (the + signs) clearly suggest a nearly
orthogonal trend. That direction can be found by using the same type of projection
used to understand Huber’s L1 M-estimate in the left panel, in particular onto a
sphere centered there. Again the small circles on the dashed circle are projections
of all of the data points. Note that the main sausage of data is projected to ice
caps on this one dimensional sphere. The outlier now has much reduced influ-
ence, and is comparable to the projections of a few points near the center. PCA on
these projections finds a first direction driven by the ice caps, thus following the
main body of the data, as shown by the long solid line. Again the PC2 direction is
the shorter orthogonal line indicating the PC coordinate system. This method was
called spherical PCA by Locantore et al. (1999), and was the basis of a very effec-
tive robust analysis of cornea image data objects as discussed in Section 16.2.1. Its
perhaps surprisingly poor performance in very high dimensions is explored using
Genome Wide Association data in Section 16.2.2. This same approach to robust
PCA was independently discovered and called PCA on the signs by Möttönen and
Oja (1995).

Figure 16.4 shows the results of a spherical PCA of the Parabolas and Outlier
toy data set in Figure 16.2. The first mode of variation continues to be mostly
curves moving up and down together, but now the loadings vector is less influ-
enced by the outlier, hence closer to the first mode of variation of the original
Tilted Parabolas data in Figure 4.2 (i.e. to that of the bulk of the data). The strong
robustness properties of spherical PCA are apparent in the second mode of vari-
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ation which is now driven by the random tilt, again an important property of the
bulk of the data as seen in PC2 of Figure 4.2. As the outlier still represents inter-
esting variation, it is appropriate that it now appears in the third mode of variation,
as it is clearly more important than the small variation which remains. Some of
the outlier remains in the PC3 Residuals (bottom center panel) which is an artifact
of the nonlinear analysis done by spherical PCA. The robustness of Huber’s L1

M-estimate in the top center panel appears as less angularity at the corners than in
the sample mean in Figure 16.2.
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Figure 16.4 Spherical PCA of the Parabolas and Outlier data in (nearly) the format of
Figure 16.2. First and second modes of variation are now much closer to those of the bulk
of the data as shown in Figure 4.2. Lessened influence of the outlier is reflected by it only
appearing in the third mode.

One difference between Figure 16.4 and Figures 16.2 and 4.2 is the scree plot
in the upper right panel. Recall from Figure 3.5 that those showed a red curve
and circles indicating the fraction of the energy (measured using sums of squares)
explained by each mode of variation, i.e. PC component. The blue dashed curve
and + signs show the cumulative version of these fractions. For spherical PCA
as studied in Figure 16.4 there are two such energy decompositions available and
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of interest. The first is the conventional PCA of the data projected to the sphere
(e.g. the small circles in the right panel of Figure 16.3). This is shown as the red
curve decomposition, which is monotone decreasing because it reflects the eigen
analysis underlying this PCA (which determines the directions being used in the
modes of variation). But perhaps of even more interest may be the energy in these
spherical modes of variation in terms of the original data objects, e.g. the + signs in
the right panel of Figure 16.3. These are also the sums of squares of the curves in
the left columns in Figure 16.3. This decomposition is shown using red circles for
the fractions, and blue + signs for the corresponding cumulatives. These are quite
different, and not even monotone. That is because spherical PCA puts the outlier
into the third mode of variation, even though its projected variance is larger than
the variance of the random tilt mode of variation. Recall this was the reason that
the robust spherical PCA is useful for this data set.

Spherical PCA was analyzed using the HDLSS asymptotic methods of Section
14.2 by Zhou and Marron (2015). That paper first showed that under classical
Gaussian assumptions, spherical PCA has the same good consistency / strong in-
consistency properties as conventional PCA that were quantified in (14.8). Next
they showed that for a sufficiently strong sequence of outliers, PCA could be
asymptotically pulled off in the fashion shown in the right panel of Figure 16.1,
while spherical PCA gave the correct robust solution in that limit.

16.2.1 Case Study: Cornea Curvature Data

Spherical PCA was actually developed for the analysis of the Cornea Curvature
data set described in Locantore et al. (1999). The cornea is the outer surface of
the eye, and its curvature is critical to vision because most of the refraction of
light entering the eye occurs there. The data objects in that study were images
as shown in Figure 16.5. Color codes radial curvature (i.e. along rays emanating
from the center) which is the curvature component with the most impact on visual
acuity. Stronger radial curvature is represented by warmer colors. Representation
of these functions on the disk was done using the Zernike orthogonal basis. That
is a special case of orthogonal basis data object representation as discussed in
Section 3.3. The Zernike basis for functions on the disc is defined in polar coordi-
nates as a tensor product of the Fourier basis in the angular direction, and a system
of Jacobi polynomials (carefully chosen to avoid a singularity at the origin) in the
radial direction. See Schwiegerling et al. (1995) and Born and Wolf (2013) for fur-
ther details. The 9 images shown in Figure 16.5, which is Figure 3 of Locantore
et al. (1999), were selected to give an impression of the full set of n = 43. These
are reconstructions of least squares Zernike fits, based on the data object choice
of feature vectors having size d = 66 (which gives good noise reduction while
maintaining image aspects of clinical interest). The three cases on the bottom row
show extreme edge effects. These are artifacts of the data acquisition, which is
done by collecting reflected light from the cornea. This can be somewhat blocked
by eyelids, resulting in some missing data near the outer edge of the image. The
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boundary of the missing regions is indicated by the thin white curves. The wild
red and blue values are the consequence of extrapolation in the Zernike fits.
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Figure 16.5 Zernike basis representation of 9 data object images in the Cornea Curva-
ture data from Locantore et al. (1999). Warmer colors are stronger radial curvature. Note
strong edge effects are quite common. Circle plus signs denote the image (hence basis)
centerpoint, and white curves indicate boundaries of missing data.

As at many places in this book, PCA provides useful population level insights
through decomposition into modes of variation. The object - feature space termi-
nology of Section 3.1 is useful here, as the images are the data objects, and each
is represented by a feature vector of d = 66 Zernike coefficients. Hence, PCA is
done in R66, but the resulting modes of variation are interpreted in terms of im-
ages. This is done in Figure 16.6, which is from Figures 6-8 of Locantore et al.
(1999), using an approach similar to that of Figure 1.11, where the modes of vari-
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ation are back-projected into the space of the original objects. The top row shows
the first mode of variation with the sample mean in the center, the reconstructed
image at two standard deviations below the mean is shown on the left, and on the
right is two standard deviations above the mean. Note that the overall color is hot-
ter on the left and cooler on the right, which is consistent with the first optometric
measurement of overall curvature. The light orange figure 8 pattern in the mean is
a consequence of astigmatism, which is a ridge of high curvature (the 8 shape is
the radial curvature view of such ridges). The astigmatism is stronger when there
is more overall curvature, indicating a correlation that was not previously known
by the clinician co-authors of Locantore et al. (1999).

The second and third of these modes of variation are visualized on the second
and third rows of Figure 16.6, using the same format (mean between minus and
plus two standard deviations). Both the second and third mode have strong arti-
facts that look similar to those in the bottom row of Figure 16.5. In particular, the
case on the lower right appears to be impacting the PC2 direction in R66, in a man-
ner similar to that illustrated in the right panel of Figure 16.1. This was confirmed
by looking at the PC2 scores plot, which looked quite similar to the PC2 scores
of the Parabolas and Outlier data in Figure 16.2, verifying that this direction was
indeed driven by that single outlying case. A natural approach was to delete that
case, which indeed eliminated the impact of that outlier, but then PC2 was domi-
nated by another outlier (not surprising from the bottom row of Figure 16.6. Even
after sequentially deleting 4 such outliers, there were still strong outlier effects on
the PCA, which is a concern because that is almost 10% of the data. That moti-
vated a robust approach, i.e. an analog of PCA that downweighted the effect of
the outliers, while still leaving them in the data set. This is also sensible since the
central parts of all images contain useful information.
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Figure 16.6 Conventional PCA of the Cornea Curvature data from Locantore et al. (1999).
Rows are first 3 modes of variation, center column shows the sample mean (same for each
row). Left (right, respectively) column is the mean minus (plus) 2 standard deviations.
First mode is clinically interesting. Second and third appear to be dominated by outliers,
motivating a robust approach.

As discussed in Section 17.1 there are a number of approaches to PCA. Most of
these give can motivate approaches to robust PCA. One is via the characterization
of PCA as eigen analysis of the sample covariance matrix (3.5), with the variance
and covariance estimates replaced by robust versions. A major challenge to this
approach is that the resulting estimated covariance is typically no longer positive
definite, resulting in hard to interpret negative eigenvalues. The approach of Li
and Chen (1985) followed the idea of PCA as directions of maximal projected
variation, doing an iterative search over directions employing more robust mea-
sures of spread on the projections. Local optima are a challenge to that approach,
and there do not seem to be successful implementations for dimensions as large as
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d = 66. Another intuitively appealing approach is the minimum volume ellipsoid
approach of Rousseeuw and Leroy (1987), but that has the drawback of requiring
d < n, which is sensible for affine invariance reasons, but not workable for this
Cornea Curvature data set with d = 66 and n = 43. This dearth of widely-known
robust PCA methods for high dimensional situations motivated Locantore et al.
(1999) to invent spherical PCA.

While spherical PCA gave a much improved analysis, the outliers still had a
substantial influence. This was due to some of the Zernike coefficients being or-
ders of magnitude different from others (a common issue with orthogonal basis
representations). Locantore et al. (1999) tackled that problem by extending the
spherical PCA idea illustrated in Figure 16.3, to elliptical PCA. The main idea is
to replace projection onto the sphere by projection onto an ellipse whose axes are
parallel to the coordinate axes, thus effectively handling the wildly different scales
of the Zernike coefficients. The elliptical PCA analysis of the Cornea Curvature
data is shown in Figure 16.7 (from Figures 19-21 of Locantore et al. (1999)), us-
ing the same format as Figure 16.6. Note that the first mode of variation is quite
similar to that of the first PC above, with the same interpretation, but without the
small influence of outliers. The second mode now clearly appears as the known (to
the clinicians) mode of variation of steeper on top versus steeper on the bottom.
The third mode is also clinically interpretable in terms of direction of astigma-
tism. While astigmatism can appear in any direction, most of it is approximately
vertical, called “with the rule” in optometry. Most of the rest is horizontal, and is
called “against the rule”. The third mode is with the rule versus against the rule
variation, although only one lobe of the figure 8 in the lower right plot actually
appears above the yellow to orange color threshold.
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Figure 16.7 Elliptical PCA of the same data (and in the same format, again from Locantore
et al. (1999)) as Figure 16.6. Shows outlier effects have been removed. All three modes of
variation are now clinically interpretable.

As noted in Section 6.11.2 of Maronna et al. (2019), spherical PCA has since
become a standard approach to robust PCA.

16.2.2 Case Study: Genome Wide Association Data

Genome Wide Association Studies (GWAS) were discussed in Section 14.2. As
introduced in Klein et al. (2005), the data objects are vectors representing many
(up to 5 million with technology available at this writing) local variants in the
DNA of humans at genomic locations called Single Nucleotide Proteins (SNPs).
The entries of such vectors are typically binary, yet as seen in Figure 16.8, which
is part of Figure 1 in Zhou and Marron (2016), PCA still shows a large amount of
interesting population structure. This is an extreme example of how PCA is useful
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even for non-Gaussian data. In fact these data objects all lie at vertices of a very
high dimensional unit cube.

Colors are used in Figure 16.8 to represent some ethnic groups, which are
clearly important aspects of the variation in this population. The data come from
the cystic fibrosis analysis done by Wright et al. (2011). That paper did careful
preprocessing resulting in binary SNP vectors of length d = 21, 000 (chosen to
give a representative set of SNPs). The data set is quite large, so for convenient
display only a subset of n = 347 people chosen as described in Zhou and Mar-
ron (2016) is shown here. While the ethnic groups stand out strongly, note that
some of the PC directions (PCs 3-6) are clearly dominated by just a few outliers.
The above robust PCA ideas suggest analyzing this data set using spherical PCA,
which is done in Figure 16.9.

Figure 16.8 Conventional L2 PCA of a subset of the Cystic Fibrosis GWAS data set, from
Zhou and Marron (2016). Shows major ethnic groups in the first two modes of variation.
Others are driven by pairs of outliers.

Based on the ideas in Figure 16.3, it is natural to expect that the influence of
the outliers would be greatly reduced by using spherical PCA. Yet that clearly has
not happened in Figure 16.9 (the rest of Figure 1 in Zhou and Marron (2016)),
which looks very similar to Figure 16.8, particularly in terms of the impact of the
outliers. This perhaps surprising behavior can be understood using the HDLSS
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geometric representation ideas of Section 14.2. Those concepts suggest that all
the data should be equidistant around the population expected value, i.e. essen-
tially lying on the surface of a sphere of radius d1/2. Furthermore pairwise angles
(from the population center) are all approximately 90◦. A strong exception to this
overall pairwise orthogonality is first degree relatives (e.g. siblings or parents and
children) whom share about half of their SNPs. This results in a pairwise angle
of approximately cos−1

(
1
2

)
= 60◦, i.e. much smaller than the typical 90◦, which

is enough to make just a pair of points drive a PC direction. It is not easy to
comprehend that the clearly visible ethnic arms visible in Figure 16.8 are the con-
sequences of pairwise angles only slightly smaller than 90◦, caused by groups of
people having a larger number of SNPs in common. As these data objects already
lie near the surface of the sphere centered at the population expected value, it is
actually not surprising that the spherical PCA device of projecting to a sphere has
no meaningful impact, i.e. Figure 16.8 is so similar to Figure 16.9.

Figure 16.9 Spherical PCA of the same data (also from Zhou and Marron (2016)) as in
Figure 16.8. Shows essentially no impact of projecting data onto a sphere and then com-
puting PCA. The strong influence of the outlying pairs, and the perhaps surprising lack of
robustness, is understood using HDLSS ideas from Section 14.2.

An effective solution to the first degree relative outlier problem in GWAS data
illustrated in Figures 16.8 and 16.9 is the Visual L1 PCA proposed by Zhou and
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Marron (2016). That analysis is shown in Figure 16.10. The first two PC modes
of variation clearly capture the ethnic groups visible in the first two components
of the earlier analyses. But the remaining modes appear to be much more useful,
as they shift the focus from outlying pairs to separate groups of people that appear
to represent various ethnic subgroups.

Figure 16.10 Visual L1 analysis (also from Zhou and Marron (2016)) of the same GWAS
data in Figures 16.8 and 16.9. This view is much more robust against the pairs of outlying
first degree relatives, instead shifting the focus to additional groups of people (different
ethnic subgroups).

Visual L1 PCA is based on the robust L1 PCA of Brooks et al. (2013). As
noted in Section 8.6, that method uses a clever backwards implementation. While
L1 PCA gives a robust and useful set of directions for understanding population
variation, the corresponding L1 scores tend to be quite hard to interpret as noted
in Zhou and Marron (2016), due to the lack of rotation invariance of the L1 norm.
The Visual L1 approach is based on the same robust direction vectors of maximal
L1 variation, but computes scores using the more interpretable L2 projections.
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This gives the needed insensitivity to outliers demonstrated in Figure 16.10, which
is part of Figure 6 in Zhou and Marron (2016).

16.3 Other Robustness Areas

As discussed in Section 7.1, there are many notions of multivariate median. These
all have the property that in the case d = 1 they are just the conventional sample
median. Good access to this area can be found in Small (1990) and Chakraborty
and Chaudhuri (1999). Especially appealing are the data depth methods, see e.g.
Liu et al. (1999), Vardi and Zhang (2000) and López-Pintado and Romo (2006).
A median type estimate of scale is the Median Absolute Deviation (from the me-
dian), defined in (13.2).

A novel approach to finding outliers in RNAseq data, of the type illustrated in
Sections 4.1.3 and 13.2.1 can be found in Choi et al. (2018). See Ahn et al. (2019)
for interesting outlier detection methods in HDLSS contexts.

Some discussion of robustness in landmark shape analysis has been given by
Dryden and Mardia (2016, Section 13.6). In particular distinctions are made be-
tween three different types of robustness: resistance to landmark outliers (some of
the d variables are unusual within a particular object); resistance to object outliers
(some of the n objects are unusual in the sample); and robustness to model mis-
specification. Dryden and Walker (1999) discuss methods for landmark outlier re-
sistance and adapt the S-estimator (Rousseeuw and Yohai (1984); Rousseeuw and
Leroy (1987)) and the Least Median of Squares estimator (Rousseeuw (1984)) for
landmark shape matching. It is important to balance having a high breakdown with
high statistical efficiency, where breakdown is the minimum percentage of points
that can be moved arbitrarily to achieve maximum discrepancy. It is also crucial
that any approach to robust shape analysis be equivariant, for example the same
match should be obtained regardless of the arbitrary rotations of the objects. Dry-
den and Walker (1999) used such an S-estimator with 25% breakdown, which has
a good trade-off between breakdown and efficiency. Least Median of Squares has
almost 50% breakdown, and an example of its use for matching electrophoresis
gels is given by Dryden and Mardia (2016, Section 13.6). These resistant shape
analysis techniques can be helpful for identifying outlier landmarks, which are
highlighted by very large residuals after resistant matching.





CHAPTER 17

PCA Details and Variants

PCA (recall from Section 1.1, this is an acronym for Principal Component Analy-
sis) has been very useful at many points in preceding chapters. A good source for
many aspects of PCA (including the history, such as the name itself going back to
Hotelling (1933)) is Jolliffe (2002). Common terminology for PCA is “dimension
reduction”, which appears to be rooted in the era of pre-computational statistics,
when indeed dimension reduction was a critical task. In the current era of abun-
dant computational capabilities, more relevant and specific ways of thinking about
PCA are:
• Data visualization. For example where scores distribution plots clearly show

the relationships between data objects. This was done in preceding chapters
at many points, starting with the Spanish Mortality data in Figure 1.6 and the
Twin Arches toy data in Figure 4.4. Further insights came from decomposition
into easily interpretable one dimensional modes of variation (each revealing
both loadings and scores), starting again with Spanish Mortality in Figures 1.4
- 1.5, and with the 2-d Toy data in Figures 3.2 - 3.4.

• Denoising. Useful in situations where a low rank approximation of the data can
retain most of the signal and thus PCA may reduce noise in the data.

• Efficient data representation. Which comes up in HDLSS situations where d >
n as discussed in Section 14.2. The (n−1)×nmatrix that contains all nonzero
PC scores is essentially a rotation of the mean centered data into the lower
dimensional space Rn, giving an (n− 1) dimensional (exact) representation of
the data, as detailed in Section 17.1.4.

Several quite different but useful ways of thinking about PCA are given in Section
17.1. Section 17.2 discusses methods that parallel PCA in the sense of shifting the
focus from variation in a single data block to analyzing joint variation between
two different but linked blocks of data.

Often really good ideas are discovered several times independently, usually un-
der a different name. PCA is a clear example of this, with alternate names appear-
ing in other fields as listed in Table 17.1.

355
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Name Field

Factor Analysis Social Sciences

Karhunen Loeve Expansion Probability Theory / Electrical Engineering

Empirical Orthogonal Functions (EOF) Geo and Climate Sciences

Proper Orthogonal Decomposition (POD) Applied Mathematics

Table 17.1 Alternate names for concepts essentially similar to PCA in other fields.

Not all of these are direct synonyms for PCA. For example, as discussed in
Section 17.1.3, in psychometrics factor analysis is not exactly PCA, as it includes
simultaneous likelihood estimation of the residual variance. However, the name
factor analysis is also used in a number of other fields where it actually is a syn-
onym for PCA. Also, the Karhunen-Loeve expansion is the same idea, but typ-
ically applied to probability distributions instead of to data sets. Of course these
can be related by thinking of a data set in terms of its empirical discrete probability
distribution, using the idea of empirical probability measure, that puts probability
mass n−1 on each data object.

17.1 Viewpoints of PCA

As discussed above there are many ways of considering PCA, most of which pro-
vide differing useful insights. As noted in Section 6.3 data centering issues tend
to be downplayed, but actually have a surprisingly important and sometimes non-
intuitive role (see for example the combined view analysis of the Twin Arches
data in Figures 6.9 and 6.10). This is true for both discussions about rows or
columns of the data matrix being viewed as the data objects (recall the discus-
sion in Section 3.1), and also in data visualizations, as studied below in Section
17.1.1. Good insight into many aspects of PCA, including the decomposition of
the column object centered data matrix into insightful modes of variation, comes
from studying the Singular Value Decomposition (SVD) in Section 17.1.2. A tra-
ditional and important approach to PCA is through a low rank factor model whose
parameters are estimated by Gaussian likelihood estimation (which can be decep-
tive) as reviewed in Section 17.1.3. Relevant computational and graphical issues
are discussed in Section 17.1.4.

Recalling notation from Section 3.3, and the use of tildes to indicate random
quantities from Table 7.1, write a d× n data matrix as

X̃ =

 x̃1,1 · · · x̃1,n

...
. . .

...
x̃d,1 · · · x̃d,n

 =
[
x̃1 · · · x̃n

]
, (17.1)

where the data object column vectors (sometimes called “cases” or even “sam-
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ples”) are

x̃j =

 x̃1,j

...
x̃d,j

 ∈ Rd,

and where each number x̃i,j is the trait value (sometimes called “variable” or
“feature”) for j = 1, · · · , n, and i = 1, · · · , d. Linear algebra provides a useful
mathematical backbone for understanding many aspects of OODA, and an im-
portant issue is the space in which this is done. Many mathematical treatments
focus on the vector spaces Rd and/or Rn, but in this chapter we take the uncon-
ventional approach of developing the ideas in the vector space Rd×n. Recall that
space from (3.4) where the symbol× in the exponent is used to indicate the vector
space of matrices, in contrast with Rdn, which denotes the corresponding vector
space of long vectorized column vectors of length dn. Subspaces and projections
in Rd×n provide a simple framework for understanding the relationships between
many OODA operations. This approach is a simplification of the ideas that Mam-
men et al. (2001) developed to understand how kernel smoothing (discussed in
Sections 15.1 and 15.2) can be viewed as a projection.

Recall from (4.3) that Id denotes the d×d identity matrix, from (10.1) that 1d,n
is the d× n matrix of ones, and from (4.2) that 0d,n indicates the d× n matrix of
0s.

The operation of projection is fundamental here. Given any metric space with
distance δ, a subset S, and an element x, the projection of x onto S is the closest
point in S to x, i.e.

PS (x) = arg min
s∈S

δ (s,x) .

Centering operations are studied in Section 17.1.1, using projections in Rd×n,
with respect to the Frobenius norm ‖·‖F , defined in (7.9). Additional useful linear
algebra comes from the corresponding Frobenius inner product

〈M ,N〉F =

d∑
i=1

n∑
j=1

Mi,jNi,j , (17.2)

on Rd×n.
Two relevant subspaces of Rd×n are based on the concept of flat vectors whose

entries are all the same. For example in Rd, the set of flat vectors is the subspace
 u

...
u

 : u ∈ R

 ,

which is sometimes called “the 45 degree line”, although that only makes sense in
the case d = 2. The flat vectors are also sometimes called “constant vectors”, but
the “flat” terminology seems easier to keep in mind in the context of the matrix
space Rd×n.

The concept of flat vectors allows interpretation of conventional univariate
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means as projections. First note that a unit basis vector (i.e. with norm 1) of the

subspace of flat vectors in Rn is 1√
n
1n,1. Hence given x =

 x1

...
xn

 ∈ Rn,

the Rn projection coefficient of x onto the flat subspace is the inner product
1√
n
11,nx =

√
nx. Multiplying that coefficient by the basis vector results in the

Rn projection of x onto the subspace of flat vectors as

1√
n

1n,1

(
1√
n

11,nx

)
=

1

n
1n,nx = 1n,1x, (17.3)

which is the flat vector whose common entry is x.
To understand data centering as projection in the matrix space Rd×n, useful

notation is SFT for the subspace (of Rd×n) in which all of the row trait vectors
are flat, where FT stands for Flat Traits, i.e.

SFT =
{
u11,n : u ∈ Rd

}
.

Similarly define the subspace (of Rd×n) consisting of matrices composed of flat
column object vectors (Flat Objects) to be

SFO =
{
1d,1v

t : v ∈ Rn
}
.

Applying the transpose of (17.3) to each row of the data matrix X̃ gives the pro-
jection

PSFT

(
X̃
)

= X̃

(
1√
n

1n,1

)(
1√
n

11,nx

)
= X̃

(
1

n
1n,n

)
= xCO11,n,

which essentially extends the d×1 column object mean xCO from (6.1) into a d×
n element of SFT . The column object centered version of the data matrix can also
be written as a projection onto the orthogonal (with respect to the Frobenius inner
product (17.2)) complementary subspace S⊥FT =

{
M ∈ Rd×n : M ⊥ SFT

}
as,

PS⊥FT

(
X̃
)

= X̃ − xCO11,n = X̃

(
In −

1

n
1n,n

)
.

Similarly, row trait mean centering as defined in (6.2) can be studied in terms of
projections onto the flat object subspace SFO

PSFO

(
X̃
)

= 1d,1x
t
RT =

(
1

d
1d,d

)
X̃,

and its orthogonal complement S⊥FO

PS⊥FO

(
X̃
)

= X̃ − 1d,1x
t
RT =

(
Id −

1

d
1d,d

)
X̃.

17.1.1 Data Centering

Some mean centering issues were discussed in Sections 6.3 and 7.3.3. As noted
in Prothero et al. (2021), while centering seems like a simple issue, it can be
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surprisingly slippery. Here a deeper view based on the above ideas of projections
onto Rd×n is based on the Sine Wave toy data set, with d = 20 rows and n = 10
columns, shown in Figure 17.1. The data were generated (for i = 1, · · · , 20 and
j = 1, · · · , 10) as

xi,j = T1 + T2 + T3 − 3 +N(0, 10−6) (17.4)

where
T1 = sin (5 · π · (i− 1) /19) ,

T2 = 0.3 · (j − 5.8)
2
,

T3 = 0.005 · (i− 10.5) · (j − 5.5) .

Let T 1, T 2 and T 3, denote the matrix versions of the first three terms on the
right hand side of (17.4). Note that each of these is a mode of variation as de-
fined in Section 3.1. These modes illustrate how column object and row trait
mean centering are understood through projections in Rd×n. In particular, note
that T 1 = u11,n (u ∈ Rd generates the sine wave) has flat rows, so T 1 ∈ SFT
(i.e. is a flat trait mode) and that the variation across rows follows a sin wave. Sim-
ilarly T 2 = 1d,1v

t (v ∈ Rn gives the parabola) has flat columns, so T 2 ∈ SFO
and its (flat object) variation across columns follows a parabola. Both of these
modes are clearly visible in the views of this Sine Wave data set shown in Figure
17.1. The third mode T 3 is a product of two (both mean 0) linear vectors and
has a much smaller coefficient to make it a much smaller contribution to the over-
all variation. The linear factors have both been carefully centered, which entails
T 3 ∈ S⊥FT ∩S⊥FO which will leave T 3 remaining after both centering operations.
Finally a very low level of independent Gaussian variation is also added.

Figure 17.1 explores the Sine Wave data set of (17.4) using a different format-
ting of the combined data matrix view introduced in Section 6.3. A heat-map view
(as discussed in Sections 6.1) is shown in the left panel. As expected from the form
of (17.4), the heat-map contains both vertical sine wave and horizontal parabolic
patterns.
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Figure 17.1 Combined view of the Sine Wave raw data matrix. Heat-map in the left panel.
Curve views of same data set, with columns as data objects in the center panel and row
trait vectors on the right. Visual connections between the three different views takes some
effort to make.

Another view of the Sine Wave data matrix (in the spirit of the top right panels
of Figures 6.9-6.12) is of the column data objects (essentially sine waves), shown
as n = 10 curves in the center panel. That view suggests that vertical shift of the
(common) sine pattern is the dominant mode of variation. A third view highlights
the d = 20 row trait vectors in Rn shown as curves in the right panel. That graphic
is in the spirit of the lower left panels of Figures 6.9-6.12. It gives the quite dif-
ferent impression that the dominant mode of variation is instead about vertical
shift of the parabolic curve. A careful look at the matrix view in the left panel
reveals what is happening: the variation in the height of the sine waves follows
the parabola, and the variation in the heights of the parabola follows the sine wave
pattern. An important point is neither is a single mode of variation, as defined in
Section 3.1.4, as they are not rank one matrices. In fact both are the sum of two
modes shown as T 1 +T 2 in (17.5). The first mode T 1 = u11,n can be thought of
as either extending the sine wave u in a flat horizontal way (giving the common
sine wave in the center panel) or else providing sinusoidal variation to the flat line
11,n. The second mode T 2 = 1d,1v

t similarly plays a dual role. It both provides
parabolic variation (modeled by vt) to the vertical flat line 1d,1 to drive the varia-
tion in the center panel, and also gives a vertical flat extension of the parabola vt

apparent in the right panel.
The effect of column object mean centering, i.e. PS⊥FT

(
X̃
)

, is studied in Fig-
ure 17.2. Because T 1 ∈ SFT that subtraction of the column data object mean
essentially removes the vertical sine wave from the heat map (left panel of Fig-
ure 17.2) making the horizontal parabolic structure of the mode T 2 even more
apparent. The conventional column data object view in the middle panel shows
that the common structure of the curves in the middle of Figure 17.1, i.e. the sine
wave structure, has been removed, leaving mostly just the flat vertical shift mode
of variation T 2 (with heights determined by the parabola). Also note that the lin-
ear T 3 mode of variation begins to be visible in these curves as well. This same
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type of removal of mean structure was very useful in the Spanish Mortality data
analysis of Figure 1.3 where the column object mean nicely captured the mortal-
ity structure that is common over time, while the mean residuals contained the
variation across time. It also was demonstrated using the Tilted Parabolas data in
the top row of Figure 4.1. The alternate row trait view (right panel of Figure 17.2)
instead shows that column object mean centering removes most of the T 1 driven
variation visible in the right panel of Figure 17.1, again since that variation was
driven by the sinusoidal structure in the data, ending up with the set of parabolas
that are nearly all the same in T 2.

Column Object Centered
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Figure 17.2 Effect of column object centering for the Sine Wave data of Figure 17.1, using
the same panel format. Shows removal of vertical sine wave component, leaving nearly
constant columns whose heights follow the parabola.

Figure 17.3 shows the effect of complementary row trait mean centering, i.e.
PS⊥FO

(
X̃
)

, on the Sine Wave data set. The heatmap view in the left panel shows
that this time the horizontal parabola effect T 2 (defined in (17.4)) has been re-
moved, leaving mostly horizontal stripes following the T 1 vertical sine wave pat-
tern. In the conventional column data object curve view in the center panel, this
projection has the effect of removing the dominant and important T 2 vertical shift
mode of variation (since T 2 ∈ SFO). The vertical axes in the center and right
panels of Figures 17.1, 17.2 and 17.3 all use a common scale to show the T 2

parabolic variation has the larger magnitude relative to the T 1 sine wave compo-
nent. A major point illustrated here is that the type of centering used can have a
strong visual impact, although frequently too little attention is paid to this point.
Finally the right panel shows that this operation removes the T 2 parabolic struc-
ture from the corresponding view of the original data on the right of Figure 17.1.
Note that the T 3 tilted linear component is now a little more apparent (actually in
both plots).
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Row Trait Centered
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Figure 17.3 Row trait centering of Sine Wave data from Figure 17.1, with the same panel
format. Shows removal of T 2 horizontal parabolic component.

Another data centering option is double centering shown in Figure 17.4. Dou-
ble centering can be viewed in a number of ways. The simplest is through si-
multaneous removal of both types of mean via a composition of projections
PS⊥FT

(
PS⊥FO

(
X̃
))

. Other ways of thinking about (or even recipes for computa-
tion of) double centering include

PS⊥FT

(
PS⊥FO

(
X̃
))

=
(
X̃ − PSFO

(
X̃
))
− PSFT

(
X̃ − PSFO

(
X̃
))

=

= X̃ − PSFO
(
X̃
)
− PSFT

(
X̃
)

+ PSFT∩SFO

(
X̃
)
.

Writing this in matrix form gives the double centered version of the data

X = X̃ − xCO · 11,n − 1d,1 · xtRT + xAA · 1d,n = (17.5)

=

(
Id −

1d,d
d

)
X̃

(
In −

1n,n
n

)
.

where the grand mean (i.e. mean over all of the entries of the data matrix) is the
scalar

xAA = d−1
d∑
i=1

xi,A = n−1
n∑
j=1

xA,j = (nd)−1
d∑
i=1

n∑
j=1

x̃i,j = (nd)−111,dX1n,1.

One way of understanding why the grand mean xAA should be added back in is
that an overall vertical shift in the entire data matrix (e.g. the fourth term in (17.4))
will be subtracted twice from the previous terms, so it should be added back in to
give the correct overall impact.
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Double Centered
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Figure 17.4 Double centered version of the Sine Wave data in Figure 17.1. Shows most
structure has been removed leaving just the product of sloping lines.

Note that in Figure 17.4 both the horizontal and vertical effects that dominated
Figure 17.1 have been removed. That leaves mostly just the product of linear com-
ponents generated by T3 ∈ S⊥FT ∩ S⊥FO showing up as a distinctive pattern that
results from a set of lines whose slopes change linearly from positive to negative.
Note that in the heat-map in the left panel, the color bar has been changed to re-
flect a finer color scale (than in Figure 17.1), since use of the original scale results
in very light colors that are harder to interpret. However, the vertical axes in the
center and right panels have been kept the same, so one can still visually gauge
the relatively small magnitude of the tilted lines that are a consequence of the T 3

product linear mode of variation. Further discussion of these different notions of
mean centering of a data matrix, and their impact on PCA type decompositions of
variation can be found in Zhang et al. (2007a).

Next, this Sine Wave data set defined in (17.4) is used to understand how these
centering operations interact with classical functional PCAs, such as illustrated
using the Tilted Parabolas example in Figure 4.1. In particular, Figure 17.5 shows
an analysis of the Sine Wave data, using the format of Figure 4.1. The top left
panel shows the column object raw data curves using a rainbow color scheme
(starting with magenta for the left hand column of the heat map through red for
the right hand column, i.e. over indices j = 1, · · · , 10). These are colored ver-
sions of the curves in the top center panel of Figure 17.1, where the color or-
der is best understood using the scores plot in the bottom right panel of Figure
17.5. The top center panel shows the data object mean curve, xCO, which can be
thought of in an Rd×n way as an overlay of the n identical columns (as curves) of
xCO11,n = PSFT

(
X̃
)
. The top right panel shows the residuals from subtracting

that mean, i.e. PS⊥FT

(
X̃
)

. The latter are colored versions of those in the center
panel of Figure 17.2. This makes it clear that the classical FDA mean centering
operation should be thought of as removing a mode of variation from the data (in
this case the T 1 mode). The PC1 mode of variation in the bottom left panel of
Figure 17.5 is essentially T 2 = 1d,1v

t, i.e. a product of the flat loadings vector
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1d,1 with parabolic scores vt. The latter are highlighted in the scores plot in the
bottom right, where both the rainbow colors and the parabolic pattern are clear. An
important point is that the appearance of the flat trait mode T 2 as the PC1 mode
of variation should not be thought of as typical, and instead is just a consequence
of the design of this particular example. However, first PC modes frequently have
at least some influence from the flat trait mode PSFO

(
X̃
)

, see for example the
Spanish Mortality data in Figure 1.4. The residuals in the bottom center plot of
Figure 17.5 are linear with slopes again following the rainbow colors, which cap-
ture the small variation in the slopes of the line segments in the top right panel,
thus displaying the T 3 component of the variation that is a colored version of the
curves in the center panel of Figure 17.4.
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Figure 17.5 Functional PCA of the n = 10 column objects in the Sine Wave data. Shows
the sine wave component is common structure appearing in the column object mean (top
center panel). PC1 mode of variation is essentially a constant function (flat mode), as seen
in the bottom left loadings plot. Residuals from this mode show up as lines with ordered
slopes (bottom center). Rainbow color scheme follows the ordering of the columns, clearly
understood in the scores plot (lower right).

The dual version of FDA, based on row trait vectors as data objects, is shown
in Figure 17.6. This time a very different heat scale color scheme is used, running
from black through red to yellow following the indices i = 1, · · · , 20, to indicate
that now color indicates rows of the data matrix X̃ . The top left panel shows
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the colored parabolic version of the curves in the left panel of Figure 17.1. This
time it is the T 2 parabolic mode of variation that shows up as common structure
captured by the row trait mean (top center). The sine wave component T 1 is now
much harder to see in the first PC mode in the bottom left panel, which again are
essentially flat lines. This is because the sine wave appears in the ordering of the
curves, as reflected in the scores shown in the lower right panel. The residuals in
the bottom center panel are again lines with linearly varying slope driven by T 3,
where the indices i and j have swapped roles relative to the bottom right panel of
Figure 17.5.
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Figure 17.6 Functional PCA of the d = 20 row trait vectors in the Sine Wave data. Heat
color scheme is used to highlight row ordering. From this viewpoint the parabola appears
as mean structure, and the sine wave component generates the variation of the flat curves
in the first mode of variation. Again the residuals are lines with ordered slopes.

It can be challenging to connect the structure seen in the column object PCA in
Figure 17.5 in an intuitive fashion with the row trait PCA shown in Figure 17.6.
Attention to where the terms of (17.4) appear in Figures 17.5 and 17.6, makes clear
the differences and also connections between these PCAs based on column data
objects and on row trait vectors. The main point is that loadings in one correspond
to scores in the other. In this sense the two types of PCA are duals to each other.
That point is generally somewhat obscured by centering issues, but can be clarified
by focusing on modes of variation. This time the PC1 mode of variation in the
bottom left panel of Figure 17.6 is essentially T 1 = u11,n, which is a product of
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the constant direction vector 11,n ∈ Rn with sine wave scores u. The scores plot
in the lower right reveals the sine wave pattern following the circles from cool
colors at the bottom through hotter colors at the top. Also this time the bi-linear
PC1 residuals in the bottom center plot have a form similar to those in the bottom
center plot of Figure 17.4, but with a more informative coloring.

A special property of this Sine Wave toy data set is that the mean mode of each
is the first PC mode of the other. Hence Figures 17.5 and 17.6 are able to illustrate
the important general principle that for each common mode of variation, the scores
for one are the loadings for the other. However, in general for column object PCA,
after mean object centering, the constant direction vector 1d,1 ∈ Rd will not point
in any single PC direction, so the modes of variation of the mean residuals will
be not be the same as for row trait object PCA. Thus exact duality will usually
not hold, except for modes where both loadings and scores are orthogonal to their
respective flat directions, i.e. sum to 0. When this type of duality is desirable (i.e.
when it is important that the scores on one analysis be the loadings of the other),
it can be guaranteed by starting the PCA at the double centered version of the data
X from (17.5). This amounts to separately accounting for both of the mean-based
modes of variation, before finding the PC modes.

Another viewpoint of centering ideas is data filtering. Filtering a data set by row
trait mean centering PS⊥FO

(
X̃
)

removes the flat mode of variation in (conven-
tional) column object PCA (sometimes quite desirable, e.g. for removing library
effects in gene expression). Similarly filtering by column object mean centering
removes the flat mode of variation in row trait (sometimes called dual) PCA. Other
common types of filtering include scaling (e.g. dividing either rows or columns
by their standard deviation) as discussed in Section 5.2, and transformation as
discussed in Section 5.3.

17.1.2 Singular Value Decomposition

A typical conception of PCA is sequential in nature through the components
(modes of variation), where at each step one searches for a direction of maximal
variation in the subspace orthogonal to the previously found directions, and then
uses projections of the data objects on these directions to define the modes. For
example this viewpoint was taken in discussing the analysis of the Spanish Mortal-
ity data in Section 1.1 and the Tilted Parabolas (Twin Arches) example in Section
4.1.1 (4.1.2 respectively). But an interesting property of PCA is that finding the
full set of modes can be usefully considered to be a single matrix operation.

As noted for example in Section 3.5 of Jolliffe (2002), Singular Value Decom-
position (SVD) provides a direct and simple approach to computing PCA, and to
understanding its properties. The full matrix version of the SVD of a d × n data
matrix X̃ is

X̃ = UDV t, (17.6)

where U ∈ O(d) (the set of orthogonal matrices as defined in Section 7.3.5) is a
d × d orthonormal basis matrix of Rd, where D is a d × n diagonal matrix (i.e.
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all matrix entries are 0 except on the main diagonal) of singular values that are
nonnegative and assumed to be sorted in decreasing order, and where V ∈ O(n)
is an n× n orthonormal basis matrix of Rn.

An interesting interpretation of the SVD comes from thinking of X̃ as the ma-
trix of coefficients of a linear transformation from Rn to Rd, when multiplying
from the left, and also of linear transformation from Rd to Rn, under right multi-
plication applied to the transpose of a vector. In both cases, note that the transfor-
mations corresponding to orthonormal matrices are isometries. These are elements
of O(d) (or O(n)), which are a little more general than rigid rotations (elements
of SO(d) or SO(n) as defined in Section 7.3.3), since various axis flippings are
also included. Note that they preserve Euclidean distances. Furthermore linear
transformation by a diagonal matrix simply rescales (possibly zeroing out) each
vector entry. Thus the SVD in (17.6) represents both (i.e. left and right) linear
transformations implied by X̃ as essentially a rotation, followed by a coordinate
by coordinate rescaling (or zeroing), which is followed by another rotation.

While the full matrix version of the SVD defined above lends itself to linear
transformation interpretation, it is usually numerically inefficient, in the sense that
it can be written in terms of smaller matrices. When d 6= n the diagonal matrix
D has at most only d ∧ n (where ∧ denotes the minimum) nonzero elements, so
there are either rows or columns of D that are all zero and thus are not actually
used in the product reconstruction of X̃ . In particular, replacing by appropriate
sub-matrices, the SVD in (17.6) can have the same form where U is n× (d ∧ n),
D is (d ∧ n)× (d ∧ n), and V is (d ∧ n)× n.

Further reduction is available in the lower rank case when X̃ has rank r <
(d ∧ n), because then some of the singular values are 0, so again there are parts
of the matrices that have no effect on the product. In this case, (17.6) still has the
same form but now U is n × r, D is r × r, and V is r × n. This is the most
efficient loss-less version of SVD which gives an exact representation of X̃ . The
columns of

U = [u1 · · ·ur] , V = [v1 · · ·vr] (17.7)
are called the left and right singular vectors respectively.

SVD can be thought of as providing the solution to a number of optimization
problems. Two of these are in terms of optimal projections onto direction vectors
in Rd and in Rn. Recalling the notation (3.2) for high dimensional spheres, the
set of all direction vectors in Rd is the sphere Sd−1 =

{
u ∈ Rd : ‖u‖ = 1

}
.

Note that Sd−1 is one way to represent the Grassmannian manifold, Gr(1, d),
i.e. the set of all 1-d subspaces of Rd. The 1 × n row vector whose entries are
projection coefficients (scores) of each data object (column of X̃) onto a given
direction vector u ∈ Sd−1 is given as utX̃ . A useful measure of signal power in

the direction u is the sum of squared scores, utX̃
(
utX̃

)t
= utX̃X̃tu. The left

singular vectors u1, · · · ,ud give (sequential) maximal signal power of possible
projections in Rd in the sense that

ul = arg max
u∈Sd−1,u⊥u1,··· ,ul−1

utX̃X̃tu (17.8)
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for l = 1, · · · , d. Furthermore the maximum signal powers are the squares of the
singular values s1, · · · , sd, the diagonal elements ofD (using the convention sl =
0 for l > (d ∧ n)). In the case of the appropriately centered and scaled data matrix
in (17.13) below, these squared singular values drive the relative heights of the
red circles in the scree plots introduced in Figure 3.5. Thus SVD simultaneously
provides the full PCA decomposition without the need for sequential computation.

The right singular vectors (columns of V ) solve parallel optimization problems
in Rn, in particular, given a direction vector v ∈ Sn−1 ⊂ Rn, the d × 1 column
vector of projection coefficients (loadings) of the rows of X̃ onto v is X̃v. Signal

power in the direction v is the sum of squares
(
X̃v

)t
X̃v = vtX̃

t
X̃v, which

are sequentially maximized by the right singular vectors v1, · · · ,vn,

vl = arg max
v∈Sn−1,v⊥v1,··· ,vl−1

vtX̃tX̃v

for l = 1, · · · , n, where the maximum values are the same singular values
s1, . . . , sn using appropriate 0s as needed to fill in discrepancies due to d 6= n.

Another important optimization problem solved by SVD (key to deep under-
standing of the modes of variation generated by PCA) can be seen by writing it as
a sum of rank 1 matrices:

X̃ =

r∑
l=1

slulv
t
l , (17.9)

where sl is the l-th singular value and ul and vl are defined in (17.7). This rep-
resentation gives easy insight into the good matrix approximation properties of
SVD. In particular, for k ≤ r (the rank of X̃), from the ordering of the singular
values s1 ≥ · · · ≥ sr > 0, it follows that X̃k =

∑k
l=1 slulv

t
l is the best rank k

approximation of X̃ in the sense that

X̃k = arg min
M∈Rk

∥∥∥X̃ −M∥∥∥
F
,

where Rk is the set (not a subspace) of matrices of rank ≤ k. Note that X̃k has
a representation of the form (17.6), X̃k = UkDkV

t
k where Uk, Dk, V t

k are
the first k columns of U , the upper k × k sub-diagonal of D, and the first k
rows of V t, respectively. This also shows how each rank k SVD can be viewed
as a projection onto Rk in Rd×n, the space of d × n matrices, as was done in
Section 17.1.1. In addition, each rank one matrix slulvtl is the projection of the
data matrix X̃ onto the one dimensional subspace generated by ulvtl , and the
rank k approximation is the projection onto the k dimensional subspace generated
by u1v

t
1, · · · ,ukvtk. Finally note that the representation (17.9) connects with the

discussion of modes of variation in Section 3.1.4. In particular, each rank 1 matrix
slulv

t
l (for l = 1, · · · , k) is a mode of variation, containing both the loadings (ul)

and scores (slvtl).
The representation (17.9) also provides a very useful connection between the

SVD loadings and scores. In particular, the scores are projections of the data onto
the (subspace generated by the) respective loadings vectors (in Rd) in the sense
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that for l = 1, · · · , r

utlX̃ = utl

r∑
l′=1

sl′ul′v
t
l′ = slv

t
l . (17.10)

Similarly, loadings have a parallel simple representation in terms of scores as

X̃vl =

r∑
l′=1

sl′ul′v
t
l′vl = slul. (17.11)

The matrix version of (17.10) is the projection of each data object (column of X̃)
onto each of the singular vectors, through the matrix inner product calculation

U tX̃ = U tUDV t = DV t. (17.12)

These inner products give the coefficients of the projections that are called SVD
scores, which are the basis of many useful visualizations (e.g. scatterplot matrices
as discussed in Section 6.4) in this book.

Perhaps the most direct mathematical understanding of PCA comes from view-
ing it as the SVD of the (sample size scaled) column object centered version of
the data,

X̆ = n−1/2
(
X̃ − xCO11,n

)
= n−1/2X̃

(
In −

1

n
1n,n

)
, (17.13)

written as
X̆ = ŬD̆V̆

t
. (17.14)

For l = 1, · · · , r, the l-th set of PCA scores, i.e. the l-th principal components, are
in the l-th row of the r× n matrix D̆V̆

t
. Recall these scores provide insights into

how the data objects relate to each other through scatterplots as seen in Section 6.4
and other places. As noted starting in Section 1.1, insight into the drivers of these
relationships comes from the loadings. For l = 1, · · · , r, the l-th column of Ŭ is
the l-th loadings vector which is the direction (recall a vector of norm 1) in Rd of
l-th largest variation in the data. For i = 1, · · · , d, the i-th entry of the loadings
vector reflects direction and magnitude of the influence of the i-th variable on the
l-th direction. The PC scores and loadings are intimately related to each other via
projections. In particular, since

Ŭ
t
X̆ = Ŭ

t
ŬD̆V̆

t
= D̆V̆

t
, (17.15)

the l-th row of the scores matrix D̆V̆
t

is the n × 1 vector of inner products (es-
sentially projection coefficients) of the l-th loadings vector with the data objects
(columns of X̆). Similarly

X̆
(
D̆V̆

t
)t
D̆
−2

= ŬD̆V̆
t
V̆ D̆D̆

−2
= Ŭ (17.16)

shows that the loadings can be represented as a normalization (rescaling by the
inverse variances) of the inner products of the centered data matrix and the scores.
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In summary, (17.15) and (17.16) show that both loadings and scores can be derived
from the other by an appropriate product with the scaled, centered data matrix.

The column centering operation in (17.13) provides enhanced interpretability in
several ways, including connection with the sequential view of PCA. First, using
X̆ instead of X̃ in (17.8) gives the interpretation of PC directions first discussed
in Section 1.1: ŭ1 is the direction vector (based at the sample mean) that maxi-
mizes sample variance of the projections. Note that it is the centering operation
and division by n1/2 that changes the criterion from sum of squares to sample
variance. Since the columns of Ŭ are orthonormal, each ŭl (for l = 2, · · · , r) is
the direction vector in the subspace orthogonal to ŭ1, · · · , ŭl−1 that maximizes
the sample variance of the data projections. A second enhancement resulting from
column object centering was illustrated in the bottom panels of Figure 6.8, com-
paring uncentered SVD with PCA in a toy example. In particular, the column
object mean centering used in PCA (together with the orthogonality of the rows
of V̆

t
, i.e. the columns of V̆ ) results in more easily interpretable uncorrelated

scores scatterplots. As noted in Section 6.3, PCA scores scatterplots all have cor-
relation 0 because otherwise the direction vector could be rotated to result in a
larger sample variance of the scores. Another view of this phenomenon comes
from calculating the r × r matrix of inner products of the scores vectors, again
using the orthonormality of the columns of V̆ and the fact that D̆ is diagonal,

D̆V̆
t
(
D̆V̆

t
)t

= D̆V̆
t
V̆ D̆

t
= D̆

2
. (17.17)

Orthogonality of the scores vectors (recall rows of D̆V̆
t
), and hence 0 sample

correlation of the entries of those vectors as seen in scores scatterplots, follows
from the fact that D̆

2
is also a diagonal matrix, whose off diagonal entries are

thus all 0.
Without column object mean centering, there is generally some (i.e. non-zero)

sample correlation of SVD scores plots, again as demonstrated in the lower left
panel of Figure 6.8. However, in many situations, this correlation is not distracting,
because frequently one of the singular vectors (usually the first) happens to point
approximately in the direction of the sample column object mean. In particular,
many data sets tend to have an important flat mode of variation, for example T 2

as illustrated in (17.4). That flat mode is often roughly in the first SVD direction,
so the SVD modes of variation are frequently similar to those of a standard PCA.

Again a major lesson of Figure 6.8 is that column mean object centering re-
sults in uncorrelated PC scores. The symmetry of the SVD in terms of rows
and columns, readily apparent from (17.6) and (17.14), suggests a parallel rela-
tionship: row trait mean centering implies that such pairwise scatterplots of the
PCA loadings will be similarly uncorrelated. While column object mean center-
ing is routine for PCA, row trait mean centering (or double mean centering as
defined in (17.5)) is not. As shown in Figure 6.8 appropriate centering will ensure
that scores are uncorrelated. This does not seem to have been widely noticed for
two reasons. First, with the noticeable exception of biplot data views, as defined
by Gabriel (1971), and more completely developed in Gower and Hand (1996);
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Gower (1966), there has not been strong interest in visualizing PC loadings. While
biplots can be insightful in low dimensional contexts, a version adapted to high
dimensions has not yet been developed. The second reason is that in typical analy-
ses, the column mean object centering removes the grand mean xAA, which often
is a large factor in the lack of correlation in the scores. An exception is shown in
Figure 17.7, based on the Spanish Mortality data studied in Section 1.1.
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Figure 17.7 PCA loadings for Spanish Mortality data studied in Section 1.1. Heat coded
coloring indicates age from 0 (black) to 98 (yellow). Shows correlations in loadings caused
by the lack of row trait mean centering.

Note that the correlations between the first and second as well as the second
and third loadings vectors are small, but the first and third are strongly negatively
correlated. Furthermore the first loadings do not have mean 0. Thus, in situations
where it is important to simultaneously consider both scores and loadings, such



372 PCA DETAILS AND VARIANTS

as the multi-block analyses studied in Section 17.2, it can be important to use an
SVD of the double centered version of the dataX defined in (17.5).

Also note that there are strong connections with the column object oriented
analysis in Section 1.1. In particular the pattern in the first loadings can be seen
in the top center panel by tracing (through the ages on the horizontal axis) of the
upper magenta curve in the left panel of Figure 1.4. There is an initial relatively
small value (black) with an initial jump followed by slow decrease with later wig-
gles due to the age rounding (red and yellow). In that same panel of Figure 17.7
the pattern in the second loadings (left panel of Figure 1.5) also follows the vis-
ible magenta curve, initially negative swinging to positive (for the 20 to 45 year
olds) and then back to negative. This is natural because as noted in Section 17.1.1
the usual PCA (with columns as data objects) scores and loadings defined above
essentially (modulo centering) become the loadings and scores respectively when
the rows are taken as data objects, which is now easy to understand from taking
the transpose of (17.14).

It is also insightful to formulate these quantities in terms of the sample covari-
ance matrix Σ̂ defined at (3.5). Given a data matrix X̃ , the entries of Σ̂ are the
sample variances

v̂ari =
1

n

n∑
j=1

(x̃i,j − xi,A)
2 (17.18)

and the sample covariances

ĉovi,i′ =
1

n

n∑
j=1

(x̃i,j − xi,A) (x̃i′,j − xi′,A) (17.19)

for i, i′ = 1, · · · , d. The sample covariance matrix is related to PCA through
representing it as the outer product

Σ̂ = X̆X̆
t
. (17.20)

Using the singular value representation (17.14) gives

Σ̂ = ŬD̆V̆
t
V̆ D̆

t
Ŭ
t

= ŬΛ̆Ŭ
t

(17.21)

where Λ̆ = D̆D̆
t
is a diagonal matrix whose entries are the squares of the en-

tries of D̆, i.e. the squares of the singular values s̆l. The representation (17.21) is
called an eigenvalue decomposition or eigen analysis at many points above. This
reveals that in addition to the (17.14) representation of PCA as a Singular Value
Decomposition of the column object centered data matrix, it can also be thought
of as an eigenvalue analysis of the sample covariance matrix. The entries of Λ̆ are
the eigenvalues, which divided by their sum (i.e. the total energy in the centered
data matrix X̆) are the heights of the scree plots shown e.g. in Figure 3.5. Such
eigenvalues were also fundamental to the random matrix theory studied in Section
14.1.
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17.1.3 Gaussian Likelihood View

A common theme throughout this book has been a nonparametric, or data cen-
tric, development of analytical methods for OODA. This is a contrast to many
introductions to multivariate analysis where the focus is instead on underlying
parametric statistical models and resulting likelihood approaches. Low rank la-
tent factor models provide a traditional approach of this latter type to PCA. In
particular, assume the d× n data matrix can be written in the form

X̃ = µ11,n +LS + Ẽ,

where for some low rank r,L is a d×r orthonormal loadings matrix, S is an r×n
scores matrix whose rows are orthogonal and sum to 0 (for identifiability) and Ẽ
is a d × n matrix of errors whose entries are often assumed to be independent
N
(
0, σ2

)
. Rows of S are often thought of as unobserved latent factors, and their

estimation is the primary goal of factor analysis. Standard calculations show that
for a given r, using notation from (6.1) and (17.14), the maximum likelihood
estimates of µ, L and S are xCO, Ŭ and D̆V̆

t
respectively. This is a sense in

which standard PCA can be thought of from the likelihood viewpoint.
While this approach is mathematically elegant, as noted in Section 4.1 it has the

serious downside that it has fed a common misconception that PCA is only useful
when the data approximately follow a multivariate Gaussian distribution. As seen
at many points in this book, PCA provides insightful data visualizations in many
non-Gaussian situations. Important real data examples of this appear in Figures
4.7 (Lung Cancer data) and 4.9 (Pan Cancer).

As noted at the beginning of this chapter, properly defined factor analysis is
closely related to PCA (as opposed to being exactly the same). The difference
is that factor analysis includes estimation of the residual variance σ2 as part of
the likelihood calculation. This results in the same loadings (column vectors of
Ŭ ), i.e. directions for visualizations, as PCA. However the scores are somewhat
impacted by the simultaneous estimation of σ2.

17.1.4 PCA Computational Issues

Good discussion of various approaches to computing PCA can be found in Sec-
tion A.1 of Jolliffe (2002). Using most software packages, which contain well-
optimized SVD functions, the SVD approach to computation described in Section
17.1.2 is both insightful and generally computationally useful.

As noted at the beginning of this chapter, PCA can give an efficient (exact) low
dimensional representation of a d × n data matrix. In particular, it follows from
(17.13) and (17.14) that

X̃ = xCO11,n + Ŭ r

(
n1/2D̆rV̆

t

r

)
, (17.22)

where r is the rank of X̃ − xCO11,n (which is usually the rank of X̃ when
n > d and one smaller otherwise), where the loadings matrix Ŭ r contains the
first r columns of Ŭ (these are the PCA directions of projection in Rd) and where
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n1/2D̆rV̆

t

r

)
is the r×n matrix of PCA scores (projection coefficients), plotted

at many points in this book starting with Figure 1.4. Thus the scores are a trans-
lated and orthogonal transformed (rotation and/or sign flip) version of the data that
are a lower dimensional isometric (hence loss-less) representation in Rr.

The data representation (17.22) is closely related to the formula for simulating
a d× n random matrix X̃ ∼ Nd (µ,Σ) as

X̃ = µ11,n +Σ1/2Z = µ11,n +UΛ1/2U tZ = µ11,n +UΛ1/2Z∗ (17.23)

where both Z and Z∗ are d × n matrices of independent standard normals since
U t is an orthogonal matrix. To simulate Gaussians that follow the data set in any
matrix X̃ as well as possible, use (17.23) with µ (and UΛ1/2) replaced by the
sample version xCO (and n1/2Ŭ rD̆r respectively).

17.2 Two Block Decompositions

As noted at many points above, a set of data objects that is usefully viewed as
columns of a matrix is a common format (recall the OODA convention of cases
as columns of the data matrix and traits, i.e. variables as rows). However, an in-
creasing number of OODA contexts have been appearing where data objects nat-
urally consist of several such column vectors of traits that are grouped in mean-
ingful ways. A canonical example is the TCGA data set, introduced in Sections
4.1.3 and 4.1.4. In addition to the gene expression studied those sections, around a
dozen other types of measurements were made for each patient, including protein
expression and mutation status. Most measurement types result in long vectors
of numbers, so the resulting data objects are naturally considered to be sets of
vectors. For clear study of not just the measurements but also the relationships be-
tween the groups, it is convenient to group the vectors into several matrices, called
data blocks here. In particular, for b = 1, · · · , B let the db × n data block be

X̃
(b)

=
[
x̃

(b)
1 · · · x̃

(b)
n

]
. (17.24)

An important aspect of multi-block data is that for each j = 1, · · · , n the corre-
sponding measurement vectors x̃(1)

j , · · · , x̃(B)
j are all made on the same exper-

imental unit, e.g. tissue sample in the case of the TCGA data first discussed in
Section 4.1.3. There are several synonyms for “multi-block”, such as multi-view
which is common in the machine learning literature. An accessible overview of
multi-block methods can be found in De Bie et al. (2005).

Time honored approaches to multi-block data, also called data integration, are
Partial Least Squares (PLS) studied in Section 17.2.1 and Canonical Correlation
Analysis (CCA) discussed in Section 17.2.2. As discussed there, these powerful
methods can be approached from several viewpoints, and have a number of vari-
ants. Some of these variants are usefully understood and contrasted through their
corresponding modes of variation.
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A simple starting point for this is the caseB = 2 and the joint covariance matrix[
Σ̂

(1)
Σ̂

(1,2)

Σ̂
(1,2)

Σ̂
(2)

]
, (17.25)

where Σ̂
(1)

and Σ̂
(2)

are the respective within block sample covariance matrices
(defined at (3.5) and usefully represented as an outer product in (17.20)) of the

two blocks, and where Σ̂
(1,2)

is the cross covariance matrix whose entries are
sample covariances of the form (17.19) with i = 1, · · · , d1 (and i′ = 1, · · · , d2)

representing the index of a trait (variable) in X̃
(1)

(and X̃
(2)

respectively). In the
spirit of (17.20), using block indexed versions of the column object centered data
matrices (17.13), the d1 × d2 cross covariance matrix has an outer product repre-

sentation as Σ̂
(1,2)

= X̆
(1)
(
X̆

(2)
)t

, where X̆
(b)

is the column object centered
version of the data in block b for b = 1, 2.

Additional extensions of PLS and CCA ideas include kernel (in the classifi-
cation sense of Section 11.2) versions in Bach and Jordan (2002), the sparsity
approaches of Gao et al. (2015) and the deep learning implementations proposed
by Andrew et al. (2013). For more than two blocks there are dozens of extensions
as seen in Tenenhaus and Tenenhaus (2011). For example, CCA alone has 20
generalizations to multiple blocks: Kettenring (1971); Nielsen (2002); Asendorf
(2015).

17.2.1 Partial Least Squares

The terminology Partial Least Squares (PLS) has been used for a large number
of methods for multi-block analysis. The most important of these are a set of
methods for deriving joint modes of variation from the cross covariance matrix

Σ̂
(1,2)

. Good overview appears in the survey paper Wegelin (2000). The name
PLS was coined by Wold (1975, 1985).

A straightforward version, labeled PLS-SVD by Wegelin (2000), develops joint
modes of variation using ideas parallel to PCA (as described in Section 17.1.2). It
starts with the SVD of the cross covariance matrix

Σ̂
(1,2)

= ŨD̃Ṽ
t
. (17.26)

For l = 1, · · · , d1 ∧ d2 the columns ũl of Ũ and ṽl of Ṽ are direction vectors in
Rd1 and Rd2 (respectively) that sequentially maximize the covariance of projec-

tions of X̃
(1)

onto ũl and of X̃
(2)

onto ṽl, subject to orthogonality of columns of
both Ũ and Ṽ . Each pair of direction vectors generates joint modes of variation
in Rd1×n and Rd2×n by computing corresponding scores vectors using the data
matrix multiplication principle of (17.15). The resulting cross covariance scores
are projection coefficients of the data objects onto the direction loading vectors as
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in (17.10). Hence these are computed as (d1 ∧ d2)× n PLS scores matrices

S̃
(1)

= Ũ
t
(
X̃

(1)
− x(1)

CO11,n

)
, S̃

(2)
= Ũ

t
(
X̃

(2)
− x(2)

CO11,n

)
.

Scatterplot matrix plots, as in e.g. Figure 4.4 (Twin Arches data), of scores (pro-
jections on the loadings vectors) within each block gives insights (parallel to PCA
scatterplot matrix plots) into object relationships that are maximally related to the
other block. Also of interest is to study the amount of dependence between the

blocks through, for l = 1, · · · , d1 ∧ d2, viewing the scatterplots of the scores S̃
(1)

l

vs. S̃
(2)

l . As for PCA, the entries of the vectors ũ1 and ṽ1 are both called loadings
in this context. These loadings can be plotted as in Figure 4.11 to give insights as
to the drivers of the joint variation between data blocks. When the loadings are
interpretable as smooth curves, such as for the Spanish Mortality data studied in
Section 1.1, useful insights come from multiplying the loadings vectors by scores
to produce mode of variation plots, such as those in Figures 1.4 and 1.5, and in
many other places.

While the PLS-SVD approach is quite straightforward to compute and gives
practically useful modes of variation, as demonstrated in Singh et al. (2010) and
other places noted in Wegelin (2000), it does have some limitations. In particu-
lar these modes of variation do not share the bi-orthogonality property of PCA
modes, which was that both the columns of the matrix Ŭ and also the columns
of V̆ (i.e. the rows of V̆

t
) are orthonormal bases (of Rd and Rn respectively).

In particular, the rows of the block 1 scores matrix S̃
(1)

are generally not or-

thogonal to each other, and similarly for the rows of S̃
(2)

.Because each vector of
scores has sample mean 0 of its entries, these non-orthogonalities entail that the
sample correlations between vector entries are not 0, i.e. there is some correla-
tion between these vectors, which can be quite apparent and even disconcerting in
scores scatterplot matrix views. However, there is some orthogonality across the
blocks, that follows from a calculation similar to (17.17). In particular the parallel
(d1 ∧ d2)× (d1 ∧ d2) inner product matrix is

S̃
(1)
(
S̃

(2)
)t

= Ũ
t
(
X̃

(1)
− x(1)

CO11,n

)(
Ṽ
t
(
X̃

(2)
− x(2)

CO11,n

))t
=

= Ũ
t
(
X̃

(1)
− x(1)

CO11,n

)(
X̃

(2)
− x(2)

CO11,n

)t
Ṽ =

= Ũ
t
Σ̂

(1,2)
Ṽ = Ũ

t
(
ŨD̃Ṽ

t
)
Ṽ = D̃. (17.27)

Hence the diagonality of the singular value matrix D̃ shows that the scores in each
block are orthogonal to the non-corresponding scores in the other block. This does
not seem to be widely acknowledged, perhaps because there does not appear to be
motivation to construct such cross block scores scatterplots.

The above (within blocks) lack of orthogonality of the PLS-SVD scores can
be viewed as motivating a number of variants. The best known of these comes
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from Wold (1975, 1985) who proposed PLS regression as an improvement of PCA
regression. The latter is useful in multiple linear regression contexts with many
and/or collinear predictors, which tend to cause numerical instability in classical
least squares algorithms. The main idea of PCA regression is to replace those pre-
dictors with a reduced set of PCA scores, which often provide a good low rank
approximation (thus containing most of the relevant information of the original
predictors while hopefully eliminating noise), sometimes called latent variables.
That also avoids numerical instability in the regression formulas because of the
orthogonality of the PCA scores vectors. An obvious drawback is that PCA is
driven completely by the variation in the predictors, which has no explicit con-
nection to the responses. The intuitively attractive improvement of PLS regres-
sion is to replace the low rank approximation based on SVD of (17.14) inherent to
PCA with a more directly relevant approximation based on SVD of (17.25). That
gives modes of variation that focus on the connection between predictors and re-
sponses, instead of merely maximizing variation among the predictors. However,
as discussed above, the scores from the SVD of (17.25) are not entirely suitable
as predictors because of their non-orthogonality. This can be thought of as the
motivation for Wold’s PLS which does have uncorrelated scores. Those give both
enhanced numerical performance of the regression algorithm, and also more in-
terpretable scores in latent variable terms.

There are various approaches to Wold’s version of PLS. An algorithm-centered
approach (focused on sequentially finding appropriate directions) can be found
in Wegelin (2000). The idea is to find a first mode of variation using (17.26) as
above. Additional modes are found by iteratively solving (17.26) with the added
constraint of orthogonality of the scores vectors. Many authors prefer a model-
based latent factor way of thinking along the lines of that approach to PCA de-
scribed in Section 17.1.3, with the same type of sequential implementation. Other
approaches are more optimization based, see for example Rosipal and Krämer
(2005) and Xu et al. (2013).

The orthogonality of the scores in Wold’s PLS comes at a price of loss of or-
thogonality of the loadings vectors. The orthogonality of scores across blocks
shown in (17.27) is similarly lost in Wold’s PLS. There do not seem to be two
block decompositions into modes of variation that share the bi-orthogonality prop-
erty of PCA.

A question that does not appear to be addressed in the literature is how far
are the scores resulting from PLS-SVD from being orthogonal, i.e. how far are
the PLS-SVD modes of variation from being bi-orthogonal? This is investigated
in Table 17.2 which summarizes results from a small simulation study based on
1000 realizations of pairs of matrices with i.i.d. Gaussian entries of dimensions
d × n. Each pair was double centered as described in Section 17.1.1 and scores

from an SVD of the cross covariance matrix Σ̂
(1,2)

were computed. The angles
between the first and second scores vectors for both matrices were computed, and
the minimums and averages have been summarized in Table 17.2.
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d n Min. Angle Max. Angle

10000 10 88.70 89.67

1000 100 86.59 89.19

100 1000 84.65 88.83

10 10000 87.85 89.55

Table 17.2 Summary of simulation study, exploring angles between PLS-SVD scores vec-
tors, in the case of i.i.d. Gaussian data. Shows scores vectors tend to be orthogonal across
a wide range of settings.

Note that broadly over this wide range of contexts, these angles are all perhaps
surprisingly close to orthogonal, i.e. 90◦. In the HDLSS case (d � n) this is not
surprising, given the fundamental ideas from Section 14.2 that random directions
tend to be orthogonal in those cases. Less obvious is why the angles are also
very close to 90◦ in the other cases. An open theoretical problem seems to be an
asymptotic analysis that quantifies these observations. Of course, the results of
Table 17.2 only apply to pure noise contexts, and some types of low rank signal
can easily lead to much smaller angles between scores vectors.

An important limitation of PLS is that because it is driven by covariance it
does not always focus completely on joint structure but instead also feels variation
within each block, as demonstrated in Figure 17.8. For example when one variable
has a much larger variance than the others, it will tend to unduly influence PLS. A
solution to this problem is given in Section 17.2.2.

17.2.2 Canonical Correlations

As noted in Section 17.2.1, PLS-SVD provides modes of joint variation that maxi-
mize covariance between scores. As discussed in the context of correlation PCA in
Section 5.2, a potential drawback of covariance is that it feels the units of the data.
This can create challenges in several contexts, an important example being data
blocks whose traits are measured in non-commensurate units. In those situations
it is very sensible to replace the covariance criterion with the unit free Pearson’s
correlation coefficient. That goal results in CCA, which was named by Hotelling
(1936), who as noted at the beginning of this chapter also coined the term PCA.

CCA starts with directions ˜̃u ∈ Rd1 and ˜̃v ∈ Rd2 . Corresponding vec-
tors of projections of the ( 1

n rescaled) column object centered data (17.13) are
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X̆

(1)
)t ˜̃u,

(
X̆

(2)
)t ˜̃v ∈ Rn. Their sample correlation is

ρ̂

((
X̆

(1)
)t ˜̃u,(X̆(2)

)t ˜̃v) =

ĉov

((
X̆

(1)
)t ˜̃u,(X̆(2)

)t ˜̃v)(
v̂ar

((
X̆

(1)
)t ˜̃u) v̂ar((X̆(2)

)t ˜̃v))1/2
=

=

((
X̆

(1)
)t ˜̃u)t (X̆(2)

)t ˜̃v(((
X̆

(1)
)t ˜̃u)t (X̆(1)

)t ˜̃u((X̆(2)
)t ˜̃v)t (X̆(2)

)t ˜̃v)1/2
=

=
˜̃utΣ̂(1,2)˜̃v(˜̃utΣ̂(1) ˜̃u˜̃vtΣ̂(2)˜̃v)1/2

.

Assuming both sample covariance matrices Σ̂
(1)

and Σ̂
(2)

are full rank and hence
invertible, this sample correlation can be rewritten in a form allowing calculation
by a direct SVD using the change of variables

ǔ =

(
Σ̂

(1)
)1/2 ˜̃u, v̌ =

(
Σ̂

(2)
)1/2 ˜̃v. (17.28)

Note that to arrive at directions that maximize correlation it is not enough to just
make each variable commensurate (i.e. to standardize each variable by dividing
by its standard deviation as done to compute the correlation matrix discussed
in Section 5.2). Instead standardization by full root inverse covariance matrices
(sometimes called “sphering”, as done in Figure 11.2) is needed, which essen-
tially results in projected correlations over all directions in Rd1 and Rd2 .

The change of variables (17.28) results in the (reparameterized) sample corre-
lation becoming

ρ̂ (ǔ, v̌) =

ǔt
(
Σ̂

(1)
)−1/2

Σ̂
(1,2)

(
Σ̂

(2)
)−1/2

v̌(
ǔtǔv̌tv̌

)1/2 .

But the SVD optimization seeks unit (i.e. direction) vectors which have norm 1.
Hence to maximize ρ̂ (ǔ, v̌), it is enough to consider ǔ and v̌ with ‖ǔ‖ = ‖v̌‖ =
1, and thus to compute the SVD(

Σ̂
(1)
)−1/2

Σ̂
(1,2)

(
Σ̂

(2)
)−1/2

= ǓĎV̌
t
, (17.29)

where as above Ǔ and V̌ are orthonormal matrices and Ď is diagonal. Further-
more, their columns are sets of orthogonal maximizers of ρ̂ (ǔ, v̌). Inverting the
variable change (17.28) returns those sets of coefficients to the original data scale.
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In particular, the matrices of CCA loadings are

˜̃
U =

(
Σ̂

(1)
)−1/2

Ǔ ,
˜̃
V =

(
Σ̂

(2)
)−1/2

V̌ . (17.30)

Note that while the columns of Ǔ and V̌ are orthonormal, this generally does not

hold for the CCA loadings ˜̃U and ˜̃V . However, the latter do provide very useful

modes of variation. In particular, treating the columns of ˜̃U and ˜̃V as direction
vectors and finding the corresponding projection coefficient matrices (again in the
spirit of multiplying by the data blocks as in (17.15)) give the CCA scores

˜̃
S

(1)

=
˜̃
U
t

X̆
(1)
, S(2) =

˜̃
V
t

X̆
(2)
.

An interesting property of these scores is that

˜̃
S

(1)
(˜̃
S

(1)
)t

=
˜̃
U
t

X̆
(1)
(
X̆

(1)
)t ˜̃
U = Ǔ

t
(
Σ̂

(1)
)−1/2

Σ̂
(1)
(
Σ̂

(1)
)−1/2

Ǔ = In,

(17.31)
i.e. the rows of the CCA scores matrix turn out to be orthonormal vectors in Rn. A

very parallel calculation shows that the rows of ˜̃S(2)

are also orthonormal. Thus
the transformation (17.28) results in an interesting contrast between CCA and
the PLS-SVD introduced at the beginning of Section 17.2.1. In particular, PLS-
SVD has orthonormal loadings (not scores), while CCA has orthonormal scores
and not loadings. This again suggests that the bi-orthogonality property of PCA
modes of variation is indeed a special property. An interesting variation of CCA
that deliberately produces bi-orthogonal (in a particular sense) modes of variation
has been proposed by Shu et al. (2020).

Various rescalings of the CCA scores appear in different software packages. A
common variation multiplies both sides (17.31) by n, which gives a scores matrix
that is interpretable as having an identity covariance matrix. When variables are
not commensurate, as discussed in Section 5.2, it can be useful to replace the co-
variance matrices that are input to CCA with corresponding correlation matrices.

The case of covariance matrices not of full rank is sensibly handled by an appli-
cation of the methodology called generalized SVD. That also conveniently allows
for lower rank versions of CCA. However, it should be kept in mind that in high di-
mensional cases, such methods generally lead to drastic overfitting. This is caused
by the existence of pairs of directions that spuriously give perfect correlation of the
projections, which happens with probability one in high dimensional cases. Note
that such pairs will appear in the analysis ahead of pairs of directions representing
important underlying joint variation. In such cases PLS is a simple approach that
can give results that are much less sensitive to spurious noise artifacts than CCA.
There are also many other approaches to this problem that use sparsity ideas and
other types of regularization. In some elegant unpublished work, Iain Carmichael
uses the generalized SVD approach to formulate a general framework that encom-
passes, PLS, CCA and many more. That paper also includes access to a number



TWO BLOCK DECOMPOSITIONS 381

of extensions of PLS to the multi-block (multi-view) case of B > 2. An earlier
survey of multi-block methods can be found in Kettenring (1971).

A special case of CCA, useful in classification as discussed in Chapter 11 is
Canonical Variate Analysis. This generalizes LDA (see Section 11.1) to the multi-
class case, by computing CCA with one data block consisting of row indicators
(zeros and ones) for each class.

A toy example highlighting the difference between CCA and PLS-SVD is given
in Figure 17.8. This is a two block example, with the first data block containing
data object vectors of the form

(
x1 x2

)t ∈ R2. The second block consists of
scalars y ∈ R. The top panel displays the relationship between the data blocks us-
ing two rotated views, where each of the n = 100 data objects appears as a point
of the form

(
x1 x2 y

)t ∈ R3 indicated with a plus sign. There is a very
strong relationship between data blocks in the sense that the points lie entirely in
the cyan plane. As shown in the lower right panel, the data are distributed within
the cyan plane to have a strong first PC direction shown in red in all panels. That
red PC1 direction has been chosen to also lie within the first data block R2 space,
shown as the yellow plane. Both PLS and CCA seek optimal pairs of directions,
one in each space. Because the second data block lies in R there is only one possi-
ble direction, so the optimizing direction is just the vertical axis. More informative
are the PLS and CCA directions in the second block (which thus lie in the yellow
plane), shown in red and green respectively. The CCA direction points in the di-
rection of steepest increase of the cyan plane, which is natural because that will
maximize the projected correlation (the target of CCA). On the other hand, the
PLS direction is a compromise between the CCA and PC 1 directions, because it
optimizes covariance which responds also to the very strong variance in the PC 1
direction.
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Figure 17.8 Toy example highlighting the difference between PLS (green) and CCA (blue)

directions. The concatenated (R3) data points all lie in the cyan plane. The X̆
(1)

data
block lies in the yellow plane, as do the PLS-SVD and CCA directions. This shows how
CCA maximizes correlation with the X̆

(2)
data that lie in the vertical axis, while the PLS

direction is strongly influenced by the red PC1 direction.

A range of compromise directions between PCA, PLS and CCA have been pro-
posed in the unpublished PhD dissertation of Lee (2007), based on the continuum
regression ideas of Stone and Brooks (1990).

CCA also has a strong relationship to classical linear regression. Using a small
circle above symbols to distinguish that notation, the linear regression model is
usually written as

ẙ = X̊β̊ + ε̊,

where ẙ is an n × 1 vector of responses, X̊ is an n × d design matrix whose
columns are thought of as multivariate predictors, β̊ is a d×1 vector of regression
coefficients, and ε̊ is an n × 1 vector of residuals. Direct connection with the
above CCA context comes from assuming the data have been centered in the sense
that the entries of ẙ have sample mean 0, as do the columns of X̊ . That allows
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using the column object centered notation (17.13) to write X̆
(1)

= 1√
n
X̊
t

and

X̆
(2)

= 1√
n
ẙt. This gives inputs to CCA as

Σ̂
(1)

= X̆
(1)
(
X̆

(1)
)t

=
1

n
X̊
t
X̊,

Σ̂
(1,2)

= X̆
(1)
(
X̆

(2)
)t

=
1

n
X̊
t
ẙ,

Σ̂
(2)

= X̆
(2)
(
X̆

(2)
)t

=
1

n
ẙtẙ = σ̂2

Y ,

where the scalar σ̂2
Y is an estimate of the standard deviation of the entries of ẙ.

The corresponding SVD to compute CCA as in (17.29) is thus applied to the d×1
matrix (

1

n
X̊
t
X̊

)−1/2
1

n
X̊
t
ẙσ̂−1

Y .

That SVD results in a d× 1 vector of norm 1

Ǔ =

(
1
nX̊

t
X̊
)−1/2

1
nX̊

t
ẙσ̂−1

Y∥∥∥∥( 1
nX̊

t
X̊
)−1/2

1
nX̊

t
ẙσ̂−1

Y

∥∥∥∥ ,
the single singular value

Ď =

∥∥∥∥∥
(

1

n
X̊
t
X̊

)−1/2
1

n
X̊
t
ẙσ̂−1

Y

∥∥∥∥∥
and just the scalar V̌ = 1. Inverting the change of variables as in (17.30) and
dividing by the length of the resulting vector gives a CCA loadings vector which
points in the same direction in Rd as the familiar least squares regression estimate

β̂ =
(
X̊
t
X̊
)−1

X̊
t
ẙ of the coefficient vector β̊. An important consequence

is that the direction in the object space Rd, where a set of data objects X̃ best
correspond to a set of n values in the vector ỹ, is proportional to the least squares
estimate β̂ (assuming X̃ has been column object mean centered and that the mean
of the ỹ values is 0).

17.2.3 Joint and Individual Variation Explained

The methods described in Sections 17.2.1 and 17.2.2 all focus on the investiga-
tion of joint variation, i.e. finding modes of variation that reflect how data blocks
vary together with each other. But in many applications there is also keen inter-
est in individual variation, i.e. variation that is block specific and in some sense
independent (either stochastically, or else in terms of appropriate orthogonality of
modes of variation) of the other blocks. That idea was formalized as a method
called Joint and Individual Variation Explained (JIVE) by Lock et al. (2013). An
approach based on the simpler and more direct linear algebra method of Principal
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Angle Analysis is the Angle-based JIVE of Feng et al. (2018). Yu et al. (2017b)
and Carmichael et al. (2019) used that method to demonstrate the value of careful
investigation of both joint and individual variation in neuroscience and cancer ge-
nomics/imaging applications. An approach to the case of partially shared blocks
(allowing joint variation between various subsets of data blocks) was proposed by
Gaynanova and Li (2019).



CHAPTER 18

OODA Context and Related Areas

This chapter discusses the origins of the OODA terminology in Sections 18.1
and 18.2. Other related types of general statistical frameworks are described in
Sections 18.3 and 18.4.

18.1 History and Terminology

The terminology Object Oriented Data Analysis (OODA) has a clear connection
to the notion of Object Oriented Programming (OOP) from Computer Science. A
good definition of OOP is: Programming that supports encapsulation, inheritance,
polymorphism and abstraction. More detail on this connection appears in Section
18.2.

The use of these concepts in a statistical context was pioneered by John M.
Chambers and colleagues at the former Bell Laboratories, through the develop-
ment of the statistical software package S and subsequently S-Plus. See Venables
and Ripley (1994, 2013) for a good overview. An important historical point is that
S was a major precursor of the currently very popular statistical software package
R (R Core Team, 2020). A common misconception is that the name R was chosen
as the letter before S. In fact it was in part from the first initial of the co-founders
Robert Gentleman and Ross Ihaka.

OODA itself has its roots in the concept of FDA, which was pioneered by James
O. Ramsay and colleagues, see the monographs by Ramsay and Silverman (2002,
2005) and Ferraty and Vieu (2006) for good overview of this area. While this use
of “functional” is now quite standard in statistics, it is problematic for researchers
with a strong mathematical training, because in that area a functional is essen-
tially a function which maps functions into numbers (or more generally maps a
vector space into its underlying field of scalars). Personal discussion with James
O. Ramsay led to the realization that the notion of data objects, i.e. atoms of the
statistical analysis as discussed in Chapter 2, provides the basis of this way of
thinking, which led to the coining of the term OODA in Wang and Marron (2007).

The perceived value of scientific naming is an interesting cultural issue. Com-
puter scientists seem to enjoy coining many names, trying them out for a while
and then frequently abandoning most of them, except for the few that are viewed
as having “gained traction”. In contrast statisticians have a noticeable tendency to
be very careful, in fact are usually quite conservative, about applying new names.
Some have observed that at statistical meetings there tends to be too strong a focus
on a rather few fashionable areas. At the time of this writing sparsity and FDA are
the over-represented areas, in the past the perhaps overly dominant areas included

385
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kernel smoothing and robustness. A natural question at this point is whether this
apparent narrowness of fashionable research is a consequence of the reluctance to
seek new names.

The terminology OODA itself has raised objections on occasion. For example,
Lu et al. (2014b) contains an example demonstrating the value of the OODA view-
point. The example came from the desire to automate the basic biological science
practice of growing cells in wells on a plate. A challenging part of that automa-
tion was making the decision of when to move a subset of the cells to a new well
based on digital images, because they have grown to fill the capacity of the current
well. The issue of what should be the data objects, between features summarizing
aspects of the whole well (e.g. cell counts) and features of individual cells (e.g.
shape and size aspects), turned out to be pivotal to the investigation and even led
to some interesting theoretical work discussed in that paper. An early submission
of that paper was rejected by a well known journal on the grounds that the ter-
minology of “data objects” did not bring added value over the more traditional
“experimental units”. This point made sense for that particular project, but is lim-
ited in the context of the larger data analytic picture. In particular, generally choice
of data objects includes not only experimental units, but also data representation
issues, for example the choice of original versus log scale illustrated in Figure 1.1
of Section 1.1, the choice to focus on amplitude and/or phase variation in Section
2.1, the choice of shape or tree representation discussed in Sections 1.2 and 2.2,
and which aspect of sounds an analysis should be centered upon in Section 2.3.

The discussion of the overview paper by Marron and Alonso (2014) covers
quite a few other interesting aspects of OODA.

In some situations, there have been variations on the name OODA. For example,
in 2010-2011 the Statistics and Applied Mathematical Sciences Institute hosted a
program on OODA under the name Analysis of Object Data. That version of the
name is also prominently featured in the monograph Patrangenaru and Ellingson
(2015), which provides an important overview of statistical analysis for data lying
in manifolds and stratified spaces. However, Piercesare Secchi has pointed out
that inclusion of Oriented in OODA is quite appropriate in the sense that careful
consideration of the data objects indeed tends to orient the analysis.

18.2 OODA Analogy with Object-Oriented Programming

In Object-Oriented Programming (OOP) there are many important concepts, in-
cluding classes, objects, inheritance, methods, modularity, abstraction, encapsula-
tion, extensibility, and polymorphism (Pitt-Francis and Whiteley, 2012). An object
is an instance of a class in OOP, and so we can consider the different types of data
spaces in OODA as being analogous to OOP classes, and the datasets that lie in
the spaces as being analogous to OOP objects. The classes in OOP often have a
tree-like relationship, with a base class at the root and different levels of derived
classes below the root. Each class in OOP has functionality (including variables
and methods) and this functionality is inherited by the derived classes. From Pitt-
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Francis and Whiteley (2012, p9) inheritance is probably the most important aspect
of OOP for the facilitation of interoperability.

To highlight the connection between OODA and OOP, we show how OODA
concepts can naturally be put into an OOP type framework in Figure 18.1.

Figure 18.1 Relationships between OOP and OODA.

The base class in our example consists of all types of data spaces in OODA.
Methods in the base class could be basic statistical operations such as univariate
summary statistics, histograms, pairwise scatterplots, which are building blocks
that are appropriate to calculate for any type of dataset. Then the derived classes
in the example are a subdivision of the types of data space, for example Euclidean-
type data spaces, Riemannian manifolds, tree data space, etc. which require differ-
ent methods of calculation for similar concepts. The methods at this level could be
calculation of a mean or PCA calculation, for example. In OOP the derived classes
inherit the functionality of the base class, in particular the base class methods are
all applicable exactly in an unaltered form to the derived classes (they are inher-
ited). This is true in our example for OODA, where the calculation of a histogram
for example can be appropriate for any type of data.

There is a further level of derived class, e.g. different classes derived from Eu-
clidean data, e.g. vectors, matrices, images, functions which all have the same
method of mean and PCA calculation (which is inherited from the Euclidean class)
but some other methods/calculations might need to be specified differently at this
level.

The strict OOP analogy is that a sample of data objects in the OODA sense
would be an object in the OOP sense. The choice of data object and its space
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in OODA drives the type of analysis and methods in a similar way that an OOP
program is constructed.

The analogy can be extended. In OOP polymorphism is where the same code
can be used for a variety of objects, and so for example computing PCA based
on a Euclidean covariance matrix is useful not just for computing the Euclidean
data-type PCA, but also for computing PCA in shape analysis using tangent space
coordinates. The same code is used in both methods, but the inner workings are
kept hidden from the user (OOP encapsulation). That code can be extended, e.g.
PCA in Euclidean data can be extended to PCA for shape data using a tangent
space (OOP extensibility). The essential features and methods of a class are put in
one place but the inner details are easily ignored by the user (OOP abstraction).

We should stress that OODA is not OOP, and so it is not our intention to build an
actual single computer program to carry out OODA. Rather the building blocks of
OODA are analogous to those of OOP, particularly with the choice of data objects
and classes driving the appropriate methodology and analysis.

Users of R are familiar with aspects of OOP, where the objects are instances
of classes, e.g. objects from the linear model fitting command lm or aov are in-
stances of S3 classes which can then have methods applied to them like summary
or coef. In our example the object is a dataset which is a member of a class (Eu-
clidean, Shape, Tree etc.) and then a generic method that can be applied is mean
or pca for example, although the implementation details may be different “under
the hood” for datasets in different classes.

18.3 Compositional Data Analysis

The field of statistical compositional data analysis goes back at least to Aitchison
(1982) and has connections to OODA. The original motivation was the study of
variation in geological composition, in terms of vectors of proportions.

Data objects in that context were typically vectors x ∈ Rd, each entry of which
is the proportion of a given material in the geological sample. Note that each such
object x = (x1, · · · , xd) is a point on the unit simplex in Rd, i.e. xj ≥ 0 for
j = 1, · · · , d and

∑d
j=1 xj = 1.

Good insight can come from considering such data objects to be probability
vectors, as is common in Markov Chains, see e.g. Hastings (1970). In economet-
rics terminology, such data objects are sometimes called fractional responses, see
Papke and Wooldridge (1993, 2008) and Murteira and Ramalho (2016).

Data objects restricted to the unit simplex create some serious statistical chal-
lenges. For example, standard Euclidean analysis methods such as PCA (see Sec-
tions 1.1 and 3.1 and Chapter 17), or even use of the Gaussian distribution for
statistical inference become clumsy at best, because such methodologies tend to
leave the unit simplex. Other examples of naive analyses tending to leave the fea-
ture space include covariance matrices as data objects in Section 7.3.5 and phase
data objects as discussed around Figure 9.13.

An often advocated choice of data object in this context is the log-ratio method,
developed by Aitchison and Shen (1980) and Aitchison (1982, 1986). This ap-



SYMBOLIC DATA ANALYSIS 389

proach has worked well in many analyses, and is especially appropriate when
the primary focus is on ratios of different amounts. However, in other situations,
there can be a cost of some distortion, particularly when some entries are 0 or near
0. This has motivated other data objects choices for compositional data analysis,
such as the square root transform which moves the data from the unit simplex
to the unit sphere, in e.g. Scealy and Welsh (2011). Other power transformations
have been proposed and studied by Tsagris et al. (2011) and Scealy et al. (2015).
Butler and Glasbey (2008) address this issue using a latent Gaussian modeling ap-
proach, while Stewart and Field (2011) took a mixture modeling approach. Scealy
and Welsh (2014) provide a fascinating historical discussion of major controversy
that has occurred over such data object choices.

See Section 11.4 and Xiong et al. (2015) for a quite different example of data
objects on the unit simplex, in the context of virus hunting using DNA methods.
That paper also considered unit sphere versus simplex data object representations
and found the best performance in that case came from working directly on the
unit simplex.

18.4 Symbolic Data Analysis

Another statistical area related to OODA is Symbolic Data Analysis, see the books
Bock and Diday (2012) and Billard and Diday (2006). The goal of that area is to
find intuitive summaries of various aspects of relational databases. These sum-
maries are called symbols, which are distributional summaries, such as ranges (in-
tervals), frequencies (for categorical variables), histograms or quantiles. There are
at least two levels of relationship between Symbolic Data Analysis and OODA.
First symbols (e.g. probability densities) are often the data objects of interest.
Second, given any set of data objects, the large and well developed set of Sym-
bolic Data Analysis ideas can provide a number of types of useful summarizations
of object oriented data via symbols of the data set. In particular, many special-
ized methods and software suites from that literature are very useful for analyzing
symbols as data objects. For good recent access see Diday (2016) and Verde et al.
(2016).

There are several different types of symbolic data, and in particular there is
native symbolic data and aggregated symbolic data. Native symbolic data may
be recorded in original form, e.g. as numbers or even as an interval [0.2 − 0.4]
perhaps as a range of values capturing uncertainty in an expert’s opinion, Ellerby
et al. (2020). Aggregated data may be a summary of data that were recorded at a
finer stage, e.g. a histogram of values. Billard and Diday (2006) and Diday (1986,
2016) outline some of the benefits of treating data as symbolic data rather than
classical data.

An example of some symbolic data is given below from the RSDA package in
R, Rodriguez et al. (2020). The approach to analyzing symbolic data has analogies
with OODA. In particular it is important to consider what are the most appropriate
data objects. For example should interval data be considered as uniform probabil-
ity distributions, or a type of indicator functional data (1 if in the interval and 0
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otherwise, as defined at (11.2)), or perhaps a Gaussian random variable centered
at the middle of the interval and standard deviation a quarter of the interval width?
What distances should be used for comparing intervals, for example perhaps the
Euclidean distance between end points, the L2 norm or Hausdorff distance?
# A Symbolic Data Table : 7 x 7

F1 F2 F3 F4 F5 F6 F7
Case1 2.8 [1,2] M1:10% M2:70% M3:20% 6 {e,g,i,k} [0,90] [9,24]
Case2 1.4 [3,9] M1:60% M2:30% M3:10% 8 {a,b,c,d} [-90,98] [-9,9]
Case3 3.2 [-1,4] M1:20% M2:20% M3:60% -7 {2,b,1,c} [65,90] [65,70]
Case4 -2.1 [0,2] M1:90% M2:0% M3:10% 0 {a,3,4,c} [45,89] [25,67]
Case5 -3 [-4,-2] M1:60% M2:0% M3:40% -9.5 {e,g,i,k} [20,40] [9,40]
Case6 0.1 [10,21] M1:0% M2:70% M3:30% -1 {e,1,i} [5,8] [5,8]
Case7 9 [4,21] M1:20% M2:20% M3:60% 0.5 {e,a,2} [3.14,6.76] [4,6]

The example dataset above consists of seven cases (in each of the rows) and
there are four different types of data: F1, F4 continuous data; F2, F6, F7 interval
data; F3 histogram data; F5 set valued data. Variables F1, F4 are simply stan-
dard classical continuous data. F2, F6, F7 contain interval data for which we need
to have appropriate methods for carrying out analysis such as computing means,
PCA and cluster analysis. Similarly the data types F3 (Histogram) and F5 (set
valued) also require special methods for statistical analysis. Combining the anal-
ysis of different data types would be a challenge, although generalizations of the
multi-block methods of Section 17.2 are an appropriate way forward.

Let us consider some further interval data from the dataset Lynne2 from the
RSDA package, which is a dataset of 15 individuals with interval measurements
on pulse rate, systolic blood pressure and diastolic blood pressure. We treat the
intervals as uniform distributions and the interval-valued means are calculated
from the arithmetic averages of the lower and upper end-points of each inter-
val. This method of calculation results from the use of interval arithmetic, see
Moore et al. (2009). The sample interval means are as follows: for pulse rate
[63.47, 81.73], systolic pressure [125.8, 154.7], diastolic pressure [85.8, 105.53].
This interval mean estimator is also equivalent to the Fréchet mean (discussed in
Section 7.1) with respect to Euclidean distance between the 2-vector of lower and
upper end-points. In Figure 18.2 we see symbolic histograms and symbolic scat-
ter plots of the data, using the same visually linked graphics matrix format as in
Figure 4.4 (for the Twin Arches data) and many others. The symbolic histograms
are obtained by superimposing uniform distributions on each interval, and then
binning. The symbolic scatter plots include a rectangle for each case, where the
corners of the rectangles are at the coordinates of the combinations of lower and
upper end-points. These plots are obtained using the RSDA package (Version 2.0).
The bottom and left panels all reveal a clear outlier in diastolic pressure. The mid-
dle right panel indicates a positive mostly linear association between systolic and
diastolic pressures, while the middle left panel suggests a quadratic association
between pulse rate and systolic pressure.
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Figure 18.2 Symbolic histograms and scatterplots of the three dimensional Lynne2 blood
measurement interval data. Finds interesting relationships between variables and a clear
outlier.

Further analysis, much in the spirit of other analyses given in this book can be
carried out using the RSDA package.

An important historical note is that the terminology Symbolic Data Analysis
came well before OODA, going back at least to Diday (1986).

18.5 Other Research Areas

There are several other areas, not discussed in detail here, where OODA ideas and
terminology are potentially very useful, mostly because of the many complicated
research questions that are typically addressed there.

One is Object Oriented Spatial Statistics, reviewed by Menafoglio and Secchi
(2017). In this area a number of the tasks and approaches considered in this book
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are extended to the important case of spatial data. These include data sets where
location plays a key role, and must be properly included in competent analyses.

Another such area, which has had a major impact on both neuroscience and also
the study of many aspects of human behavior is Functional Magnetic Resonance
Imaging, see e.g. Huettel et al. (2004). This method involves brain imaging over
time, using blood flow as a surrogate for brain activity, measured at a set of voxels
(recall the three dimensional version of pixels). Many choices of data objects have
been made in this area. In some studies, the focus is on a particular voxel (thus
one brain region), so the time series at that point is the data object choice. In
other studies the behavior over time is summarized by a single number, so the
data objects can be three dimensional sets of voxels. Still other studies treat the
full 3-d movies over time as data objects. An example, showing joint analysis of
how imaged brain function jointly interacts with behavioral scores is discussed in
Yu et al. (2017b).

One more research area with close links to OODA is Deep Learning, which
aims to provide computational methods that work in ways parallel to the human
brain. Main methods in this area are based on neural networks, which go back at
least to McCulloch and Pitts (1943). That area was quite popular in the 1990s, but
seems to have been over-advertised at the time, with many attempted applications
apparently failing to live up to their promise. However, more recently there has
been a very strong resurgence, perhaps fueled by much larger typical data sets, to-
gether with much more powerful computing capabilities. These ideas have created
research revolutions in areas such as computer vision. See Hagan et al. (2014) for
important ideas in this area. Bengio et al. (2013) suggest that much of the success
of deep learning methods comes from the ability of neural networks to provide a
type of automatic data representation. For example, in classification tasks, the last
step is typically a classical method (of the type discussed in Chapter 11), while
the preceding neural layers are usefully viewed as providing inputs, via a search
over a very large potential feature space. This can be viewed as an interesting way
of automating the step of data object representation, as discussed in Section 3.1.

An example of such deep learning derived features in an image analysis context
can be found in Carmichael et al. (2019) in the context of cancer data. The goal of
that paper was to jointly analyze histology images (still the gold standard for can-
cer diagnosis) with genomic data (fundamental to recent breakthroughs in cancer
research). This was accomplished with data integration using the AJIVE method
discussed in Section 17.2.3.

A further area with OODA connections is Natural Language Processing, an
example of which was studied in Section 10.2.4. This area aims to develop al-
gorithms for the computational extraction of meaning from text. One part of that
field is called latent semantic analysis, see e.g. Martin and Berry (2007), where the
key idea is Singular Value Decomposition (essentially PCA without mean center-
ing, as noted in Section 17.1.2) of some variation of an occurrence matrix, which
summarizes appearance of words in large collections of documents. As noted in
Berry and Browne (2005), there are many data object choices to be made, in terms
of both how to summarize word/phrase occurrences and also how to weight vari-
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ous aspects of the decomposition. Baroni et al. (2014) showed that in many cases
neural network based word embedding algorithms gave better performance than
traditional matrix factorization based approaches, for a variety of standard mea-
sures. However, Levy et al. (2015) demonstrated that these performance gains are
likely due to data object choices that can be easily carried over to make the tradi-
tional matrix factorization approaches achieve state of the art performance.

We anticipate that in the future many additional applications and research areas
will arise where OODA ideas will be useful.
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