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Abstract

This paper presents an innovative teaching tool, which demon-
strates local polynomial smoothing via a set of movies, which several
new graphical devices. The movies emphasize the \data ¯tting inside
a moving window" interpretation of local polynomial smoothing. A
number of lessons are highlighted by showing three smooths simulta-
neously in the movies. An additional view of the smoothing process
is the locally ¯t polynomials, called \snakes", because of their inter-
esting motion. Additional insight comes from a Pythagorean Theorem
based visualization of the Mean Squared Error, and its components,
the standard deviation and bias.

1 Introduction
Local polynomial smoothing is a useful way to ¯nd structure in regression
data. Early references in the modern literature are Stone (1975, 1977), but
see Cleveland and Loader (1996) for earlier references dating back to the last
century. Practical application started in a serious way with the introduction
of LO(W)ESS by Cleveland (1979) and Cleveland and Devlin (1988). This
area bloomed in terms of theoretical work following the papers of Fan (1992,
1993). For additional historical discussion, for many interesting real data
examples, and for discussion of other aspects of local polynomial smoothing,
see Wand and Jones (1995), Fan and Gijbels (1996), Simono® (1996), and
Bowman and Azzalini (1997).

As seen in Figure 1, good visual insight into the performance of local
polynomial smoothing, at a single point, comes from thinking about doing
least squares ¯tting of a polynomial \inside a window". This style of pre-
sentation can be found for example in Hastie and Loader (1993), Wand and
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Jones (1995), Seifert and Gasser (1996) and Fan and Gijbels (1996). How-
ever, in real data applications, it is important to study the full curve, which
comes from moving the window over the range of estimation. This cannot
be done in a static plot, but is conveniently displayed in a dynamic plot, i.e.
a movie, where \time" is the location of the smoothing window.

Movies of this type are presented in this paper, as a tool for teaching
how local polynomial smoothing works. We present both a set of illustrative
examples that are easily WWW accessible in the MPEG format, and Matlab
software for constructing other possible examples. In addition to being
engaging, and thus a useful teaching tool, the examples also highlight some
surprising aspects, as seen in Sections 4.2, 4.4 and 4.5.
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Figure 1: One part of one movie frame, illustrating local linear regression.

The format of our examples is discussed in Section 3. In addition to
side by side movie frames, which allows comparison of important aspects of
smoothing, we propose additional graphical devices which highlight various
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important concepts. One of these is a \snake window" allowing direct com-
parison of the local ¯ts. Another is a new visualization of the Mean Squared
Error and its components of variance and squared bias, represented via the
Pythagorean Theorem.

Figure 1 shows one part of a single frame of such a movie. This is
a simulated example, where the underlying regression curve is essentially
Gasser's blip (a line plus a scaled Gaussian density), shown with a dotted
line type. Mean ¹ = 0 Gaussian errors, with standard deviation ¾ = 0:2,
are added to the underlying curve at 50 equally spaced points, to result
in data shown as circles. These data are smoothed via the local linear
method, using Gaussian kernel weights, and the bandwidth h = 0:45. These
kernel weights are represented by the solid curve near the bottom, where the
vertical line represents the current point of estimation. In the movies, this
estimation point (and thus the whole kernel window) moves from right to
left, so the estimation process is viewed \on line". The solid line, called a
\snake" because it often writhes for higher degree local polynomials, shows
the locally weighted least squares ¯t at this location. As the window slides
along the smooth is created as the thick dashed curve shown in Figure 1.

The basic concepts and notation for local polynomial smoothing are given
in Section 2. Speci¯c examples, with the focus on insights to be explained
to students, are discussed in detail in Section 4. Some highlights are:

² the importance of the bandwidth, i.e. the width of the smoothing
window, in Section 4.1.

² the impact of polynomial degree, in Section 4.2.

² issues about \signal to noise ratio", through varying the noise variance
and the sample size, in Section 4.4.

² how changing the design points, i.e. the location of the x points, a®ects
the estimation, in Section 4.5.

Details about the Matlab implementation are given in Section 5.

2 Basics of local polynomial smoothing
Nonparametric regression, or scatterplot smoothing, can be formulated as
using data (X1; Y1) ; :::; (Xn; Yn), shown as circles in Figure 1, generated by
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a model of the form

Yi = m (Xi) + "i; i = 1; :::; n;

to estimate the regression curvem (x), shown as the dotted curve in Figure 1.
The Xi are called the design points, and can be either random or ¯xed, e.g.
equally spaced. The curve m(x) is called the underlying target curve, or the
signal, and is assumed to be \smooth", although a few jump discontinuities
are allowed. The errors, i.e. noise terms, "i are assumed to be independent
identically distributed mean zero random variables, with variance ¾2i . The
error distribution is said to be homoscedastic when the ¾2i are all the same,
and then ¾2 is used to denote the common value. When the error variances
¾2i are di®erent, the errors are said to be heteroscedastic. In the simulated
examples considered in this paper, the error distribution is always Gaussian.

In the examples in Section 4, various targets, designs and variance struc-
tures are considered.

As noted in the introduction, the local polynomial smoothing method is a
useful way to recover the signalm (x), from the noisy data (X1; Y1) ; :::; (Xn; Yn).
Let

fp (x) = a0 + a1x+ a2x2 + ¢ ¢ ¢+ apxp

denote a polynomial of degree p. The local linear ¯t chooses the coe±cients
a0; :::; ap, by weighted least squares. The weights are local in character, as
determined by the kernel function. For a kernel functionK that is symmetric
about 0, e.g. the Gaussian density, or some other choices as given in Section
4.3, the kernel weight assigned to the data point Yi is Kh (x¡Xi), as shown
by the lower solid curve in Figure 1. The subscript of h denotes a rescaling
of the kernel function, by the bandwidth h, in particular

Kh (x) =
1
h
K

µx
h

¶
:

The local least squares criterion, for estimating m at the location x, shown
as the vertical line in Figure 1, is

LS (a0; :::; ap) =
nX

i=1
[Yi ¡ fp(Xi ¡ x)]2Kh (x¡Xi) :

Minimization is performed over the parameters a0; :::; ap, and the estimate is
taken to be the intercept term, i.e. cmh (x) = a0, since a0 is the value of the
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centered polynomial fp(¢¡x), at the point of estimation, x. As the location x
moves from left to right, the curve cmh (x) is traced as shown with the dashed
line type in Figure 1.

3 Description of view
While it is informative to study movie versions of Figure 1, e®ective learning
comes from comparison of movies. This is di±cult to accomplish with sepa-
rate movies, so our standard movies simultaneously show 3 di®erent versions
of Figure 1, which allow direct visual comparison of various aspects of the
local polynomial smoothing process.

In addition, we have developed other graphical devices, which highlight
other aspects of smoothing.

3.1 Snake window
Useful insights come from visual study of the \snakes", i. e. the local ¯ts.
The snake in Figure 1 is shown by the solid line. Direct comparison of snake
performance comes from overlaying them in a separate window. One frame
of a typical snake window is shown in Figure 2.

The three snakes are the local cubics that were ¯t to the data, one from
each of the three versions of Figure 1. In Figure 2, the setting is same as for
Figure 1, but now the locaiton of estimation is x = 0:24, where the under-
lying target curve is concave and downwards sloping. The solid snake is for
bandwidth h = 0:1, the dashed snake is for bandwidth h = 0:3. and the dot-
ted snake is for bandwidth h = 0:9. The length of each snake represents the
\e®ective window width" taken to be plus and minus two standard deviations
from the mean of the Gaussian kernel function. The location of estimation
is represented by the vertical line (which is ¯xed in this display), and the
height of the true underlying regression curve at this location is represented
by the circle (which moves vertically as the kernel window moves.
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local fits
Figure 2: The snake window, showing three local cubic ¯ts, from one frame of a
movie.

The dashed snake (h = 0:3) is closest to the circle, i.e. to the target curve.
This is consistent with it being an intermediate amount of smoothing, i.e. a
good trade-o® between under and over-smoothing. The shape of this snake
is relatively consistent with the shape of the underlying curve in this region.
The solid snake (h = 0:1) is undersmoothed, and thus follows the noise in
the data more than the underlying curve. Thus its shape is actually curved
in the wrong direction in Figure 2, and the value at the estimation point is
farther from the target than for h = 0:3. This re°ects the increased variance
which quanti¯es this type of performance. In the movie version, it is clearly
seen that undersmoothed snakes oscillate very rapidly. The dotted snake
(h = 0:9) is oversmoothed, because the kernel window includes data from
quite far away. This oversmoothing reduces the °exibility of the cubic snake
so that it does a poor job of representing the local structure of the underlying
target, and the value at the estimation point is even further from the target
than the others. This e®ect is quanti¯ed by the bias, which is quite large in
this case, as can be seen in our next visual device.

A graphical display of the impact of variance and bias is developed in the
next section.

6



3.2 Root Mean Squared Error windows
The Mean Squared Error and its components, variance and squared bias, play
an important role in understanding smoothing methods. Further description
and deep analysis can be found in several of the above monographs. Intuitive
insight into these measures comes from another graphical device, which is
part of our movies.

The (conditional) Mean Square Error is de¯ned here as

MSE = E [cmh (x) ¡m(x)jX1; :::; Xn]2 :

Conditioning on the Xi is natural, since the regression function m(x) is a
conditional quantity. For the same reason, this practice is usual in the
mathematical analysis of linear models. Another reason for using conditional
MSE is that it corresponds to the unconditional MSE evaluated at the
Empirical Distribution Function of the Xi. This issue is studied further
in Section 4.5.2. The variance and squared bias components are e®ectively
displayed via the Pythagorean relationship

MSE = var + bias2

which is equivalent to

RMSE =
p
MSE =

p
sd2 + bias2:

The simultaneous relationship between sd and bias is usefully represented as
a point in the (sd; bias) plane. The position of the point, and the Pythagorean
Theorem, are highlighted by drawing in a right triangle whose hypotenuse is
the line connecting (0; 0) and (sd; bias). There are two such triangles, that
are both shown, resulting in a rectangle, to give equal emphasis to sd and
bias. The length of the diagonal of this rectangle, i.e. box, is the RMSE.
Some of the rectangle sides are hard to see in Figure 3 (the lower edge of
the dotted rectangle is very close to the surounding circle, because the bias
is dominant, and the solid rectangle appears to have no height because the
bias is essentially 0). Finally, for easy comparison of RMSE, even when
the sd and bias trade-o®s are quite di®erent, the RMSE is highlighted by
drawing the semicircle centered at the origin, whose radius is the RMSE.
Thus the semicircle meets the box at its corner opposite the origin. The
semicircles allow quick visual comparison of the RMSE across the smooths
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being compared. An additional interpretation of this semicircle is that its
area is proportional to the MSE = RMSE2. The box corresponding to
each circle adds the additional information of how the RMSE is divided
between sd and bias.

bias

std dev

Absolute RMSE

bias

std dev

Relative RMSE
Figure 3: Graphical display of standard deviation, bias and Root Mean

Squared Error, via the Pythagorean Theorem.

This graphical device is demonstrated in Figure 3, where the movie frame,
and the estimation setting are the same as for Figure 2. The small solid snake
in Figure 2 came from a small bandwidth smooth, and had large variance
and small bias, thus the RMSE box lies close to (essentially on top of) the
sd axis. The dashed snake came from the intermediate bandwidth smooth,
and its box is not close to either axis. The dotted large bandwidth smooth
had higher bias, and its box is closer to the bias axis. The semicircles make
it clear that the intermediate bandwidth dashed estimate is best, in terms
of having the smallest RMSE. The large bandwidth dotted snake has the
worst RMSE of the three in this frame. These relationships typically change
rapidly during the course of a movie.

Precise de¯nitions of the sd and bias that are used here are given in
Section 5.1.

Two such plots are shown, that are the same except for the scaling. The
left plot is on an \absolute scale", determined by the largest RMSE at the
start of the movie (usually the largest in the whole movie, since errors are
typically largest at the boundary). The right plot is on a \relative scale",
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where the largest of the three semicircles always has radius one. Both scales
are useful and convey di®erent types of information.

In the ¯gures in this paper, the three di®erent estimates and snakes are
represented with di®erent line types. But in the movies, colors are instead
used to di®erentiate these. Common colors are used for the title of the main
window, for the corresponding snakes and for the corresponding RMSE
graphics. The movie colors (not the present line types) will be referred to
in the discussion of the examples in Section 4.

Best continuous viewing of the movies is done in \back and forth mode",
where the movie is run in reverse, after the end is reached.

4 Discussion of examples
The examples discussed here should be viewed as movies. Easily viewable
MPEG ¯les, referred to at the beginning of each subsection below, can be
found at the web address:

http : ==www:stat:unc:edu=faculty=marron=Movies=locpoly movies:html;

together with the Matlab software that generated them, and a more detailed
version of this paper. For more information on MPEG players follow the
link \Back to Movies Table of Contents" at the bottom of that page. Each
case is indexed by the number of the button, which calls it in our Matlab
software.

4.1 Comparison of bandwidths
These movies show the importance of the bandwidth in smoothing methods.

4.1.1 Movie 1a, blip target, local linear case

This context is the same as for Figure 1. The three bandwidths, h = 0:05,
h = 0:15 and h = 0:45 were carefully chosen to represent \undersmoothing",
\e®ective smoothing" and \oversmoothing" respectively.

The short yellow snake in the small bandwidth (h = 0:05) window oscil-
lates wildly as the estimated curve traces a very jagged path. This occurs
because the window is so small that the estimate feels the noise in the data
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too strongly, which results in the slope of the yellow snake being often very
di®erent from the underlying target. In this case, the variance of the esti-
mate is larger than for the other bandwidths, but the bias is smaller. This
bias appears as the light blue estimated curve being \centered correctly". In
the RMSE plots, the low bias and high standard deviation appear in terms
of the yellow rectangle lying close to the x axis. The large standard devia-
tion dominates, and so the yellow semicircle is often the largest, i.e. h = 0:05
has the largest RMSE.

The medium green snake in the intermediate bandwidth (h = 0:15) win-
dow is much more steady, and follows the true curve more closely. The
resulting curve estimate is much more accurate. There is some small bias
near the central peak, and the estimate wobbles on the right side, but this is
an overall good trade-o® in the bandwidth. The snake window also shows
the increased stability, and that the estimate is usually closer to the target.
The RMSE windows show that the h = 0:15 smooth has more bias than
for h = 0:05, but the decreased standard deviation makes this worth while
in terms of RMSE, since the green semicircle is always inside the yellow
semicircle.

The long red snake in the large bandwidth (h = 0:45) window is even
steadier, but now loses the °exibility to follow the shape of the true under-
lying target curve. The resulting estimate su®ers from too much bias in
regions of high target curvature, because a line cannot capture the features
of the underlying curve at this scale. However, in regions where the target
is nearly linear, the reduction in bias means the smooth ¯ts the best. This
behavior is clearly visible in the snake window, since in regions of high cur-
vature, the long red snake is far from the target circle. This behavior also
appears clearly in the RMSE window. When the underlying curvature is
high, the red rectangle lies close to the y axis, since bias is dominant and
the RMSE is very large. But when the target is nearly linear, bias is small
which results in smaller RMSE than for the smaller bandwidths. These
e®ects happen quickly as the movie runs, so it is helpful to stop the movie
at appropriate points to observe them.

It is useful to summarize the above observations in terms of aspects of the
smoothing problem. The RMSE plots show that the standard deviations
are always ordered as red < green < yellow, which is sensible, because the
local ¯ts are more stable when there are more points in the kernel window.
The biases are usually ordered as red À green > yellow ¼ 0. These tend
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to move up and down together, and have sign changes at in°ection points
of the underlying target curve m(x). The green RMSE semicircle is usually
smallest, except in regions where the target is nearly linear, where the red is
best. The relative order of the semicircles changes from location to location,
depending on whether standard deviation or bias are dominant.

4.1.2 Movie 1b, blip target, local cubic case

This movie uses a cubic as the local ¯t. When comparing the linear and
cubic ¯ts many similarities surface. As in Movie 1a, it is useful to observe
the dependence of the performance of the estimate on the length of the band-
widths, h = 0:1, h = 0:3, and h = 0:9, which correspond to \undersmooth-
ing", \e®ective smoothing", and \oversmoothing." Larger bandwidths are
used than in Movie 1a, since in general larger bandwidths are required for
similar performance for higher polynomial degree. These were chosen so
that the central green estimate gives an overall good trade o® between sd
and bias.

There are strong similarities between this movie and Movie 1a. As in the
linear ¯t examples, the cubic yellow snake traces a very jagged path because
the estimate feels the noise in the data. The cubic green snake also follows
the same pattern as the linear green snake by following the true curve more
closely, and does better because curvature in the snake is allowed. The cubic
red snake also shows a strong similarity to the linear ¯t. The wide window
reduces °exibility, resulting in an inaccurate approximation to the underlying
target curve. As a result of the similarities between the plots in both movies,
the standard deviations and biases of the three windows share many of the
same characteristics. Both the standard deviation and the bias of the snakes
follow the same order as the local linear case. In particular, the yellow snake
has the smallest bias and the largest standard deviation, etc.

Many di®erences can also be found between the cubic and linear graphs.
Because the local cubic ¯ts use larger bandwidths, the changes in the bias
and variance are more stable. The cubic snakes have a greater amount of
curvature than the linear snakes. Therefore, the bias is more complicated in
the cubic case than in the linear case. As a result of this, the large bandwidth
bias in Movie 1b is larger at the right boundary than in the ¯rst movie, as
seen by stopping the movie there. The reason is the local cubic ¯t snake
doesn't have the °exibility to follow the true curve well.
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4.1.3 Further examples comparing bandwidths

Further examples and discussion comparing bandwidths are given in Marron,
Ruppert, Smith and Conley (1999), a longer version of this paper, that is
Internet available from the link at the top of the web page given in Section
4.

Movie 1c extends the above ideas to the case of local quintic, i.e. poly-
nomial degree p = 5. This provides backing for the conventional idea that
there are not large practical bene¯ts to going beyond degree p = 3. Movies
2a, 2b, and 2c study polynomial degrees p = 0; 1; 3 for a piecewise quadratic
target function, which has a jump, a cusp, and a °at spot near a boundary.
The most important lesson here is that the conventional kernel smoother, i.e.
degree p = 0 is best in the °at region.

4.2 Comparison of polynomial degree
Choice of degree of local polynomial has been a controversial subject, and
there is still no consensus on the \best" degree. For example, Cleveland,
Grosse and Shyu (1992) frequently prefer degree 2. However, in Section 5.4
of Wand and Jones (1995) and in Section 3.3.2 of Fan and Gijbels (1996) the
asymptotic case for odd degrees being preferable is given. But in a simulation
study, Ruppert (1997) found that degree p = 3, did not improve over p = 2
at interior points, and near the boundary higher variability of p = 3 made
it inferior to p = 2. In Sections 3 and 7.2 of Cleveland and Loader (1996)
an overall viewpoint shows that the \right degree" depends on the context,
with every degree being \best" in some situations. All of these points are
clearly demonstrated using our movies.

Movies 2a-2c showed that each of the degrees p = 0, 1 or 3 were best
in particular situations, and at some locations. But the comparison there
was complicated by di®ering polynomial degrees being in separate movies.
Putting di®erent degrees in the simultaneous windows allows more direct
comparison of degree.

Our movies both demonstrate the expected ideas, and also contained
some surprises. In particular, some of the asymptotic lessons did not hold,
for reasons that are made clear in the following discussion.

The lessons in this section are e®ectively demonstrated with a di®erent
underlying target curve, which is a shift and scale of a sin wave with three
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cycles in the region of interest,

m (x) = :75 sin(3¼x=2) + 1:25:

The movies 3a, 3b, 3c compare a low range of degrees, p = 0; 1; 2. The
movies 4a, 4b, 4c compare a higher range of degrees, p = 2; 3; 4.

4.2.1 Movies 3a, 3b, 3c, low degree

Movies 3a, 3b and 3c use the relatively small bandwidth h = 0:09, the
intermediate bandwidth h = 0:27, and the larger bandwidth of h = 0:8,
respectively. Asymptotic theory, e.g. as discussed in Chapter 5 of Wand
and Jones (1995) and Chapter 3 of Fan and Gijbels (1996), suggests that the
yellow local constant p = 0 and the green local linear p = 1 should be di®erent
at the boundary, and should be similar in the interior. The anticipated
boundary di®erence shows up in Movies 3a and 3c. But the yellow and
the green are surprisingly similar in Movie 3b, since the bandwidth h =
0:27 yields a green local linear ¯t with essentially 0 slope. The anticipated
similarity in the interior shows up in all three movies, but note the \interior"
region is very small for Movie 3c. The yellow and green snakes are only
similar in terms of their intercepts (i.e. in terms of cmh(x), which is where
the snakes cross the light blue vertical line in the snake window) and have
rather di®erent slopes, i.e. the snakes are visually di®erent. Furthermore,
the yellow and green RMSE displays are all virtually the same (with only
the green visible, since it is overplotted) for x in the interior, but separate
for x at the boundaries.

The asymptotic rate of convergence suggests that the green local linear
p = 1 and the red local quadratic p = 2 should be similar at the boundary,
but the red should have better local curvature adaptation in the interior.
The boundary similarity does not hold up well. In Movie 3a, the small
window width gives an unstable local quadratic ¯t, which is di®erent from
the linear on the left, but similar on the right. In Movie 3b, the large window
width includes the neighboring peak or valley, so the local ¯t has substantial
curvature, i.e. the usual asymptotic lesson doesn't apply. This e®ect is
even stronger for Movie 3c. Because the high noise drowns out the bene¯ts
of the adaptability to curvature, the anticipated superior performance of
the local quadratic in regions of curvature does not show up well for the
small bandwidths in Movie 3a. This appears in all of the light blue estimates
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cmh(x), the snakes, and the RMSE. However, the improvement does show up
dramatically, in all ways in Movie 3b, where the green smooth only recovers
about half the height of the peaks and valleys. The one exception is near the
in°ection points, where the red RMSE is slightly bigger than the green (the
movie should be stopped to examine this) where the usually dominant bias
of the green crosses zero. The bandwidth used in Movie 3c, is so large that
none of the polynomial degrees has the °exibility to adapt to the periodic
sine wave structure, so the green and the red results are very similar in all
ways, in particular completely smoothing away the peaks and valleys, which
is re°ected in the expected very large bias.

4.2.2 Movies 4a, 4b, 4c, high degree

Movies 4a, 4b and 4c use the relatively small bandwidth h = 0:2, the interme-
diate bandwidth h = 0:4, and the larger bandwidth of h = 0:8, respectively.
These bandwidths are larger than used for Movies 3a-3c, which is appro-
priate to get the same amount of smoothing for higher polynomial degrees.
The asymptotic theory sometimes predicted behavior well, but other times
not. The latter perhaps re°ects the idea that larger sample sizes are needed
for the asymptotic to take e®ect, as suggested by Marron and Wand (1992).
The di®erence between Absolute RMSE and Relative RMSE was insightful
here. See Marron, Ruppert, Smith and Conley (1999) for detailed discussion
of these lessons.

4.3 Comparison of kernels
Movies 5a and 5b investigate the issue of shape of the kernel window. The
Uniform, Triweight and Gaussian kernels are compared. The main lesson is
that while the shape of kernel usually does not have an impact on the esti-
mation, this does require careful relative bandwidth choice. Using the same
bandwidth with conventional kernel de¯nitions results in di®erent amounts
of smoothing. For details of the correct bandwidth correspondence, called
\canonical kernel theory", see Marron and Nolan (1989).

This topic is not discussed further here, to save space, and because this
is a somewhat \advanced topic". But the movies are available at the web
site, and detailed discussion can be found in Marron, Ruppert, Smith and
Conley (1999).
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4.4 Comparison of sample sizes and sigmas
This section explores the relationship between the underlying signal and the
noise that is added. In Movie 6a, everything is the same, except the sample
size n is di®erent in the three comparison windows. Movie 6b is similar,
except the noise level ¾ changes. The most important lesson from each of
these is that when the amount of \information" in the data increases, the
estimation process improves.

In Movie 6c, the noise level ¾ is increased at the same time as the sample
size n is decreased. This is done so that the signal to noise ratio, i.e. the
di±culty of estimation, stays constant. The same bandwidth h = 0:2 is used
in each window, which is sensible because the signal to noise ratio is the
same. As expected, all three estimates appear extremely similar. However,
upon careful observation, the red n = 400, ¾ = 0:4 estimate is slightly better,
especially at the x = 0 peak. This can be explained as a discretization e®ect,
as the data are quite sparse for the yellow n = 25, ¾ = 0:1 estimate.

The RMSE boxes are also quite similar, so similar, that often only the
red semicircle is observed because the yellow and green lie underneath. The
exception to this phenomenon is the end points. Here the yellow estimate
seems slightly worse than the others do. This is perhaps due also to dis-
cretization e®ects. See Jones (1989), Hall and Wand (1996) and Gonzalez
- Manteiga, Sanchez - Sellero, Wand (1996) for mathematical quanti¯cation
of discretization e®ects in smoothing.

4.5 Comparison of X designs
In this section, we study the e®ect of di®erent designs, i.e. di®erent con¯gu-
rations of the Xi.

4.5.1 Movies 7a, 7b, random designs

The left window uses a decreasing design density, where the Xi are ran-
dom, and independent, identically distributed as Beta(32 ,1), i.e. they have
density f (x) = (3=2)x1=21(0;1) (x). The central window uses a Uniform de-
sign, i.e. the Xi are drawn from the density 1(0;1) (x). The right window
uses design points from the Beta(1, 32) distribution, i.e. they have density
f (x) = (3=2) (1 ¡ x)1=2 1(0;1) (x), which increases in x.
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In Movie 7a a bandwidth of h = 0:3 is used, and the snake is a polyno-
mial of degree p = 2. Many of the features of this movie re°ect the lessons
learned above, after realizing that there are more data in some locations, and
less in others. The important new lesson is about \design bias", i.e. bias
that can arise for even values of p from nonuniform design points X1; :::;Xn,
in interior regions. This has been asymptotically analyzed, e.g. in Section
5.4 of Wand and Jones. This can be seen in Movie 7a, by stopping the
movie near x = ¡0:9. Note that the yellow and green estimates have posi-
tive bias (see the RMSE box), which is expected since the target is convex
here. However, the red curve has negative bias. This is caused by the red
estimate using more data to the right than to the left. The same unusual
e®ect happens in the opposite direction for the yellow estimate, near x = 0:9.

The asymptotic theory predicts this problem will disappear for odd values
of p. This is investigated in Movie 7b. Occasional sign di®erences in the
bias are still visible, but they are much smaller in magnitude, and happen
when all of the biases are smaller.

4.5.2 Movie 7c, ¯xed vs. random

The left window has n = 50 uniform randomXi, and error standard deviation
¾ = 0:2. The center window has n = 50 equally spaced Xi, and the same
error standard deviation ¾. The right window is a random design with many
more data points, n = 450, but the estimation setting has the same signal to
noise ratio, since ¾ = 0:6.

In Movie 7c a bandwidth of h = 0:3 is used, and the snake is linear, i.e.
degree p = 1. The three curve estimates are qualitatively similar, i.e. they
represent the same amount of smoothness. However, the three estimates
and snakes are not directly comparable because they come from di®erent
realizations of the data.

Some of the observations concerning the RMSE displays were unex-
pected. For instance, because a random design is less e±cient than equally
spaced, the RMSE for the yellow snake is expected to be larger than for the
green, and this usually occurs in this RMSE display, except near x = ¡1:2
and x = 0:8. However, because there are \clusters in the random Xi", i.e.
the local empirical density is high, the yellow RMSE is smaller near those
points since there is more information in the data. This occasional superior
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performance comes from the fact that RMSE is calculated conditionally on
X1; :::; Xn. The unconditional RMSE has not been computed here, but we
believe the green will be always smaller than the yellow. This example
highlights the di®erence between the conditional and unconditional RMSE.

Although there were some unexpected observations, other observations
occurred as expected. For instance, usually for larger n, there should be less
di®erence between equally spaced and random uniform designs. In Movie
7c this appears as the RMSE for the green equally spaced design being
very similar to the red large n random design. A ¯ne point is that the red
semicircle is usually just outside the green because there is still some small
ine±ciency of the random design compared to the equally spaced.

4.6 Comparison of scedasticity
Movie 8a studies how local changes in the noise level ¾i a®ects the smooth-
ing process. The main idea is a local version of that of Movie 6b: lower
variance means \more information", and thus better estimation. This is not
shown here again to save space, but the movie is web available and complete
discussion is available in Marron, Ruppert, Smith and Conley (1999)

5 Description of programs
The Matlab software used to generate these examples is available from the
link near the bottom of the web page listed in Section 4. All ¯les in the
directory should be downloaded, probably to a separate directory. From
Matlab, a menu screen can be started using the command

À nprmov1

This menu has push-buttons to start each movie described here, and some
control parameters as well. For custom movie choice, the Matlab function
mainfig1 can be used for a much wider array of movies. The command

À help mainfig1

gives details on the use of this function. Most of the remaining ¯les at
that web address are sub function ¯les, which allow choice from an array of
kernels, scedasticities, target curves and x - designs. Other options can be
simply developed by copying those available and editing them.
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5.1 Details of calculations
In the j-th movie frame, estimation is performed at a point xj, shown as the
vertical thin cyan line. For smooth viewing, the xj are taken to be equally
spaced, and thus can be di®erent from the data locations, Xi.

At each centerpoint xj, the bias is calculated as:

bias(xj) = Ecmh(xj) ¡m(xj);

where Ecmh(xj) is the expected value of cmh(xj). As shown for example in
Section 5.2 of Wand and Jones (1995), the local polynomial smoother is a
linear estimator, cmh(xj) =

Pn
i=1Wi(xj)Yi, for suitable weightsWi(xj). Thus

Ecmh(xj) is calculated as Ecmh(xj) =
Pn
i=1Wi(xj)m(xi)..

Also at each centerpoint xj, using the formula for variance of a linear
operator, the standard deviation is :

sd(xj) =

vuut
nX

i=1
Wi(xj)2¾2i ;

where ¾i = var(Yi)1=2, i = 1; :::; n.
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