Statistical Analysis of

High Dimension, Low Sample Size

Data

(Subtitle: Functional Data Analysis)

J. S. Marron

Department of Statistics University of North Carolina

Special thanks to S. Ho and G. Gerig, UNC Computer Science

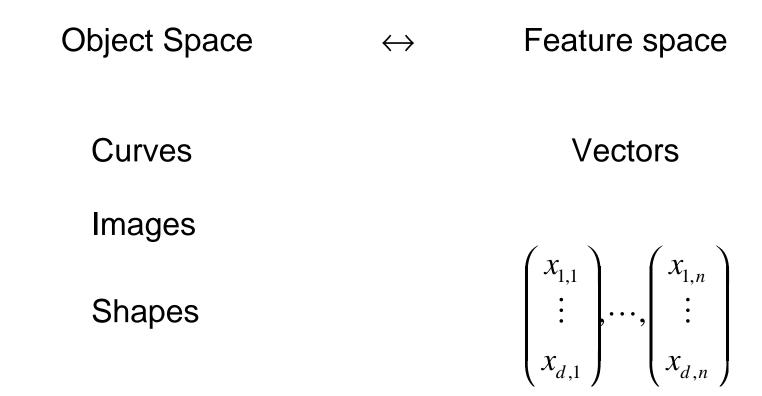
Functional Data Analysis

Ramsey and Silverman(1997) Functional Data Analysis

The "atom" of the statistical analysis

Statistical ContextAtom1st CourseNumberMultivar. AnalysisVectorF. D. A.Complex Object
(curve, image,
shape)

Data Representation



E.g. Corpora Collosa

Show CorpColl\CCFrawAlls3.mpg

An FDA Goal: population "structure"

I. "center"

e.g. "mean": vector \rightarrow shape

Show CorpColl\CCFpcaSCs3PC1.mpg Mean Only

II. "spread"

PCA (Principal Component Analysis): "directions of max. var."

How to view eigenvector? \rightarrow "march through shapes"

Show CorpColl\: CCFpcaSCs3PC1.mpg, CCFpcaSCs3PC2.mpg & CCFpcaSCs3PC3.mpg

PCA Aside

There are many names (lots of reinvention?):

Statistics: Principal Component Analysis (PCA)
Social Sciences: Factor Analysis (PCA is a subset)
Probability / Electrical Eng: Karhunen – Loeve expansion
Applied Mathematics: Proper Orthog'l Decomposition (POD)
Geo-Sciences: Empirical Orthogonal Functions (EOF)

Others???? (I am collecting....)

HDLSS Statistical Analysis

Common Medical Imaging Problem: $n \ll d$

High Dimension Low Sample Size

Corpora Callosa: n = 71 < 80 = d

Trend: 3-d shapes, worse in both directions

Show Stat321FDA\GreggTracton.html

1st Question: motivation for this?

Medical Imaging: YES

2nd Question: How do we think about HDLSS data?

Old Conceptual Model

Projections into 1, 2 or 3 dimensions,

Show HDLSSoldCMod1.ps

Using:

- Coordinates
- Principal Components
- ...

Nature of HDLSS Gaussian Data

For *d* dim'al "Standard Normal" dist'n:

$$\underline{Z} = \begin{pmatrix} Z_1 \\ \vdots \\ Z_d \end{pmatrix} \sim N(\underline{0}, I)$$

Euclidean Distance to Origin:

$$\left\|\underline{Z}\right\| = \sqrt{d} + O_p(1)$$

as $d \to \infty$.

Conclusion: data lie roughly on surface of sphere of radius \sqrt{d}

Nature of HDLSS Gaussian Data (cont.)

Paradox:

- Origin is point of highest density
- Data lie on "outer shell"

Nature of HDLSS Gaussian Data (cont.)

Lessons:

- High dim'al space is "strange" (to our percept'l systems)
- "density" needs careful interp'n (high *d* space is "vast")
- Low dim'al proj'ns can mislead
- Need new conceptual models

Nature of HDLSS Gaussian Data (cont.)

High dim'al Angles:

For any (fixed or indep. random) \underline{x} ,

Angle(
$$\underline{Z}, \underline{x}$$
) = 90° + $O_p\left(\frac{1}{\sqrt{d}}\right)$

Lessons:

- High dim'al space is vast (where do they all go?)
- Low dim'al proj's "hide structure"
- Need new conceptual models

A New Conceptual Model

Data lie in "sparse, high dim'al ring"

Show HDLSSnewCMod1.mpg

What about non-Gaussian data?

Personal View: OK, to build ideas in Gaussian context, if they "work outside"

e.g. PCA

Corpora Colosa: non-Gaussian

(via Parallel Coordinate Plot)

Show CorpColl\ CCFParCorAlls3.ps

So What?

- What does this "new model" bring us?

Another FDA goal: Discrimination (i.e. Classification)

Disclaimers:

- Will develop a new (?) method (hopefully fun)
- Please suggest other approaches

So What? (cont.)

Corpora Colosa: Separate

"Schizophrenics" from "Controls"

$$n = 40 \qquad \qquad n = 31$$

clearly HDLSS, since d = 80

Show CCFrawSs3.mpg and CCFrawCs3.mpg

Naïve Approach

PCA:

- hope: find "separated clusters"

Show CorpColl\: CCFpcaSCs3PC1.mpg, CCFpcaSCs3PC2.mpg & CCFpcaSCs3PC3.mpg

Result:

- Poor "separation" of subpop'ns

Classical Multivar. Analysis:

Fisher Linear Discrimination:

Idea: Look at "direction separating means", then "adjust for covariance".

Show HDLSSoldDisc1.ps

HDLSS Implementation: Use pseudo-inverse

Fisher Linear Discrimination

Results:

- Excellent separation of subpop'ns

Show CorpColl\ CCFfldSCs3.mpg

- but useless answer

Show CorpColl\ CCFfldSCs3mag.mpg

Solution based on new model

Show HDLSSnewDisc1.mpg

Approach: "Orthogonal Subspace Proj'n"

Idea: exploit vast size of high dim'al space.

Key on "subspaces generated by data"

(note: useless idea for large data sets, or low dimensions)

Orthogonal Subspace Projection

Show Toy Data in SubSpProj\EgSubProj1Raw.ps

Idea: Project Data in Class 2, onto subspace gen'd by Class 1

Show EgSubProj1.ps

1st Discrim. Dir'n is 1st Eigenvector of projected data.

Corpora Collosa Example:

Show CCFospSCs3RS11o2VS.mpg and CCFospSCs3RS12o1VS.mpg

- Shaky "relabelling error rate"...