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Dear Andy,
B5879: Hall, Marron and Neeman

Thank you for your letter of 31st August, regarding our paper. We have care-
fully revised the paper, and have addressed all the reviewers’ points. Attached are
detailed comments for the reviewers, indicating where we have made the alterations.
In addition to those changes we have added a number of references to theoretical
work where dimension is permitted to increase.

Would you please consider the revised paper for publication in JRSSB?

Sincerely

Peter Hall



Referee I

1. We have added the new Figure 6, with appropriate discussion, summarising some
of the simulations we have done in the unequal sample size case.

2. We have added the following remark immediately after the paragraph condition
condition (6):

As will shortly be seen, the second part of (6) is especially relevant to accurate
classification. If µ in (6) is too small, and in particular if it equals zero, then a
classifier of any conventional type (support vector machine, distance weighted
discrimination, nearest neighbour, etc) operates asymptotically in a degenerate
fashion, without respecting the population, with probability converging to 1 as
d→∞, from which a new datum comes. That is, the classifier assigns the new
datum to the same population, regardless of the actual population from which
it came. In such instances the classifier is overwhelmed by the stochastic noise
that accrues from a very large number of dimensions. The case µ = 0 can arise
when there is only a finite number of truly discriminating components.



Referee II

1. We have added the new Section 6, entitled “Summary and Conclusions,” imme-
diately before the references.

2. Discussion of this point has been added to the new Section 6. See also the
following material, added to the paragraph immediately below display (4):

Assumption 3 is a simple way of permitting the amount of information avail-
able for discrimination to diverge to infinity as d increases. (In conventional
asymptotics, information diverges through increasing sample size.) However,
it is also of interest to explore more marginal cases where conditions such as
assumption 3 fail; see Section 6.

3. We have re-stated these results as theorems, as requested.

4. The reason we did not give a proof of this result is we do not have a simple
argument. We shall give a proof below. It has the advantage that it is constructive,
and so is perhaps appealling to practitioners. But we feel that its length makes
it unsuitable for a statistical journal. However, we would be happy to include the
proof if the editor felt it appropriate, or to include a shorter one if the editor or the
referee knows of such a proof.

Here is the proof: It suffices to treat the case N = d (= m+n). In this case the
assumption that “no k data points lie in a k − 2 dimensional hyperplane” ensures
that the set Z1, say, of d points is a linearly independent set. Hence, given any
set, Z2 say, of another d linearly independent points in d-variate space, there is an
nonsingular linear transformation, T say, that takes Z1 to Z2.

Partition Z1 into two disjoint subsets, Z11 and Z12 say, of respective sizes m

and n. Let Z21 and Z22 denote the respective images of Z11 and Z12 under T . If
we can construct a (d− 1)-variate hyperplane that separates Z21 and Z22, then the
inverse of T , applied to this hyperplane, will produce a hyperplane that separates
Z11 and Z12. So, it is necessary only to show that, for a suitable choice of Z2, we
can separate Z21 and Z22. This is clear if we take Z2 to be the following set of d

points:
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) .

Indeed, two subsets of these points, containing m and n = d−m points, respectively,
are contained in parallel (d− 1)-dimensional hyperplanes.

5. We agree with the referee’s suggestion, and have made the recommended changes.

6.

• Section 4.1 etc: Change made.

• (9,−16): Correction made.

• (9,−15): Correction made.

• (12,−1): Sorry, we omitted to make the qualification, “for data from at least
one of the populations” at this point. That error has been corrected.

• (14, 7–8): We have qualified the remark and added a parenthetical comment of



explanation. The material now reads as follows:

Also as suggested by the theory, the error rates for SVM, DWD and CRD come
together for increasing d, although the convergence is perhaps faster than ex-
pected. (Recall, from Theorems 1 and 2 and the first paragraph of Section 4.2,
that in the case m = n which we are considering here, the classification prob-
abilities for SVM, DWD and CRD all converge to 1 as d increases.)

• (17, 8): Change made.


