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Abstract

High Dimension, Low Sample Size data are emerging in a number of
areas of science. In this paper a common structure underlying many
such data sets is found, using a non-standard type of asymptotics: the
dimension tends to infinity while the sample size is fixed. Our analysis
shows a tendency for the data to lie deterministically at the vertices of a
regular simplex. Essentially all of the randomness in the data appears
only as a random rotation of this simplex. This geometric representation
is used to obtain several new statistical insights.

1 Introduction

High Dimension, Low Sample Size (HDLSS) data are becoming increasingly
common, in a number of fields. These include genetic micro-arrays, medical
imaging and chemometrics, which we treat briefly in the next three paragraphs.



A currently very active area of data analysis is micro-arrays for measuring
gene expression; see for example Eisen and Brown (1999), Alter, et al. (2000),
Perou et al. (1999, 2000) and Sgrlie et al. (2001). A single measurement yields
simultaneous expression levels for thousands to tens of thousands of genes. Be-
cause the measurements tend to be very expensive, the sizes of most data sets
are in the tens, or maybe low hundreds, and so the dimension, d, of the data
vectors is much larger than the sample size, n.

In medical image analysis, there are many research problems which currently
need statistical input. These lie in the direction of understanding and analyzing
populations of three-dimensional images. A useful approach is to first numer-
ically represent shapes of organs of interest. This is done in a wide variety of
ways, including the boundary representations developed by Cootes and Taylor
(1993), and the completely different medial representations, well described by
Yushkevich, et al. (2001). This results in numerical summaries, in the form
of vectors of parameters, with dimensionality usually in the high tens to low
hundreds for three-dimensional images. However, such representations are of-
ten expensive to compute, mostly because the segmentation step (i.e. finding
the boundary of the object) often requires at least some human intervention on
a slice by slice basis. Thus sample sizes (i.e. numbers of such representations
that are collected) are usually in the low tens, again resulting in HDLSS data.

Various types of spectral measurements are very common in chemometrics,
where the spectra are recorded in channels that number well into the thousands;
see for example Schoonover, Marx, and Zhang (2003). As with the above
fields, practical considerations limit the number of samples to far fewer than
the number of channels, again resulting in n << d.

Such HDLSS data present a substantial challenge to many methods for classi-
cal statistical analysis. Indeed, the first step in a standard multivariate analysis
is often to “sphere the data”, through multiplying the data matrix by the root
inverse of the covariance matrix. For HDLSS data, however, this inverse does
not exist, because the covariance matrix is not of full rank.

As part of the development process of new methodologies, there is a need to
validate, assess and compare them. For this purpose it is useful to employ both
numerical simulation and mathematical analysis. In this paper we provide a
mathematical structure within which asymptotics for d — oo, with n fixed, gives
informative and insightful results. The key idea is to study either the subspace
or the hyperplane generated by the data. When the data satisfy some fairly
standard distributional conditions, the subspace or hyperplane can be rotated
in such a way that the data converge to the vertices of a deterministic regular
simplex. Thus HDLSS data sets, modulo a random rotation, tend towards the
latter elementary geometric representation.

The asymptotics in this paper seem to be the first to seriously treat the
HDLSS case of d — oo, with n fixed. The most common case in the current
literature is n — oo, with d fixed. Some researchers, e.g. Huber (1973) and
Portnoy (1984, 1988), have addressed the case of n — oo, with d also growing,
say as some power (generally less than one) of n. Bai and Sarandasa (1996),
Sarandasa and Altan (1998) and Johnstone (2001) have studied asymptotics



where n — oo, and d grows at the same rate. The risk bounds of Tsybakov
(2003) have very interesting implications across a wide range of combinations
of n — o0 and d — oo.

For simplicity of presentation, these ideas are first explored in the standard
Gaussian case, via some elementary calculations, in Section 2. A more general
mathematical treatment follows in Section 3.

This new geometric representation is used to analyze the HDLSS perfor-
mance of some discrimination rules, including the Support Vector Machine, in
Section 4. In addition to giving a mathematical tool for comparison of meth-
ods, the new geometric representation also provides an explanation for some
previously puzzling phenomena.

2 Standard (Gaussian Geometrical Representa-
tion

Insight into the high dimensional phenomena which drive the geometric rep-
resentations developed in this paper comes from some perhaps non-obvious
facts about high dimensional standard normal distributions. Let Z(d) =
(ZzW,...,Z (d))T denote a d dimensional random vector drawn from the nor-
mal distribution with zero mean and identity covariance matrix. Because the
sum of the squared entries has a chi-squared distribution with d degrees of free-
dom, which tends towards the Gaussian as d — oo, a simple delta method
calculation shows that the Euclidean distance has the following property:

d ) 1/2
IIZII={Z(Z<’“>) } =d'?+0,(1).

k=1

This provides a sense in which the data lie near the surface of an expanding
sphere. The result is readily extended to the case of two independent vectors
from the standard normal, Z;(d) and Zs(d) say:

12y — Zo| = (2d)* + O, (1) as d — . (1)

Thus data points tend to be a deterministic distance apart, in a similar sense.
A further useful insight comes from considering the angle, at the origin, between
the vectors Z; and Z5. Again a simple delta method calculation, this time for
the inverse cosine of the inner product, gives:

ang (Z1,Z2) = 37+ O, (d_1/2) , (2)

where ang(Z7, Z2) denotes the angle, in measured radians at the origin, between
vectors Z; and Zs. Of course, both (1) and (2) hold for a random sample
Z1, ..., Zp, implying that all pairwise distances in the sample are approximately
equal and that all pairwise angles are approximately perpendicular. This is
challenging to visualize for n > 4.



These properties are illustrated in Figure 1, where the case d = 3, n = 3 is
considered. All the rays from the origin to the respective data points, shown as
solid blue lines, are of approximately equal length, and the distances between
data points (measured along the dashed blue lines) are all about 2'/2 times as
large. The rays from the origin are also nearly orthogonal. It is a matter of
personal taste whether to focus attention on the subspace generated by the data
(of dimension n = 3 in this case), or on the hyperplane generated by the data (of
dimension n — 1 = 2 here). Here only the structure of the data in the plane is
explored further. Because all pairwise distances are nearly the same, the data
lie essentially at the vertices of an equilateral triangle, which is the “regular
3-hedron”, i.e. a 3-simplex. This is the picture that will be most useful to keep
in mind during the general analysis in Section 3. (A topologist would generally
refer to our 3-simplex as a 2-simplex, notating it using the number of dimensions
in which it lives, rather than its number of vertices. However, notation in this
paper will be simpler if we index a simplex in terms of its number of vertices,
and so we shall follow that course.)

FI1CURE 1: Three point toy example, showing geometric representation, by
rotation of the two dimensional hyperplane containing the data, to give a
regular n-hedron.

Another example elucidating these ideas is shown in Figure 2. Each panel
shows overlaid scatterplots of 10 samples (shown as different colors) of standard
normal random vectors of size n = 3, and in d = 2, 20, 200 and 20000 dimensions
in the respective panels. The 10 samples give an impression of the sampling
variation, as a function of the dimension, which varies for the panels. For each
sample, and each dimension, the hyperplane generated by the data (i.e. the plane
shown in Figure 1) is found, and the data are projected onto that. Within that



plane the data are rotated so that the horizontal coordinates of the bottom
two points are centered on 0, to give the scatterplots shown in Figure 2. In
view of (1) it is anticipated that these points will lie close to the vertices of
the equilateral triangle, with side length (2d)1/ % shown with black dashed lines

(the regular 3-simplex}, and that this approximation will be better for higher
dimensions.
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FIGURE 2: Gaussian Toy Example, illustrating geometric representation, for
n =3, and convergence to a 3-simplex with increasing dimension.

The figure confirms these conjectures. Note that for d = 2, the points ap-
pear to be quite random, and indeed not all of them are easy to associate with
the appropriate vertex of the triangle. However, for d = 20 there is reason-
able convergence to the vertices, suggesting that the geometric representation
is already informative. For d = 200 the approximation is quite good, making
it clear that the majority of variability goes into the two rotations considered
above. As expected, the case d = 20000 shows an even more rigid geometric
representation.



3 General Geometrical Representation

In this section, the geometric representation is made more general. Section 3.1
treats the single sample case. Section 3.2 extends these ideas to two data sets
from different distributions, to lay the foundation for using geometric represen-
tation ideas for the analysis of discrimination methods.

3.1 Representation of a single sample

Consider a data vector X(d) = (X, ... X@)T obhtained by truncating an
infinite time series which we write as a vector, X = (XM, X2 T If a law of

large numbers applies to the time series, in the sense that d=* >, (X (’“))2 —a
in probability, for a constant a > 0, then we might fairly say that X(d) lies
approximately on the surface of a d-variate sphere, of radius (ad)'/?, as d — oo.

The approximate n-simplex structure, observed in Section 2, will follow from
the limiting behavior of distances between pairs of points in a sample, X (d) =
{X1(d), ..., X;n(d)}, where the data vectors, X;(d), are taken to be independent
and identically distributed as X (d). Assume:

1. The fourth moments of the entries of the data vectors are uniformly
bounded.

2. For a constant o2,
d
1 .
p Z var (X(k)) — 02, (3)

3. The time series X is p-mixing for functions that are dominated by quadrat-
ics, as defined in Section 5.1.

Then it follows by a law of large numbers that the distance between X;(d)
and X(d), for any i # j, is approximately equal to (20%d)'/? as d — o0, in the

sense that
¢ 2 i 1/2

where the convergence is in probability. See Section 5.1 for details on (4).
Note that stationarity of the time series X is not required. Instead we only
need boundedness of moments, weak independence, and condition (3), which
entails stationarity only in a very weak, Césaro-averaged, first-order form. In
this sense we are working with a rich class of models for high-dimensional data.
Application of the result (4) to each pair (4,7) with 1 < i < j < m, and
scaling all distances by the factor d='/2, shows that the pairwise differences
between points in X'(d) are all asymptotically equal to (202)Y/2, as d — oo.
Equivalently, if we work with the (m — 1)-dimensional space into which all m



points in X'(d) can be projected without losing their intrinsic relationships to
one another, and rescale as before, we conclude that:

after rescaling by d—1/2, the points X (d) are asymptotically located (5)
at the vertices of an m-simplex where each edge is of length (202)1/ 2,

Of course, the theory described in (5) involves keeping m fixed as d increases.
As noted in Section 2, the m-simplex is an m-polyhedron with all edges of equal
length, e.g. for m = 3 the equilateral triangle with dashed edges shown in Figure
1.

3.2 Representation of two samples

For the study of classification, the two sample case is also important. Suppose
that, in addition to the sample X'(d) where data vectors are distributed as the
first d components of the time series X, there is an independent, random sample
V(d) = {Yi(d),..., Yu(d)}, where each Y;(d) = (Y,",...,¥\")T is distributed
as the first d components of a time series Y = (Y1), Y )T Straightfor-
ward modifications of the assumptions 1-3 in Section 3.1 for the time series Y,
together with a new assumption about separation of population means, gives
the new conditions:

d d
% Z var (Y(k)) — 72, é Z (EX(k) — EY(k))2 -, (6)
k=1

where 7 and p denote finite, positive constants. It follows that the analogue of
(4) holds: after rescaling by the factor d~'/2, the data Y;(d) are asymptotically
located at vertices of an n-simplex where each edge is of length 271/2.
Similarly, since the samples X'(d) and )(d) are independent, a weak law
of large numbers and property (6) show that the distance between X;(d) and
Y;(d), divided by d'/2, converges in probability to (o2 + 72 + u?)'/2? as d — oc:

d 1/2
1 2
ai/? {Z (Xi(k) - Yj(k)> } — 0= (0> 4717+ M2)1/2 : (7)

See Section 5.1 for details. Thus, after rescaling all distances by the factor
d~1/2, and writing N for m + n, we obtain the following geometric picture of
the two samples, X'(d) and Y(d), for large d and fixed m and n:

After rescaling each component of d-variate space by the factor
d~1'/2, the N points in X(d) U Y(d) are asymptotically located at
the vertices of a convex N-polyhedron in (N — 1)-dimensional space,
where the polyhedron has N vertices and N(N — 1)/2 edges. Just
m of the vertices are the limits of the m points of X(d), and are
the vertices of an m-simplex of edge length 2'/2¢. The other n ver-
tices are the limits of the n points of )(d), and are the vertices of
an n-simplex of edge length 2/27. The lengths of the edges in the
N-polyhedron that link a vertex deriving from a point in X'(d) to
one deriving from a point in Y(d), are all of length ¢.



The results here hold as d — oo, for fixed m and n. An N-polyhedron is
a figure in (N — 1)-dimensional space that has just N vertices and has all its
faces given by planes in (N — 1)-variate space. The particular one discussed at
(8) has all the scale-invariant properties of an N-simplex, and in particular has

just (JZ ) k-faces, or faces that are of dimension k& — 1. Thus, it has (If ) vertices,

(g) edges, and so on.

Note that if 0 = 7 and u = 0 (e.g. if the time series X and Y have the same
distribution) then the N-polyhedron discussed at (8) is exactly an N-simplex,
with all edge lengths (202)1/2.

In the general case, the N-polyhedron of the two sample geometric represen-
tation can be constructed by rescaling an N-simplex, as follows. An N-simplex
has m of its vertices arranged as those of an m-simplex in (m — 1)-variate space,
and the other n vertices arranged in an n-simplex in (n — 1)-variate space. Alter
the scales of these two simplices so that their respective edge lengths are 2'/2¢
and 2'/27; each is still a simplex in its own right. Then alter the lengths of the
other edges, of which there are

AIN(N=-1)—im(m-1)—in(n—1) =mn,

so that they all equal 2.

Examples for small values of m and n are readily visualized, as discussed in
the next paragraph. We shall use the term “tetrahedron” for the non-regular
version of that figure, in which edge lengths are not necessarily equal. In the
following paragraph we shall write simply X and Y for X(d) and Y(d), respec-
tively.

When m = 2 and n = 1 the N-polyhedron is a triangle, with one of its edges
being of length 2'/2¢ and the corresponding two vertices representing the points
in X, the other two edges being of length ¢, and the third vertex representing the
single point in ). When m = 3 and n = 1 the N-polyhedron is the surface of a
tetrahedron, with the three vertices in its base representing the points in X and
forming an equilateral triangle of side length 2'/2¢, and the vertex at the apex
representing the point in ) and being distant ¢ from each of the vertices in the
base. When m = n = 2 the N-polyhedron is again the surface of a tetrahedron,
as follows. Let two of the vertices in the base of the tetrahedron correspond
to the two points in X, and let the other vertex in the base, and the vertex at
the apex of the tetrahedron, correspond to the two points in ). Let the edge
joining the two X-points be of length 2'/2¢, let the edge joining the other two
points be of length 2'/27, and let the other four edges all be of length .

This interpretation converts an intrinsically complex, highly stochastic, high-
dimensional data configuration into a highly symmetric, virtually deterministic,
low-dimensional one. As noted in Section 2, almost all of the stochastic variabil-
ity in the data goes into random rotation, although some goes into small per-
turbations of vertices that disappears as d — co. As d increases the orientation
of the N-polyhedron constantly changes and does not converge in probability.
Thus, as d — oo the polyhedron is constantly, randomly spinning in a space of
ever increasing dimension. Furthermore, the polyhedron’s location also varies



with d (unless the means are zero, as assumed in Section 2).

4 Analysis of Discrimination Methods

In this section, the geometric representation ideas of Section 3.2 form the basis
of a mathematical analysis of observed behavior of discrimination methods. In
particular, in the simulation study of Marron and Todd (2002), it was observed
that at very high dimensions, the considered techniques all had similar error
rates, across a wide array of simulation settings. The popular Support Vector
Machine (SVM), and the more recently developed method of Distance Weighted
Discrimination (DWD) are treated in Section 4.1. Related ideas for other
discrimination rules are discussed in Section 4.2. Some of the theoretically
predicted effects are more deeply investigated in a small simulation study in
Section 4.3.

4.1 Support vector machine and distance weighted dis-
crimination

Several methods for classification operate by dividing the sample union, X' (d) U
Y(d), into two classes by a plane, and classifying a new datum as coming from
the X- or Y-population according as it lies on one side or the other of the plane.
When d > N, and no k data points lie in a k — 2 dimensional hyperplane (which
happens with probability one for data from continuous probability densities), it
is always possible to find a plane that has X'(d) entirely on one side and Y(d)
entirely on the other. Attention is restricted to this “separable” case, and we
will study how the different classification methods vary in terms of the plane
that they select.

The support vector machine (SVM) method (see e.g. Vapnik, 1982, 1995;
Burges, 1998; Christiannini and Shawe-Taylor, 2000; Scholkopf and Smola,
2001) chooses the plane which perpendicularly bisects the two closest points
in the convex hulls of the respective datasets. Note that these points do not
have to be data values. In the asymptotic geometric representation described
at (8), these convex hulls are precisely the m- and n-simplices, the vertices of
which represent the limits, as d — oo, of the datasets X(d) and )(d), respec-
tively. (Here and below, in a slight abuse of notation, we refer to the limiting
simplices of the samples X'(d) and Y(d) simply as the m-simplex and the n-
simplex, respectively.)

It is thus clear that the projection of the SVM plane, into the (N — 1)-
dimensional hyperplane generated by the data, where all the data in X'(d) U
Y(d) can be considered to lie, is given asymptotically by the unique (N — 2)-
dimensional plane that bisects each of the edges of length £ in the N-polyhedron.
To illustrate this point, recall from Section 3.2 that when m = 2 and n = 1 the
N-polyhedron is an isosceles triangle, with its base having length (202)1/ 2 and
corresponding to the 2-simplex representing the sample X'(d). In this case the



projection of the SVM plane into the plane of the 3-polyhedron is, in the limit
as d — oo, the straight line that bisects the triangle’s two equal sides of length £.

Now add a new random point to d-variate space; it should be independent
of the data in X(d) U Y(d) and have the distribution of either X (d) or Y(d).
We claim that:

Assume 0%/m > 72 /n; if need be, interchange X and Y to achieve

this. If u? > (62 /m)—(7%/n), then the probability that a new datum

from either the X or the Y population is correctly classified by the
SVM plane, converges to 1 as d — oo. If u? < (0%/m) — (%/n), (9)
then with probability converging to 1 as d — oo, a new datum from
either population will be classified by the SVM plane as belonging

to the Y population.

The proof follows directly from the geometric representation developed in Sec-
tion 3.2, and is given in Section 5.2.

It follows that for any p # 0, the SVM plane gives asymptotically correct
classification of new X values whenever m is sufficiently large, for any given
value of n; and asymptotically correct classification of new Y values whenever
n is sufficiently large, for any given value of m.

Another interesting consequence of (9) is that if the X and Y populations
have the same average variances, i.e. if 02 = 72; and if p?/0? < |m_1 —n1;
then the SVM classifier ensures asymptotically perfect classification for the pop-
ulation with the larger sample, and asymptotically completely incorrect classi-
fication for the population with the smaller sample.

The case of Marron and Todd’s (2002) distance weighted discrimination
(DWD) approach differs in important respects, at least when the sample sizes
m and n are unequal. When X'(d) and )(d) are separable as discussed at the
beginning of this section, a general version of the DWD plane is defined by
minimizing the sum, S, say, of the pth powers of the inverses of perpendicular
distances from a candidate for the plane to points in X'(d) and Y(d), where
p > 0 is fixed.

Let us analyse quickly the properties of the DWD plane. Let Cx be the
centroid of the simplex X(d), Cy the centroid of the simplex Y(d). It is easy
to see that the line joining C'x and Cy is orthogonal to the linear subspaces
generated by the simplices. From this it easily follows that the DWD plane
must be orthogonal to the line joining the centroids. Let P be any point on the
the interval C'xCy. We want to see when it lies on the DWD plane. Relative
relationships are diagrammed in Figure 3.

P

Cx - 3

Cy

FIGURE 3: Relative relationships of simplex centroids Cx, Cy and the
candidate DWD cutoff point P.
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Because the simplex X'(d) is orthogonal to CxCly, all the vertices in the
simplex are distance « from the plane passing through P, orthogonal to C'xCy .
Similarly all the points of the simplex Y(d) are distance 3 from the plane. The

DWD plane minimizes
m n

ot
subject to the constraint that a4 3 is constant. It is an easy exercise in calculus
to see that the minimum satisfies the identity

c- (= (10)

This tells us the location of the DWD plane. It is the plane orthogonal to the
line C'x Cy, passing through the point P which satisfies (10). In section 5.3 we
will see how to compute on which side of the plane a new datum point lies. Here
we note that a = § if and only if m = n. In this case, the SVM plane and the
DWD plane coincide. The larger m/n, the closer the point P will be to Cy.
As m/n — oo, the DWD plane moves ever closer to the simplex whose vertices
represent the smaller of the two samples.

Therefore, result (9) applies without change to the DWD algorithm, provided
the two sample sizes are equal. In the contrary case the limit, as d — oo, of the
probability that a new datum is classified as being from the same population as
the larger sample, increases with the larger sample size for a fixed value of the
smaller sample size. This anticipates the often-assumed property that the larger
sample comes from a population with higher prior probability. In the general
case:

Assume o2 /mP+2)/(p+1) > 72 /p(P+2)/(p+1). if need be, interchange

X and Y to achieve this. If pu? > (n/m)Y®+1) (02 /m) — (2 /n),

then the probability that a new datum from either the X or the

Y population is correctly classified by the DWD plane, converges (11)
to 1 as d — oo. If y? < (n/m)Y/®+Y (¢2/m) — (72/n), then with
probability converging to 1 as d — oo, a new datum from either
population will be classified by the DWD plane as belonging to the

Y population.

See section 5.3.

Note that, as p — oo, (9) and (11) become identical. More generally, the
rules which determine success or failure of classification, using SVM or DWD,
are similar when p is large. In this sense, SVM can be viewed as a limiting case
of DWD; SVM may be regarded as a form of DWD, using a very large value of
the exponent that is applied to distance from the space-splitting plane.

Recall from Section 3 that our geometric representations are based on large-
d laws of large numbers. The small, stochastic perturbations in those laws are
generally asymptotically normally distributed and of size d~'/2. An examination
of the nature of the perturbations shows that when m = n the DWD plane is
less stochastically variable than its SVM counterpart, giving rise to the lower

11



error rates for classification. Specifically, stochastic errors in locating the SVM
plane are, to first order, the result of extrema of small, independent, zero-mean
errors in locating simplex vertices. On the other hand, errors in the position
of the DWD plane arise from averaging those errors. Since the extrema of
independent perturbations are generally larger than the perturbations’ average,
except in very heavy-tailed cases which are excluded by our moment conditions,
then the DWD algorithm produces a less stochastically variable approximation
to the common plane to which the SVM and DWD planes converge as d — oc.
This explains the result observed in Figure 5 of Marron and Todd (2002), that for
spherical Gaussian data DWD gave somewhat better classification performance
than SVM.

4.2 Other discrimination rules

Let Cx(d) and Cy(d) denote the centroids of the datasets X'(d) and Y(d), re-
spectively. The “centroid rule” or “mean difference rule” classifies a new datum,
Z say, as being from the X- or Y-population according as Z is closer to Cx (d)
or Cy(d), respectively. Clearly, Cx(d) and Cy (d) converge, after rescaling by
d~1/2 and letting d — o0, to the centroids of the respective simplices. It fol-
lows that the centroid rule discriminator (CRD) enjoys the same property, (9),
as the SVM classifier. Indeed, the plane which bisects all the lines (of equal
length, ¢) linking points in the m- and n-simplices, also has the property that
it divides space into points which lie nearer to one or other of the centroids of
either simplex. That is, the limit of the SVM plane splits space in exactly the
same way as the limit of the CRD plane. However, as with DWD, the variation
in CRD is driven by averaging the stochastic errors, not by the extrema. This
is a new way of understanding the superior performance of CRD over the SVM
in the example considered in Figure 5 of Marron and Todd (2002). DWD gave
essentially the same performance in that case because the sample sizes were
equal.

The standard one-nearest-neighbor rule, which classifies Z as coming from
the X- or Y-population according as the nearest point in X (d) U Y(d) is from
X(d) or Y(d), respectively, has quite different behavior. Instead of (9) the
nearest-neighbor discriminator (NND) satisfies:

Assume o2 > 72; if need be, interchange X and Y to achieve this.
If 42 > 02 — 72, then the probability that a new datum from either
the X or the Y population is correctly classified by the NND plane,
converges to 1 as d — oo. If pu? < 02 — 72, then with probability
converging to 1 as d — oo, a new datum from either population will
be classified by the NND plane as belonging to the Y population.

(12)

The contrast between results (9) and (12) is marked. For example, taking
m = n for simplicity, (9) asserts that, in the large-d limit, SVM misclassifies
data from at least one of the populations only when pu? < ’02 — 7'2} /m, whereas
(12) asserts that NND leads to misclassification both in this range and when
|o* — 72| /m < p? < |o? —72|. This quantifies the inefficiency that might be

12



expected from basing inference on only a single nearest neighbor. Furthermore,
without the condition m = n, SVM has an asymptotic advantage over NND, in
the sense of leading to correct classification of data from the X population for
a wider range of values of u, whenever 1 < 72/02 < (1-m™1) (1—n"1)71; and
has this advantage for the Y population if 1 < 02/72 < (1—n"1) (1 —m~1)~L.

As noted earlier in this section and in section 4.1, the CRD and DWD (for
m = n, or for large p) classifiers are equivalent to SVM, then the remarks in
the previous paragraph remain true if we replace SVM by either DWD or CRD.
This explains the observation of Marron and Todd, that these methods all gave
similar simulation results for very large dimension d (in the case of m = n). Fur-
thermore, the four classifiers considered here divide naturally into two groups.
The first group contains SVM, DWD (for m = n or large p) and CRD, which
for large d have similar performance in a wide range of circumstances; and the
second group contains just NND, which is generally somewhat inferior to the
other two, in terms of the width of the range where it gives correct classification.
These issues are illustrated using simulations in Section 4.3.

We have avoided treating “marginal” cases, in particular y? = |o?m~1 —
72n~Y in the setting of (9) and p? = |0 — 72| in the case of (12). There the
probabilities of misclassification depend on relatively detailed properties of the
sampling distribution. Indeed, they are influenced by the errors in the laws
of large numbers which led to properties such as (9). These errors are gener-
ally asymptotically normally distributed, and their joint limiting distributions
determine large-d classification probabilities when p? = |o?m~! — 72n~Y| or

pr=lo? —72.

4.3 Simulation illustration

Some of the consequences of the geometric representation ideas developed here
are illustrated via simulation in this section.

An interesting, and at the time surprising, observation of the simulation
study of Marron and Todd (2002) was that in a variety of simulation settings
considered there, for all of SVM, DWD and CRD, classification error rates
tended to come together for large d. Figure 4 is similar to Figure 5 of Marron
and Todd, except that NND has now been added. This shows overall error rates,
for the 4 classification methods considered in this paper. Here the training
sample sizes were m = n = 25, and dimensions d = 10, 40 ,100, 400, 1600
were considered, and the data are standard normal (i.e. multivariate Gaussian
with mean 0 and identity covariance), except that the mean of Xi(l), 1=1,...,m
(and of Yj(l), j = 1,..,n) has been shifted to 2.2, (and -2.2, respectively).
Classification error rates were computed based on 100 new data points from
each of the two classes, and the means are summarized as the colored curves in
Figure 4. Monte Carlo variation, over 1000 repetitions of each experiment, is
reflected by the error bars, which are standard normal theory 95% confidence
intervals for the true underlying population means.

This simulation setting is not identical to that of this paper, because the
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first entry of the data vectors have a different mean from the other entries.
However, the data space can be simply rotated (through a change of variables)
so that the first dimension lies in the direction of the vector whose entries are
all 1. Thus this simulation setting is equivalent to the assumptions above, with
uw=44/ d'/2?. In view of the geometrical representation and the calculations
in Sections 4.1 and 4.2, it is not surprising that this effectively decreasing value
of p gives error rates that increase in d. Also as expected from the theory, the
error rates for SVM, DWD and CRD come together for increasing d. Finally,
again as predicted, SVM lags somewhat behind DWD and CRD (which are not
significantly different).

0.5

0.45¢| SVM 1
0.4

DWD a

035} CRD .

o
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© N
N a

o
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- ()]

T T
| |

0.051 . 1

O | | | | |
0.5 1 1.5 2 25 3 3.5
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FIGURE 4: Summarization of simulation results, for Gaussian Data. Shows
convergence of most methods for large dimension.

Simulation performance of the NND rule is also included in Figure 4. As
predicted in Section 4.2, NND lags quite substantially behind the other rules in
performance (again reflecting the loss in efficiency from using only one nearest
neighbor).

The ideas of (9), (11) and (12) are illustrated in a different way in Figure
5. The simulation setting of Figure 5 is again Gaussian, with training sample
sizes m = n = 16. This time the parameters are y as shown on the horizontal
axis, 02 = 20 and 72 = 4. A range of dimensions, d = 10, 100, 1000, is shown
using line type. Classification methods are distinguished using colors and line
thickness. Different line thicknesses are used to decrease overplotting effects,
e.g. note that for d = 1000, SVM, DWD and CRD are essentially on top of each
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other. Again error rates are computed using from 100 new test cases for each
class, and averaged over 1000 Monte Carlo repetitions.

Error Rate (overall)
o o o
N w N

©
—

FIGURE 5: Summary of simulations exploring asymptotic lessons. Shows
”change points” at predicted values of .

Figure 5 allows convenient study of classification error rate as a function
of p. The result (9) suggests that for “u large” perfect discrimination (i.e. 0
error rate) is possible for SVM, which is reflected by the blue curves coming to
0 on the right side. The convergence is faster for larger dimension d, also as
expected. But much more precise information is given in (9), with in particular
a change point at p = (02/m — 7'2/71)1/2 = (20/16 — 4/16)1/2 = 1 expected.
To the left of the change point, the theory predicts that the error should be 0.5,
because the class X'(d) data will be completely correctly classified, and the class
Y(d) data will all be incorrect. The change point is quite sharp for d = 1000
and less so for lower d, as expected, because the geometric representation has
not fully taken over for the lower dimensions.

Very similar performance is predicted for DWD by (11), and seen in Figure 5
as the magenta curve. Performance is virtually identical to SVM for d = 1000,
and again as predicted at the end of Section 4.1, DWD is marginally better for
d =10, 100.

Recall from (12) that for NND the change point is quite different, now ap-
pearing for = (0% — 7'2)1/2 = (20 — 4)1/2 = 4 (farther to the right, reflecting
the expected inefficiency of 1 Nearest Neighbor Discrimination). This change-

15



point is also well reflected in Figure 5, as the green curves. Again the asymp-
totically predicted results are strongest for the highest dimension d = 1000.

5 Technical Details

This section gives technical details used in the above discussion.

5.1 Laws of Large Numbers

This section gives a concise formulation of the p mixing condition, and shows
how it can be used to develop the laws of large numbers (4) and (7).

We say that the time series X = (XM, X®  Jand Y = (YD, Y®) ),
assumed to be independent of one another and to have uniformly bounded fourth
moments, are p mixing for functions dominated by quadratics, if, whenever
functions f and g of two variables satisfy |f(u,v)| + |g(u,v)] < Cu?v? for fixed
C > 0 and all u, v, we have:

Corr {f (U(k),V(k)> ., g (U(k), V(k))} ’ <p(r),

sup
1<k,b<c0, |k—l|>r

for (U,V) = (X,X), (Y,Y) or (X,Y), where the function p satisfies p(r) — 0
as r — 0o. See, for example, Kolmogorov and Rozanov (1960).
If the p-mixing condition holds, then, by elementary moment calculations,

i { (v - Vj<k>>2 e (v - Vj(k))QH — o (@)

k=1

asd — oo, for (U, V) = (X, X), (Y,Y)or (X,Y), where i # jif (U, V) = (X, X)
or (Y,Y). Therefore, by Chebyshev’s inequality,

1 ¢ &) 10 (k) (k)2
7o {0 =) B (v o

in probability. This result, together with (3) and (6), implies (4) and (7).

5.2 Derivation for SVM

This section contains the details leading to (9).

Let the new datum have the distribution of X (d) and be independent of the
data in X(d) U Y(d). Denote it by X'(d). The asymptotic theory described in
sections 3.1 and 3.2 implies that, as d — oo, the distance of X’(d) from each
X;(d) € X(d), rescaled by d~'/2, converges in probability to (202)/2; and the
rescaled distance of X’(d) from each Yj(d) € Y(d) converges in probability to £.

Recall that we refer to the limiting simplices of the samples X'(d) and Y(d)
as the m-simplex and the n-simplex, respectively. The squared distance from
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any vertex of the m-simplex to its centroid equals o2 (1 — m~1). To appreci-
ate why, let us temporarily take 02 = 1 and represent the m-simplex in m-
variate Euclidean space through its vertices, at the points with coordinates

(1,0,...,0),...,(0,...,0,1). (This m-variate representation is simpler than an
(m — 1)-variate representation.) Then the centroid of the simplex has coor-
dinates (m~1,...,m™1), and so its squared distance from any of the vertices

equals (1—-m 2+ (m—-1)m2=1-m"1

Let Z be a point which is distant r from each vertex of the m-simplex. Then
7, any vertex V of the m-simplex, and the centroid of the m-simplex, are the
vertices of a right-angled triangle of which the hypotenuse is the line joining Z
to V. Therefore, by Pythagoras’s theorem, the squared distance from Z to the
centroid equals 72 — o2 (1 — m~1).

The datum X’(d) is correctly classified if and only if it is nearer to the convex
hull of the m-simplex than to the hull of the n-simplex. Equivalently, X'(d) is
classified as coming from X(d) if and only if it is nearer to the centroid of the
m-~simplex than to the centroid of the n-simplex. In view of the result derived
in the previous paragraph, the squared distance of X’(d) from the centroid of
the m-simplex, and from the centroid of the n-simplex, equal respectively

20—’ (1-m H=c*m+1)/m, CP-1*QA-n"YH=p*+>+7n"".

Hence, X'(d) will be nearer to the n-simplex (and therefore misclassified) if
o2 (m+1)/m > p?+o?+72n"1 ie. if p? < 0?m~! —72n~1; and will be nearer
to the m-simplex (and so correctly classified) if u? > o?m=1 — 72n~1.

So far we have made no assumption regarding which of 0?/m and 72/n is
bigger. Now assume o2/m > 72/n. The above tells us when a datum point
of type X'(d) will be classified correctly. For a datum point of type Y'(d), the
same argument with X and Y interchanged tells us that a datum point of type
Y will be classified correctly if 2 > 72n~! — o?m~!. Since the right hand side
is negative, this always happens. In other words a datum point of type Y is
always classified correctly. (9) simply assembles together the information about
data points of type X and Y.

5.3 Derivation for DWD

In section 5.2 we saw that, given a point Z whose distance from each vertex
of the m-simplex X(d) is r, the squared distance of Z from the centroid of the
m-simplex is 72 — 02(1 — m~!). We can apply this where Z =Y is one of the
vertices of the simplex ) (d). The square of the distance from Y to a point in
X(d) is p? + 0% + 72, and hence the square distance of Y from the centroid C'x
of X(d) is

ot + 12— (1 —m™Y) = p® + (0% /m) + 7%

Now this is true for every vertex Y in J(d). The same analysis now tells us that
the square distance of C'x from the centroid Cy of the simplex )(d) is given by

p?+ (0 fm)+ 7% = (L =07 = p? + (0% /m) + (7 /n).
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Now let X’(d) be a new datum point of type X, independent of X (d) U Y(d).
In section 5.2 we computed the square distances of X’(d) from Cx and Cy. In

other words, in the triangle shown in Figure 6, we know the distances C'xCy,
X'(d)Cx and X'(d)Cy.

X'(d)

Cx ¢ » Cy

@ P B

FIGURE 6: Relative relationships between the new datum point X'(d) and the
simplex centroids Cx, Cy .

In Figure 6, P is the projection of X’(d) to the line C,Cy. The distances
we have computed tell us

2 +h?=c*1+m™) (13)
B+ h?=u? + o+ (7% /n) (14)
(a+8)" = p* + (0% /m) + (v°/n) (15)
Subtracting (14) from (13) we have
o — 32 = (0 /m) — p? = (7% /n) (16)

Adding (15) and (16), and subtracting these two equations, we obtain respec-
tively

ala+ ) = o*/m (a7)
Bla+B) = p* + (°/n) (18)

from which we conclude that
a__ o'fm (19)

8 w2+ (r?/n)

The point X’(d) will be classified as belonging to X if it lies on the same side
of the DWD plane as Cx, that is if

a®/m < (m)l/(p-H)
W (72 )
It will be classified as belonging to Y if

n

o?/m (m)l/(p-H).

v
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So far our treatment has been general. Now assume ¢?/m/(P+2)/(P+1) >
72 /n®+2)/(+1) | The analysis above tells us when a point X’(d) will be classified
correctly. Suppose we have a point Y'(d). By the inequality above

72 /n < (n)l/(;v+1)
o2/m ~ \m '

But then for any positive u? we have

72 /n 2 /n < (n)l/(p-H).

2+ (02m) " m = \m

that is, Y’ (d) will always be classified as belonging to Y.
Equation (11) simply combines the information above, on points X'(d)
and Y’ (d).

5.4 Derivation for NND

As in section 5.2, let X'(d) denote a new datum, from the X population, added
to the d-variate plane. In the limit as d — 0o, and after the usual normalisation,
X'(d) converges to a point whose squared distance from points of the m- and
n-simplices equal 202 and (2, respectively. Hence, the limit of the probability
that X’(d) is correctly classified equals 1 or 0 according as 202 < ¢2 or 202 > (2,
respectively. Since 202 < ¢2 if and only if u? > 02 — 72 the result (12) follows.
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