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ABSTRACT 
Background:  Combining different microarray data sets together, even across platforms, 
is considered.  The larger sample sizes created in this way have the potential to generally 
increase statistical power.  DWD has been shown to provide this improvement in some 
cases.  But there is an apparent contradiction with the success of the DWD based 
approach, and earlier analyses by others claiming to show the infeasibility of across-
platform adjustment. 
 
Results:  Using two NCI 60 data sets as a test bed for studying across-platform 
adjustment, we replicate earlier results indicating that DWD provides an effective 
approach to this problem, using both novel and conventional visualization methods.  In 
addition, improved statistical power from combining data is demonstrated for a new 
DWD based hypothesis test.  This result appears to contradict a number of earlier results, 
which suggested that such data combination is not possible.  The contradiction is resolved 
by understanding the differences between viewpoints.  The negative results obtained by 
others were based upon a gene by gene analysis, but much better insights and analyses, 
including understanding why DWD works, comes from the more complete and insightful 
multivariate viewpoint. 
 
Conclusions:  DWD is seen, using the NCI-60 cancer cell line data as a test bed, to be an 
effective method for cross-platform combination of microarray data.  In general, 
multivariate data views are much more insightful and useful than only gene by gene 
views for understanding microarray data. 



BACKGROUND 
DNA microarrays have proven to be a powerful tool for many biological applications.  
But serious statistical challenges remain, because the data tend to be noisy.  Noise in the 
data could be countered by running a large number of arrays, and averaging the results, 
but this is currently not practical because arrays costs are still relatively high.  Another 
approach to boosting statistical power is to combine current data with previously 
collected data, much of which is web available. 
 
However, as noted by Irizarry, et al. [1], hurdles to such combinations include “biases 
introduced during the sample preparation, manufacture of the arrays, and the processing 
of the arrays (labeling, hybridization, and scanning, etc.)”.  Even more challenging is that 
the data can seem especially non-comparable when they are collected using different 
platforms (i.e. Affymetrix versus Agilent).  DWD (Distance Weighted Discrimination), 
developed by Marron and Todd [2], was shown to provide effective bias adjustment for 
all of these situations by Benito et al. [3], including effective across-platform adjustment. 
 
Despite these promising results, there have been a number of contradictory results 
suggesting that these systematic biases are an insurmountable obstacle for across 
platform analyses (see Kuo et al. [4] , Culhane et al. [5], Parmigiani et al. [6] and  
Mecham [7]).  The first of these is based on an unusually direct comparison of the NCI 
60 Cancer Cell Line data.  These data provide an excellent test bed for studying across-
platform issues because gene expression of identical cell line samples was measured by 
both cDNA (from Synteni, Inc.; now Incyte, Inc.) and Affymetrix  (Hu6800) microarrays.  
Details of data availability, and preprocessing that was done, are given in the Materials 
and Methods Section. 
 
 
RESULTS AND DISCUSSION 
This NCI60 test bed is used to investigate the effectiveness of DWD in the next 
subsection.  It is seen that DWD adjustment allows combining the cDNA and Affymetrix 
data sets into a single homogeneous data set, which contains all the previously known 
biological features of these data.  Multivariate projection views are quite important to 
both the approach, and to understanding the adjustment process. 
 
While the visualizations strongly suggest that the DWD across-platform adjustment was 
successful, it does not directly settle the central issue: does the adjustment allow the 
combined data to have improved statistical power?  This important question is addressed 
in the following subsection, where hypothesis tests are considered to study whether each 
cancer type is statistically significantly different from the rest of the data.  It is seen that 
in almost every case, the adjusted data provide improved statistical power, thus justifying 
the combination of data. 
 
Resolution of the apparent contradiction between these clearly positive results, with the 
negative results of Kuo et al. [4], using the same data, comes in the next subsection.  
There a simulated example is used that shows that important biological structure can be 
missed by restricting attention to only a gene by gene view.  Furthermore, it is seen that a 



gene by gene analysis of correlation, as done by Kuo et al [4], can suggest negligible 
correlation between two sets of samples.  Yet after DWD adjustment, the same samples 
can give an extremely high multivariate correlation, in the direction of biological 
interest. 
 
An important caveat to the application of DWD is that all important biological classes 
need to be represented in both subgroups to be adjusted.  Meaning, if biological type 1 
lies completely in the first group, and type 2 lies completely in the second group, and 
DWD is applied to this data, then DWD will eliminate the differences between groups, 
which means that it will also eliminate the important biological differences in the process. 
 
 
ANALYSIS OF THE NCI 60 DATA 
Figure 1 studies the NCI 60 Cancer Cell Line data, using a view that will be employed 
frequently in this paper.  The most important property of this view is that it is 
multivariate in nature, as opposed to more conventional gene by gene views, such as 
commonly done for example, when using conventional heat maps (i.e. hierarchical 
clustering diagrams).  The challenge to multivariate data views is that the human 
perceptual system is only capable of 1, 2 or 3 dimensional views.  An approach to this 
issue is to focus attention on 1 and 2 dimensional projections, that are based on carefully 
chosen directions of interest, and which are chosen from the many that are possible to 
consider.  Principal Component Analysis (PCA) is a commonly used method for finding 
directions of interest.  This gives a set of multivariate directions, which are orthogonal to 
each other, and frequently provide useful views because these are the directions that 
maximize the spread of the projected data.  But other directions can be very useful as 
well, particularly to highlight known differences of various types in the data.  An 
example of this is shown in the step by step illustration of the DWD batch and source 
adjustment, available from the “DWD Bias Adjustment of Batch and Source Effects” link 
on the Detailed Graphics web page given above.  In particular, while PC directions are 
often useful, for some purposes it is very insightful to include DWD direction vectors as 
well. 
 
In Figure 1, the chosen directions are the first 4 PC axes, where the Principal 
Components have been computed using the full data set.  The plots on the diagonal show 
the 1 dimensional projections of the data.  The cDNA observations appear as green plus 
signs (each plus sign represents one sample, i.e. array), and the Affymetrix data are 
purple circles.  The axis shows the projections of the data on each PC direction vector.  A 
random height is added to each symbol just for convenient visual separation (essentially 
the “jitter plot” idea of Tukey and Tukey [8]).  Also included in each plot is a smooth 
histogram, colored according to the microarray platform.  Note that PC 1 points 
essentially in the direction of the platform difference, because this is the direction of 
greatest variation in the combined data set.  The off-diagonal plots are projections of the 
data onto two dimensional planes, determined by the various pairs of the PC directions.  
These are scatterplots, where the horizontal axis shows the 1 d projection that appears in 
the same column, and the vertical axis shows the 1 d projection in the same row.  Again 
symbols correspond to samples, and the symbol type and color indicate the platform.  



Also present in these scatterplots are line segments connecting the samples from common 
cell lines recalling that the same cell lines were assayed on each platform.  Follow the 
Scatter Plot View of Micro-Array Data link on the web page [9]for a detailed, step by 
step introduction to this type of graphic.  The other PC directions show other types of 
structure, which will be discussed in detail below. 
 
Already apparent in Figure 1 is some suggestion of biological clusters; for example in the 
PC 2 vs. PC 3 scatterplot (second panel in the second row) there is a cluster that seems to 
separate itself from the rest.  However, the cluster is not very distinct in the sense that the 
distances between the two platforms is as large as the separation of the cluster from the 
main body of data.  Another potential cluster seems to appear in the PC 2 vs. PC 4 
scatterplot (last panel in the second row), but again the across-platform distances are very 
large relative to the cluster separation from the main data. 
 
Perfect across-platform adjustment would change the data in such a way that each cDNA 
sample (green plus) would coincide with its corresponding Affymetrix sample (purple 
circle), and each connecting black line would have a length of 0.  Of course this is 
impossible because these measurements were made in the presence of noise.  However, 
in all of the off diagonal panels visible in Figure 1, the black line segments do follow 
intriguingly simple patterns, suggesting that in fact, some relatively simple operations 
could yield considerable overlap of the desired type.  DWD and some subsequent 
adjustment steps, are aimed at accomplishing this goal. 
 
Figure 2 shows (using the same view) the same data after DWD adjustment.  This 
adjustment used both DWD to find the right direction for shifting the data, followed by a 
column-wise standardization, which is important to correctly handle scale differences 
present across-platforms.  DWD alone would be sufficient if the connecting black lines 
were all parallel.  A careful, step by step, visual display of the steps in this adjustment is 
available on the web page [9].  Note that in all of the PC directions, the huge difference 
between the cDNA and Affymetrix data visible in Figure 1, has essentially disappeared.  
The black dashed line segments, which connect samples from the same cell line, show 
that there are both some systematic differences , in the sense that many of the nearby line 
segments are approximately parallel, and some pure noise differences, reflected by 
nearby line segments lying in much different directions.  But the key observation is that 
both types of noise are smaller in magnitude than the distinct clusters that are visible in 
the data.  These clusters represent important biological structure in the data (as detailed 
below), which shows that the DWD normalization has reduced differences in the data to a 
level which is less than the biological features in this data.  This is the key to effective 
combination of data from across different statistical platforms. 
 
The biological significance of the clusters visible in the combined data, is studied in 
Figure 3.  This is the same as Figure 2, except that now the two clearly visible clusters are 
colored.  There is a red colored cluster, which shows up clearly in all of the PC 3 views 
(3rd column and 3rd row), and a blue cluster, which shows up clearly in the PC 2 vs. PC 4 
scatter plot in the last column and the second row.  The names of the cDNA arrays for the 
data in these clusters are shown in Table 1. 



Table 1:  Sample Names, in the two highlighted clusters 
Red Cluster Blue Cluster 

BREAST.MDAMB435
BREAST.MDN 

MELAN.MALME3M 
MELAN.SKMEL2 
MELAN.SKMEL5 
MELAN.SKMEL28 

MELAN.M14 
MELAN.UACC62 
MELAN.UACC257 

LEUK.CCRFCEM
LEUK.K562 

LEUK.MOLT4 
LEUK.HL60 

LEUK.RPMI8266 
LEUK.SR 

 
The samples in the red cluster (left hand column) in Table 1 are all melanoma cell lines 
except two, which was previously shown to be a very strong cluster, that is very 
noticeably different from the other cancer types when using hierarchical clustering 
analysis (Ross et al. [10]). Also note that two breast cancer cell lines also appear in this 
cluster, which again repeats the previous observations of Ross et al. The points in the 
blue cluster are all Leukemia Cell Lines that are derived from blood lymphocytes. This is 
a second dominant expression patterns that reflects cell type identify, and was also 
identified by Ross et al. [10]. Both of these clusters are further studied using conventional 
heat map views (see http://genome-www.stanford.edu/nci60/images/figure1.html ), and 
see these at the “DWD Across-platform Adjustment of the NCI 60 Data” link on the 
Detailed Graphics web page. 
 
A much different view of the DWD adjusted NCI 60 data, which particularly focuses on 
the known biological clusters, is shown in Figure 4.  The scatterplots shown in Figure 3 
are informative, but the directions used in the projection view are PCA directions, which 
are attuned to “maximal variation (in the projected data)”.  This direction frequently 
correlates well with important biological insights, but does not do so explicitly.  While 
the Melanoma and Leukemia clusters appear quite clearly, the other cancer types are not 
easy to see, even when more PCs are studied.  A completely different application of the 
DWD direction vector (from providing the key to bias adjustment as done above), is to 
provide directions that more directly target biological interest, as is done in Figure 4.  The 
directions used there were computed by grouping the 8 biological subtypes into pairs, as 
shown in the axis labels for each panel.  For each pair, DWD was used to find direction 
vectors aimed at separating the two classes from each other. 
 
Figure 4 shows that DWD was generally very successful in providing directions which 
drew strong distinctions between most biological classes and the remaining data.  In 
particular, for most classes there are considerable gaps between those clusters and the 
main body of the data.  Not surprisingly, the Melanoma (shown in green) and Leukemia 
(shown in cyan) clusters have the largest such gaps.  Two exceptions to this are the Non 
Small Cell Lung Cancers (shown in black) and the Breast Cancer (shown in Red). This is 
likely due to the biological heterogeneity present in these groups, which for the example 
of the Breast Cancer cell lines, contains lines with luminal and fibroblast-like 
characteristics, see Ross and Perou [11].   



 
But the main result of Figure 4 is that for all of the biological classes, the differences 
between platforms (shown as black connecting lines between the pairs of symbols 
representing each common sample) are much smaller than the biological differences 
between the biological classes.  Thus it is not surprising that in Section 3 it will be seen 
that combining data produces improved statistical power. 
 
Note that the axes shown in Figure 4 are not orthogonal to each other, unlike for the PCA 
based views shown above.  For this reason, plots below the diagonal are also included, 
because they are different (while for the PCA directions the plots were just transposes, 
which added no new information, and hence were not included). While this visualization 
builds a strong case that the DWD across-platform adjustment has been successful, it still 
does not directly consider the question of chief concern: is there value added, in terms of 
statistical power, from combining these data sets using DWD?  This question is answered 
affirmatively in the next section. 
 
 
IMPROVED STATISTICAL POWER 
In this section, the focus is on the statistical problem of understanding which of the 
biological subtypes are statistically significantly different from the rest of the data.  
Figure 4 suggests the Melanoma and Leukemia clusters are clearly distinct, and the Non 
Small Cell Lung and Breast Cancer clusters are likely not distinct.  But what about the 
less clear cut clusters?  How can these ideas be quantified in terms of p-values? 
 
The DWD direction is used once again, in a different way here.  This time, for each class 
the DWD direction that best separates it from the rest of the data is computed.  Statistical 
significance is computed by projecting the data onto the direction vector, and then 
computing a two sample t statistic. 
 
The lower left panel of Figure 5 shows the names of the 8 cell lines that were labeled as 
Renal Cancer.  The name shown in gray, RENALSN12C, had an expression pattern that 
was much different from the others, possible due to a mislabeling of the cancer type, so it 
is not used in the analysis presented here.  The upper left panel shows the projected data 
(again colored green for cDNA and purple for Affymetrix), where the DWD direction for 
separating the Renal data from all of the rest is used.  Note that the Renal data 
(highlighted in red) are quite distinct from the other data.  We assess statistical 
significance of the Renal cluster in terms of the difference in means between the Renal 
data, and the rest.  Thus, also shown are the values of the two sample t-statistic, for the 
combined data (red), for the Affymetrix only data (purple), and for the cDNA only data 
(green).  Note that the combined t-statistic is larger than the others, suggesting that the 
combined data have more statistical power than either individual platform. Another 
feature of this plot is the Affymetrix t-statistic is larger than for the cDNA suggesting 
more statistical power for the Affymetrix data.  It is important to resist the temptation to 
compare this number with the usual t distribution quantiles, because the DWD direction 
vector has a tendency to strongly magnify this statistic.  While the t-statistics contain 
some information about relative statistical power, this comparison is unfair to the 



individual platforms because the direction vector was chosen for the combined data, 
which could be different from the DWD direction vector for the individual samples.  This 
issue is addressed in the center panels. 
 
The center top panel of Figure 5 is similar to the top left panel, except this time only 
cDNA data is considered.  This is for computation of the DWD direction, for the 
projection, and for the computation of the t-statistic.  Note that the t-statistic is now larger 
than the corresponding value in the top left panel, which shows that indeed the 
comparison between combined and cDNA only tests is more fair when the DWD 
directions is recomputed.  However, the combined data still appear to provide more 
statistical power, which again seems to confirm the value of combining data. 
 
The center bottom panel of Figure 5 provides the same analysis, this time for the 
Affymetrix only data.  Again there is improvement compared to using the combined data 
DWD direction (top left panel), but the resulting t-statistic is still inferior to that for the 
combined data, again suggesting the combination has been worthwhile.  Again the 
Affymetrix only t-statistic is also larger than the cDNA only statistic, showing improved 
power for that platform. 
 
While the t-statistics give some useful information, they are still not conclusive.  In 
particular, the sample sizes for the combined data are twice the size of what they are for 
the individual platform data sets.  Thus the t-statistics are not comparable.  This problem 
is overcome in the right hand panels using a permutation methodology to compute 
actually p-values.  In particular, the data are randomly relabeled, to give sub-classes of 
the same size as the Renal sub-population.  The DWD direction is recomputed for this 
relabeled data and the corresponding t-statistic is computed.  This process is repeated 
1000 times.  The values of the t-statistics are shown as dots in the right hand panels, with 
red dots in the top panel for the combined data, and purple dots in the bottom panel for 
the Affymetrix only data.  The same plot for the cDNA data is not shown, since the 
cDNA t-statistics were always smaller, suggesting less statistical power.  Note that the 
numerical values of the t-statistics using relabeled data are much larger (around 10 – 25) 
than is typical for the usual t-distribution (around -2 – 2).  This is because the DWD 
direction seeks to strongly separate the labeled classes, so the distribution of the dots is 
the distribution of the t-statistic under the null hypothesis of a non-significant cluster. 
 
In the top panel the t-statistic of 21.7, for the combined data, from the upper left panel, is 
compared to the null population of the red dots.  Note that the actual value is larger than 
nearly all of the simulated dots, showing that this t-statistic is clearly statistically 
significant.  The proportion of these could be used as an empirical P-value, but in other 
cases this gives the value of 0 too frequently.  For better relative comparison, a Gaussian 
distribution is fit to the population of simulated t-statistics (the red dots), and 
corresponding Gaussian quantiles are used.  The same method is used for computing a P-
value for the Affymetrix only data in the bottom right panel.  Note that the combined data 
P-value of 0.02 is statistically significant, while the Affymetrix P-value of 0.41 is not 
significant.  This shows conclusively that much improved statistical power comes for 



distinguishing the Renal cluster comes from the DWD combination of the data, relative to 
testing this hypothesis on the basis of either platform alone. 
 
Similar analyses are available for each of the other 7 cancer types among the NCI 60 
data, from the “DWD Cross-platform Adjustment of the NCI-60 Data” link on the 
Detailed Graphics web page.  A summary of the results appears in Table 2 
 

Table 2:  Summary of cluster significance results of NCI 60 Cancer types 
shows that combined data almost always gives improved statistical power, 

relative to individual platform analyses. 
Type cDNA -

t 
Affymetrix-
t 

Comb -
t 

Affy-P Comb-P 

Melanoma 33.1 36.5 45.6 e-8 0 

Leukemia 17.6 26.0 27.7 0.007 e-7 

NSCLC 15.4 23.2 22.2 0.15 0.02 

Renal 15.3 19.6 21.7 0.41 0.02 

CNS 13.2 17.0 18.2 0.65 0.20 

Ovarian 10.8 19.1 16.4 0.22 0.26 

Colon 10.4 15.6 16.1 0.80 0.51 

Breast 12.5 17.9 18.0 0.54 0.21 

 
The results from Figure 5 are summarized in the fourth row of Table 2.  The other rows 
contain similar summaries for the other cancer types.  The second, third and fourth 
columns summarize the projected t-statistics, with the largest for each cancer type being 
underlined.  Note that the cDNA t-statistics are always less than the others, again 
suggesting lower statistical power for all of the cancer types.  But for the Affymetrix vs. 
combined comparison, the results are very close, with the former being better for three 
cancer types and the latter for four types, while they are very close for the remaining 
type.  The P-values are shown in the final column of Table 2, with combined data P-
values almost always (except for Ovarian Cancer where the results are very close) being 
better than the single platform Affymetrix P-values.  These different impressions given 
by the t-statistic and by the P-value show that it is important to do the more complex 
permutation test, in order to fully understand the improvement of the combined data over 
single platform data, in determining cluster significance. 
 
Note that different cancer types yield different levels of significance.  The Melanoma and 
Leukemia clusters, seen to be very strong in Figure 3, are clearly significant in both the 
combined, and the single platform tests.  For two types (Non Small Cell Lung Cancer and 
Renal Cancer), the difference between combined and single platform data is critical, with 
the combined data always giving the significant result.  For the other four cancer types, 
neither data set flags the cluster as statistically significant.  As noted above, this is not 



surprising for breast cancer, because it is known that there are several quite different cell 
types present (Ross and Perou [11]). 
 
One might object to the fact that DWD has been used for both bias adjustment, and also 
at the core of the hypothesis test for verification of the method.  But this is not an issue 
because in the first step the DWD direction is subtracted out, so any potential interaction 
between the two will be negative. 
 
This clear success in across-platform combination of microarray data appears to 
contradict the widely held view that this is impossible.  In the next subsection, a toy 
example is presented that will resolve this apparent contradiction, by showing that it is 
caused by gene-by gene methods of analysis used in previous studies not providing 
sufficient insights into the multivariate nature of these data sets. 
 
 
GENE-BY-GENE VS. MULTIVARIATE VIEWS 
In this subsection, the above apparent contradictions are resolved, and it is seen that gene-
by-gene analyses need to be regarded with healthy skepticism in the analysis of 
microarray  data, because the data are intrinsically multivariate in nature. 
 
The simulated data set studied here has 4000 genes (dimensions), and is intended to 
reflect one important biological effect, but with gene expression measured across two 
platforms.  There are 30 samples from each platform, split evenly between the two 
clusters, hence 15 points in each simulated biological cluster.  Each sample is generated 
with independent Gaussian entries (simulating gene expression values), with standard 
deviation one.  The means of these entries is taken to be ±0.2, in such a way that there are 
4 clusters, where pairs correspond to platforms, and within each pair, the clusters 
simulate an important biological difference.  Note that the very small difference in the 
means of the entries is an order of magnitude less than the noise level, so that it is 
essentially invisible to a gene-by-gene analysis.  This is seen via both a gene-by-gene 
scatter plot view, and by a conventional heat map, using clustering and TreeView at the 
“DWD Cross-platform Adjustment of the NCI-60 Data” link on the Detailed Graphics 
web page.  However, both the simulated across-platform effect, and the simulated 
biological effects have been designed to be multivariate in nature, so it is seen below that 
these both show up, and can be adjusted for, using a proper multivariate view. 
 
Figure 6 shows that the simulated data gives the same conclusion as that of Kuo et al. [4], 
when a gene-by-gene correlation analysis is done.  Each green dot in Figure 6 
corresponds to one dimension (i.e. gene) of the simulated data shown in Figure 7.  The 
horizontal coordinate of the green dot is the sample correlation of the simulated 
expression levels of that gene, for the paired data across the platforms.  The vertical 
coordinate is again a random value, which provides visual separation.  Most of the 
correlations tend to be clustered around 0.  There is some variation, but the amount of this 
is about what would be expected at random.  This is essentially a reconstruction of the 
results of Kou et al. [4], for this simulated data.   
 



The limitation of the gene-by-gene correlation analysis is made clear in the PCA 
multivariate scatterplot view of these data (shown in Figure 7).  These plots show various 
projections on the first three principal components.  Note that the first two principal 
components (top center panel) highlight the deliberately constructed structure in the data.  
In particular, the platform effect (indicated by the red and blue colors) is clear, as this 
strong simulated biological effect, shown as two clusters (indicated by the plus and circle 
symbols).  The fact that platform adjustment can be successful here is indicated by the 
fact that black lines (connecting paired samples) are approximately parallel, which was 
not apparent in the gene by gene views. 
 
After DWD adjustment, the platform effect essentially disappears (this can be seen in a 
plot shown on the above web page).  The 4 clusters visible here become two clusters.  
The paired data are not exactly on top of each other, but the black connecting line 
segments are all much smaller than the distances between clusters.  This is a simulated 
reconstruction of the lessons learned in Figure 4. 
 
Finally, we revisit the correlation analysis.  The limitation of the Kou, et al. [4] analysis 
was that it only looked in the gene by gene direction.  The same suggestion of no 
correlation still applies for the DWD adjusted data.  However, the relevant direction is 
not gene by gene, but instead in the PC 1 direction.  When the correlation is computed on 
the data projected in this direction, the correlation becomes 0.98, meaning there is very 
strong information in this when one looks in the correct direction.  This explains the 
above apparent paradox. 
 
Further details of this analysis, including more detailed views and access to the data set 
itself, are available from the “DWD Cross-platform Adjustment of the NCI-60 Data” link 
on the Detailed Graphics web page.  A minor technical note is that Kou, et al. [4] 
eliminated a few pairs of samples, because there were some questions about data quality.  
While that was a good decision, for the point that they were trying to make, we have 
chosen to include all of the data.  The reason is that we wish to make the point that we 
can do across-platform normalization, and believe it is important to demonstrate this even 
in the presence of a few samples of questionable quality. 
 
The ideas discussed in this section are related to the Geometric Representation ideas of 
Hall, Marron and Neemon [12].  That paper develops a mode of non-standard asymptotic 
analysis, that is relevant to High Dimension Low Sample Size data, such as microarrays.  
Some surprising underlying structure is shown, which is then used for classical 
mathematical statistical purposes, such as comparison of discrimination rules. 
 
 
CONCLUSIONS 
The NCI-60 Cell line data were used as a testbed to reconfirm that DWD is an effective 
tool for the cross-platform combination of microarray data sets.  This was shown both 
with appropriate visualizations, and also through a careful study of improved statistical 
power for the combined data.  The apparent contradiction with earlier published results is 
resolved through the fact that the previous analysis was restricted to a gene by gene 



analysis, while the nature of microarray data is intrinsically multivariate.  This highlights 
the importance of truly multivariate approaches and visualizations for understanding 
microarray data. 
 
 
MATERIALS AND METHODS 
Availability:  A Matlab version of DWD is available from the “Matlab software for 
DWD adjustment” link of the web-page [13].  A more portable version is being 
developed as part of the caBIG Project, [14].  Many more detailed graphics, together with 
explanations, are available on the web page [9]. 
 
Details of NCI-60 Data and Preprocessing:  The expression values are internet 
available at [15] and [16].  Because the samples are identical, the effectiveness of across-
platform adjustment can be precisely calibrated.  Finally, because the cDNA expression 
values are on the scale of differences of log intensities (without the commonly used 
LOESS normalization in this cDNA dataset); we also work with the log, base 2, of the 
Affymetrix data.  The original data were generated by Affymetrix Microarray Suit 4.0.  
There were some negative values, that were small in absolute value, which were set to 1 
before taking logs.  The cDNA values had some missing data points, which we handled 
by imputation using k-nearest neighbors imputation, see Troyanskaya, et al. [17].  We 
linked genes from the two NCI-60 data sets by mapping the cDNA and Affymetrix 
identifiers to Unigene Cluster Identifiers (UCID). Duplicate UCIDs were collapsed by 
taking the median value within a sample. The combined data set was created from the 
intersection of these two sets of UCIDs. 
 
 
LIST OF ABBREVIATIONS 
caBIG – Cancer Bioinformatics Grid 
cDNA – Complementary Deoxyribonucleic Acid 
DWD – Distance Weighted Discrimination 
LOESS – Locally Weighted Scatterplot Smoother 
NCI – National Cancer Institute 
PC – Principal Component 
PCA – Principal Component Analysis 
UCID - Unigene Cluster Identifiers 
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FIGURE LEGENDS 
 
Figure 1: PCA scatterplot view of raw (log scale) NCI 60 data.  Dashed lines connect 
identical samples.  This shows a large difference between measurements made by the two 
platforms, so some adjustment is essential before combining data sets.  Yet differences 
are systematic, which offers hope of careful adjustment. 
 
Figure 2: PCA scatterplot view of DWD adjusted NCI 60 data.  Shows effective removal 
of platform bias.  In particular, distances between same cell lines (shown as back dashed 
lines) are now much smaller than distances between apparent clusters. 
 
Figure 3: PCA scatterplot view of DWD adjusted NCI 60 data.  Important biological 
clusters are highlighted: Melanoma (red),  Leukemia (blue)  
 
Figure 4:  Scatterplot view of the DWD adjusted NCI-60 data, this time using DWD 
direction vectors.  Different colors indicate cancer classes.  This shows that across-
platform differences are predominantly much smaller than differences between cancer 
types. 
 
Figure 5:  DWD – Permutation based hypothesis tests of statistical significance of the 
Renal Cancer Cluster.  Main lesson is that the combined data statistical inference is more 
powerful than for the Affymetrix only data. 
 
Figure 6: Gene-by-gene correlation analysis of simulated data.  Shows no significant 
correlations, as in the earlier analysis of the NCI-60 data. 
 
Figure 7: PCA scatterplot view of simulated data.  Shows simulated strong platform and 
biological effects are present in these data. 
 
 


