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Main Content:  goal of paper is list of 30 genes, with only statistics needed to get that, but that part explained carefully.

Note 1:  There are several points below, highlighted by ‘???’, where additional input is needed.  Before submission, it might be a good idea to do a search for that, to make sure they are at least removed.

Note 2:  this assumes an introduction has been written, which explains:

1. gene expression

2. the data set considered here (including missings)

3. the rectangular array (rows are genes, columns are cases)

4. the color scheme

5. the five data classes of interest, and how they were obtained

6. and shows the “raw data” as a colormap graphic (it might make sense for me to make this for better consistency of the graphics)

There are two statistical goals of this paper.  The first is discrimination (i.e. classification).  The second is to find fairly small subsets of the data, which maintain good discrimination properties (want to say why???).  The main contribution of this paper is a method called “gene paring”, which provides a simple, intuitive and useful technique for reducing the set of genes needed for discrimination.

The goal of statistical discrimination, also called classification, is to find a numerical rule for assigning objects to any of several groups.  A classic example is “automated disease diagnosis”, where patients are to be classified as either “healthy” or “diseased”, on the basis of a set of appropriate measurements or other variables.  In the present case, the “measurements” are gene expression levels, the “objects” are the patients, and the groups are the cancer types.  The discrimination rule is developed from a set of “training data” of objects (where the same set of measurements have been made) whose assigned group is known.  A very simple discrimination rule is the “nearest neighbor rule”, where a new case is assigned to the same group as its nearest neighbor in the training set (i.e. the object whose measurements are closest to those of the new case).

An important assumption of discrimination is that the groups are fixed in advance, which distinguishes it from the related problem of “clustering”, where the groups are chosen in a manner that depends on the training data.  

There is a wide area of strategies available for the construction of discrimination rules.  Some of the best known of these include Fisher Linear Discrimination, Gaussian likelihood methods, k-nearest neighbor methods, support vector machines, Bayesian Markov Chain Monte Carlo methods and artifical neural nets.  See Duda, Hart and Stork (2001) for description of these, for additional strategies, and for a good overview of the large literature on their properties.

The discrimination rule that underlies the gene paring method introduced in this paper is substantially simpler than all of the methods listed above.  The key idea is to find the mean of each group, and then to classify new cases based on which mean is closest.  In Marron, Perou and ??? (2001), it is seen via direct comparison, that this method gives superior performance to a number of the “high tech” approaches listed above.  There are two explanations for this.  The first is that micro-array expression data is of “High Dimension, Low Sample Size” (HDLSS) type, since the number of measurements (genes whose expression is measured) is much larger than the number of cases (patients).  The second is that errors inherent to micro-array gene expression data are both large, and also have a quite complicated structure that is not simple to model.

HDLSS problems pose a serious statistical challenge, since the first step in a classical “multivariate data analysis” is to “sphere” (i.e. standardize) the data, through multiplication by the root inverse variance-covariance matrix.  This is essentially impossible for HDLSS data, since they are not of full rank, and thus the variance-covariance matrix is not invertible.  Hence Fisher Linear Discrimination and Gaussian likelihood methods are useless in HDLSS contexts.

The complicated nature of the errors in micro-array gene expression data has been made clear in (reference a Dudoit et. al. paper here????   Any other references???).  In addition to a large amount of noise that is effectively modeled by the classical assumptions of independent, identically distributed Gaussian errors, there are also very large components of error of far different types, including various types of systematic errors.  While high tech methods, such as support vector machines are quite effective in addressing the HDLSS problem, their somewhat disappointing performance in the present case may be due to sensitivity to assumptions about the type of errors (the more sophisticated the approach, the greater the potential for this type of sensitivity).   

The success of the very simple method that worked well here (choosing the class with the nearest mean vector) is perhaps an indicator that very simple methods are less strongly affected by HDLSS considerations, and by the types of systematic errors that are endemic in micro-array gene expression data.

The gene paring method

The idea behind our gene paring approach is to assign a “cluster index” to each gene.  The cluster index is a measure of how well that gene “separates the classes”.  This concept is illustrated in Figure A??? 

The top panel illustrates the cluster index for the gene that gave the “best separation of the classes”, while the bottom panel shows the gene with the “worst separation of the classes”.  In each plot, gene expression level appears on the x (horizontal) axis, while the vertical axis is used simply for display.  Cases appear as small vertical bars, and the known classes are shown with differing vertical locations and colors.  A useful view of the subpopulations comes from overlaying correspondingly colored Gaussian curves (based on the respective sample mean and standard deviation of each subpopulation).  

[put figure A about here]

In the top panel, the subpopulations are quite well separated (the purple Basal cases tend to appear towards the left, while the red and blue luminals appear more frequently on the right).  That means that this gene contains a relatively large amount of useful information for discrimination, and thus should receive a high priority to be included in the final list.  Our gene paring method gives such genes a high value of the cluster index.  But note that even this “best gene” does not contain information by itself to completely separate the populations.  There is no single “magical gene” that completely distinguishes all 5 subpopulations, and that is why it is important to aggregate information over a number of genes for useful discrimination.

The bottom panel shows the opposite case.  Note that the colored vertical bars (recall these represent cases with color representing subpopulations) are interspersed with each other.  Also the Gaussian curves for most subpopulations are close to each other, and when they are different, it is only in terms of standard deviation, not mean.  It is quite apparent that this gene contains very little useful information for the discrimination process.  Such genes can be eliminated from the discrimination process with no loss in effectiveness.  Gene paring seeks to do this by assigning a low value of the cluster index.

The cluster index is a simple way of measuring what distinguished the sub-populations of the top panel from those of the bottom panel.  The top sub-populations are well separated because their means are quite different.  A simple numerical measure of this is the classical “between class sum of squares”, denoted here as 
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.  This is the sum (over the 5 classes, weighted by the number of non-missing observations in each class) of the squared difference between the class mean, and the overall sample mean.  Note that 
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 will be “large” when the data are well spread, as in the top panel of Figure A, and will be nearly 0 when the populations completely overlap, as in the bottom panel.  A weakness of 
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 as a measure of separation is that it feels the “total spread” of the populations.  For example if the picture is magnified (scaled up so that relative distances stay the same), then 
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will reflect the change, but the populations will not be any more “spread out” for discrimination purposes.  A common method to avoid this weakness of 
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 is “standardization”, i.e. dividing by a measure of “overall spread”.  This is done here by dividing by the total sum of squares, 
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  which is just the sum, over each data point of the expression level minus the overall population mean.  In the computation of 
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, missing values are simply omitted.  

Now in the spirit of the classical statistical goodness of fit measure “R-squared”, the Cluster Index is defined to be the ratio  
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.  The Cluster Index has its minimum value of 0 when all of the sample means are the same (i.e. complete overlap of the populations).  It takes on its maximum value of 1 when all the data points within each class are the same as the class mean, and the class means are different.  Further intuition comes from the observation that in the case of only two sub-populations, the Cluster Index is essentially the square of the familiar two sample t-statistic.

Gene paring then goes through the list of  genes, prioritized using this cluster index, and eliminates the genes with lower indices.  This approach allows an insightful visualization of the process.  The visualization starts with a red-green expression map, as shown in Figure ???.  Recall that rows represent genes.  As genes are pared off of the list, the corresponding rows are turned to black.  It is informative to construct a movie showing this process.  So large lists look much like Figure ???, with only a few lines turned to black, while very small lists appear as mostly black, with the few unpared genes shown as red-green horizontal lines.  Maximal visual insight comes from watching a movie of the paring process.  Such a movie is available in the file GA6PareAllClustInd.avi at the web address http://www.unc.edu/depts/statistics/postscript/papers/marron/MarronPerouList1/.  This is easily viewable, just by clicking on the filename, on most modern PC type computers.

The movie file would be too large if every step of the gene paring process were shown.  Hence, an equally spaced grid of cluster index values is used to choose the movie frames.

Since movies cannot be put into papers, two important frames are shown in Figure B.  The frame in the left panel shows the result of paring the original 459 gene down to the best 150.  The majority of the original genes from Figure ??? (or from the first frame of the movie) have been pared off.  A close shows that the pared genes have substantial overlap of both red and green within the class boundaries, shown by the white lines.  This shows how gene paring eliminates genes that are not helpful for discrimination.  Most of  horizontal colored gene lines in the left panel of Figure B are very helpful in separating the classes, but there is a lot of “duplication”, i.e. lines that look quite similar.  In the right panel of Figure B, the number of genes has been pared down to 30, and note that at least one member of each group from the left side is still retained.  This suggests that 30 genes should give comparable performance to 150, which is confirmed in the next section.  When the number of pared genes fall much below 30, the movie version shows that important gene types are pared off.  This may be expected to result in substantial loss of discriminatory power, which is confirmed in the next section.

[put Figure B about here]

An unattractive feature of our current gene paring approach, is that there is a tendency towards “duplication of similar genes” in our list.  In particular, note that even in the rather sparse right hand panel of Figure B, there are a number of genes with very similar colors over all cases.  Because they look quite similar, they can not be expected to add much to the discrimination process, and if only a small number of genese is to be used, then some different ones (even if the cluster index is smaller) should be more useful.  With this idea in mind, we have investigated modifications of the Cluster Index, which attempt to “prioritize genes that are different from each other”.  However, none of these have given substantially improved performance, so they are not discussed further here.  See Marron, Perou and ??? (2001) for details about these.

??? I intended to read the paper by the Heidelberg folks, and reference it around here somewhere, but I ran out of time.  Instead it seemed better to devote my efforts to writing ???

Validation

Care is needed in assessment of the performance of discrimination rules.  While it is tempting to use performance of a given rule on the training data as a measure of success, this approach suffers from an often severe bias in the direction of over-optimism.   The worst effects of this type occur when using an “overfit” method.  For example the simple nearest neighbor rule (assign a new point to the same class as its nearest neighbor in the training data) results in apparent perfect discrimination. However, when there are regions of sub-population overlap of the training data, the error rate computed in this way contains little useful information about the quantity of primary interest: the error rate for new data.

Cross-validation provides a simple, direct and standard way of addressing this bias problem in assessing discrimination error rates.  The idea is to leave an observation out, then construct the discrimination rule (not using the left out observation), and then to see whether the left out observation is correctly classified.  This is repeated for each observation in turn, and the results are aggregated, to give a “Cross-Validated Correct Classification Rate”.

When using the gene paring method, a natural question is: should the observation be left out before or after the gene list is pared?  A first guess might be that this should not make a large difference, however it is seen in the more detailed analysis of Marron, Perou and ??? (2001) that in some cases the difference is critical.  When there is an important difference, reconstruction of the gene paring list during each leave one out step is the appropriate choice, and that has been done in all analyses described here.

The cross-validated correct classification rates, using the gene paring method, are illustrated in Figure C.  The heights of the bars in Figure C show the correct classification rates, for different sizes of pared gene lists.  There is a general trend towards larger lists giving better performance, which is expected because longer lists provide more information.  An interesting feature is that lists of size smaller than 30 give notably worse performance than the 30 gene list, while larger lists do not give dramatically better performance.  This suggests that for these data, 30 represents a good trade-off between the twin goals of effective discrimination, and a reasonably small list of genes.

[put figure C (like top of GA6ErrRateCVClustInd.ps) about here]

While the results shown in Figure C are suggestive, it should be kept in mind that they are subject to substantial sampling error.  A simple model for the sampling variability in the height of the bars is the Binomial distribution.  Two standard deviations of the Binomial(85,0.7) distributions is approximately 0.1.  Considering changes in the heights of the bars of this size shows that these validation results should not be regarded as being strongly conclusive, although there is still a strong suggestion that should be verifiable through the gathering of more data.  

Want to put a conclusion about where to go from here ???
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