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ABSTRACT 
Motivation: Systematic differences due to experimental features of microarray 
experiments are present in most large microarray data sets. Many different experimental 
features can cause biases including different sources of RNA, different production lots of 
microarrays, or different microarray platforms. These systematic effects present a 
substantial hurdle to the analysis of microarray data. 
 
Results: We present here a new method for the identification and adjustment of 
systematic biases that are present within microarray data sets. Our approach is based on 
modern statistical discrimination methods and is shown to be very effective in removing 
systematic biases present in a previously published breast tumor cDNA microarray data 
set. The new method of “Distance Weighted Discrimination” is shown to be better than 
the Support Vector Machines (SVM) and Singular Value Decomposition (SVD) for the 
adjustment of systematic microarray effects and is shown to be of general use as a tool 
for the discrimination of systematic problems present in microarray data sets including 
the merging of two breast tumor data sets completed on different microarray platforms. 
 
Availability: Matlab software to perform DWD can be retrieved from 
https://genome.unc.edu/pubsup/dwd/ 
 
Contact: marron@email.unc.edu or cperou@med.unc.edu  
 
Supplementary Information: the complete figures that represent the cluster diagrams in 
Figure 11 and other figures are available at https://genome.unc.edu/pubsup/dwd/  
 
INTRODUCTION 
DNA microarrays are a powerful tool for the study of complex systems and are being 
applied to many questions in the biological sciences. In particular, the study of human 
tumors using patterns of gene expression have identified many expression differences 
that can predict important clinical properties like the propensity to relapse (van’t Veer et 
al. 2002) or the survival outlook for a patient (Sørlie et al., 2001). However, a challenge 
of clinical sample studies is that systematic biases due to different handling procedure are 
often present.  Microarray experiments are often performed over many months because 
sample collection is prospective, with most samples being assayed soon after they are 
collected. Additionally, samples/tumors  are collected and processed at different 
institutions and may be assayed using different microarray print batches or platforms, or 
using different array hybridization protocols.   
 
These systematic biases are manifested as differences in gene expression patterns when 
one set of microarrays is directly compared to a second set of microarrays. When using 
“supervised” statistical analyses, systematic biases show themselves as a subset of genes 
that tend to be more highly expressed in one set of microarrays versus another, and a 
concomitant subset of genes that are lower in expression in one set versus the other. 
These biases can typically be identified because they perfectly correlate with non-
biological properties like where the samples were isolated and processed (source bias), or 
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what print batch of microarrays the samples were tested on (batch effect bias). As can be 
expected, these systematic biases compromise the integrity of the data, and are especially 
troubling in experiments in which many samples are assayed over a long time period as 
these studies typically get assayed on many different print batches of microarrays.  
 
Other researchers have used Singular Value Decompositions (SVD) to correct for 
systematic biases in a data set of yeast cell cycle experiments (Alter et al., 2000), and to 
correct for microarray batch bias in a data set containing many soft tissue tumors (Nielsen 
et al., 2002). We present here a new method, called “Distance Weighted Discrimination 
(DWD)” (Marron and Todd 2002), which can be used to adjust microarray data sets to 
compensate for systematic biases. We examined our previously published breast tumor 
data sets (Perou et al., 2000 and Sørlie et al., 2001) containing 107 cDNA microarray 
experiments and identified two distinct experimental biases. To evaluate the robustness of 
this new analysis technique, we applied DWD to this data set and showed a significant 
reduction in the source bias, and in the microarray batch bias. We also present data which 
suggests that this approach can be used to make adjustments for other systematic biases 
including across microarray platform effects, which suggests that DWD presents a new 
and powerful method for adjusting microarray data sets for systematic artifacts. 
 
 
SYSTEMS AND METHODS 
2.1 Hypothetical discrimination based adjustments 
One way of understanding the problems with SVD/Principal Component Analysis (PCA) 
for removal of systematic effects is to recall that SVD/PCA seeks only to find “directions 
of greatest variation”. When this goal is consistent with the systematic biases effect 
(meaning the systematic bias effect generates more variation than any other parts of the 
data, as measured by the sums of squares), then good results will be obtained using 
SVD/PCA. This appears to have driven the positive results reported by Alter, Brown and 
Botstein (2000) and Neilsen et al (2002). However, when the magnitude of the systematic 
effect variation is similar to other components of variation, as is seen in Figure 5 (or 
perhaps even smaller as seen in Figure 7), then this approach can easily fail. In these 
situations, where the first SVD/PCA direction is not appropriate for bias adjustment, a 
natural way to improve the analysis is to make full use of the systematic bias information 
(i.e. each case is known to belong to a particular batch, or known to be derived from a 
given source). Then instead of choosing directions to maximize variation in the full 
population (the goal of SVD/PCA), it is natural to choose directions to maximize 
separation of the bias. These points are illustrated using a hypothetical example of source 
effect, in Figure 1. This hypothetical example is only two dimensional (i.e. only two 
genes are considered), to make it easy to visualize the data “point cloud”. Note that the 
two subpopulations (shown in red and blue) are quite separate from each other, and also 
have similar distributions (i.e. the same population shape), so that a simple translation 
would be able to remove any differences between the populations. The main goal of this 
paper is to identify effective ways of finding the direction (and magnitude) of this 
translation. 
 
The direction vector of the first Principal Component (i.e. the SVD direction) for these 
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hypothetical data is overlaid as the long thick black line in Figure 1. Note that this 
direction is clearly wrong for our goal of removing the difference between these 
populations. In particular, when the data are projected onto this direction vector, the 
subpopulations will overlap. The reason is that the PC1 direction is the “direction of 
greatest variation in the data”, which in this case is quite different from effective source 
adjustment. Also overlaid is the Fisher Linear Discrimination (FLD) direction. Note that 
this direction is correct for removal of the source effect. In particular, when each source 
is shifted in this direction, by an amount determined by the source subpopulation means, 
then the distributions will be indistinguishable. The reason that FLD works much better is 
that it exploits the source labels, which are ignored by SVD/PCA. 
 
In addition to finding better directions for systematic effect adjustments, we recommend 
another important improvement over the SVD adjustment. Instead of completely 
subtracting all variation in the chosen direction (as is done with the usual SVD approach), 
we only subtract the subpopulation means of the data projected on the given direction. 
This preserves any variation in this direction that is not caused by systematic effects, 
instead of squashing out all structure in this direction as is done by subtracting the first 
PC direction (particularly dangerous in SVD contexts since the first PC direction is 
chosen to contain “maximal interesting structure”). In Figure 1, this corresponds to 
shifting the subpopulations so that they overlap, instead of projecting the data onto a 
single line.  This is especially important when there are directions (e.g. particular 
genes) where there are BOTH important bias and biological effects.  Allowing overlap 
will keep as much as possible of the biological effects.  However, there may be biological 
effects that are still so confounded with the bias effects that they may be diminished by 
this adjustment. 
 
While FLD is very effective for the hypothetical data shown in Figure 1, it has less 
desirable properties for more realistic data contexts like microarrays, as is shown in 
Figure 2. In particular, FLD has poor performance in High Dimension, Low Sample Size 
(HDLSS) contexts. This problem not only arises for microarray data, but also appears in 
other statistical contexts such as medical image analysis, and chemometrics. HDLSS data 
pose a very serious challenge to most classical statistical multivariate analysis settings 
(such as FLD), because the first step in those analyses (“sphering the data” by 
multiplying by the root inverse covariance matrix) fails, since the covariance matrix is 
not full rank. This point is illustrated in Figure 2A, which shows a different hypothetical 
example, this time in 50 dimensions/genes. The data are all simulated Gaussian, with 
independent components and unit variance. All of the mean vectors are zero, except in 
the first component where there are 20 data points (shown as plusses) with mean +2.2, 
and 20 data points (shown as circles) with mean -2.2. The projections of these 50 
dimensional vectors onto the first component is shown in Figure 4A, as “jitterplots” 
(meaning random heights are used to provide visual separation of the points, Tukey and 
Tukey 1990), with smooth histograms (see Wand and Jones 1995) overlaid. While the 
subpopulations are clearly separated in this plot, it can be quite challenging to find this 
direction because of the relatively high noise level and high dimensionality (a familiar 
situation in microarray analysis). 
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Figure 2B shows the results of FLD for these data. The implementation is done with a 
generalized inverse of the full sample covariance matrix. The shape of the projected data 
sets look quite different from the projections in Figure 2B, with all of the data from each 
class lying essentially on top of each other. This is because FLD seeks to find the 
direction that maximizes the separation of the classes, relative to the spread within the 
classes. Because there are only 40 data points in 50 dimensions, it is not surprising that 
this type of “perfect separation” is possible. However, note that the subpopulation shapes 
are much different from those in Figure 2A, which represents the optimal direction for 
discrimination (i.e. the direction that will work the best for discriminating new data). The 
angle of the FLD direction (i.e. 58 degrees), to the optimal is also shown. This shows that 
FLD has found a spurious direction, and is driven by sampling artifacts that will change 
completely for a different set of data. Essentially FLD is “feeling random artifacts in this 
particular data too strongly”, and so this direction will suffer from poor generalizability 
as a discrimination rule. This problem can be viewed as over fitting of the data. 
 
Another approach to this problem is to use Support Vector Machines (SVM), discussed in 
detail in Section 2.3. The performance of the SVM, for the 50 dimensional hypothetical 
data, is shown in Figure 2C. Note the projected data are no longer completely piled up, 
and that the angle to the optimal is substantially better, reduced to 36 degrees. However, 
there is still substantial data piling at the margin (the interior points where data from both 
classes tend to accumulate), which is quite reminiscent of the over-fitting problem of 
FLD illustrated in Figure 2B. Again there is a suggestion that FLD can also be “feeling 
too many sampling artifacts”. 
 
Marron and Todd (2002) have addressed this problem by the development of Distance 
Weighted Discrimination (DWD), discussed in Section 2.4, and illustrated in Figure 2D. 
Note that now the subpopulations appear more spread (as for the optimal projection in 
Figure 2A), and also the direction has a smaller angle to the optimal direction, now only 
26 degrees. Because of this strong performance in HDLSS situations, DWD is 
recommended for both this type of systematic artifact adjustment, and for other 
supervised learning (i.e. statistical discrimination) tasks for microarray data. An 
additional advantage of using DWD for systematic artifact adjustment is that the 
projected subpopulation shapes look more Gaussian, so that the subpopulation means, 
used in the adjustment, are more appealing as notions of “population center”. 
 
2.2 Microarray production, hybridizations and initial data processing. 
All microarrays and samples used in this study have been previously published; the 
experiments used in Figures 3-8 were taken from the Stanford Microarray Database 
(SMD) and are described in Perou et al. 2000 and Sørlie et al. 2001. The remaining 
examples illustrate the effectiveness of DWD for across microarray platform adjustments, 
where the goal is to combine the Stanford cDNA microarray data set with Agilent oligo 
microarray data from van’t Veer et al. 2002, which are available at the Rosetta 
Inpharmatics website. 
 
We first performed a number of gene filtering steps before any analyses were done. First, 
for all data obtained from the SMD, we filtered all genes for a signal intensity of 50 or 
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greater in both the red and green channels and insisted that this signal intensity criteria be 
present in 70% or more of the 107 experiments for each gene. Next, we took the log2 
transformed normalized R/G ratio for each gene on the microarray. The missing values in 
this data table were imputed using the KNN-impute feature contained within the 
Significance Analysis of Microarrays plug-in  (Tusher et al., 2001 and Troyanskaya et al. 
2001) available for use with Microsoft Excel. This imputed data set was then used for all 
analyses. 
 
2.3 Algorithms – Support Vector Machines (SVM) 
SVM is a powerful discrimination method initially proposed by Vapnik (1982, 1995). 
Also see Burges (1998) for an easily accessible introduction, Cristianini and Shawe-
Taylor (2000) for a detailed introduction, and http://www.kernel-machines.org/. The 
essential idea is to find a hyperplane that separates the two classes (i.e. each systematic 
bias) as well as possible. When the data are “separable” (meaning prefect separation is 
possible), then the hyperplane is chosen to maximize the minimum distance of all of the 
data to the hyperplane. The minimizing distance is called the “margin”. An interesting 
view comes from studying the normal vector of the separating hyperplane, and the 
projection of the data upon that. This is the view shown in Figure 2C. The interior points 
where the data pileup shows the margin. The SVM can be viewed as optimizing the 
direction vector to maximize the size of this margin. When the data are not separable, 
penalty terms (for those data points on the wrong side of the boundary) are added to the 
optimization problem, but it is still accessible to standard quadratic programming 
methods. The non-separable case is usually not particularly important in HDLSS 
situations such as microarray analysis. This projection of the data onto the SVM normal 
vector, for the data of Figure 5, is shown in Figure 3. The effect is perhaps surprisingly 
similar to Figure 2C. Again note that the use of the means of the projections shown in 
Figure 3, for adjustment in this direction, is not very attractive, because both distributions 
look quite skewed (in opposite directions). When means are subtracted, to adjust for the 
systematic effect, the population shape will be rather strange in this direction. 
 
Note that the SVM direction represents an improvement over anything based on SVD, 
with the two sources far more separated than can be seen in any PC direction in Figure 5 
(especially in the PC1 direction where there is considerable overlap). Thus a major 
improvement of SVM over SVD for source adjustments is demonstrated for this data set. 
This comes from the fact that SVM is essentially aggregating over all useful directions. 
In Section 2.4, a further improvement, based on Distance Weighted Discrimination, is 
proposed. This method finds a direction with a similar large spread between the batches, 
and gives subpopulations with a more attractive Gaussian-type shape, as suggested in 
Figure 2D. 
 
2.4 Algorithms - Distance Weighted Discrimination (DWD) 
Distance Weighted Discrimination was initially proposed by Marron and Todd (2002). 
The goal is to improve the performance of the SVM in HDLSS contexts, as illustrated in 
Figure 2C. The main idea is to improve upon the criterion used for “separation of classes” 
in the SVM. The SVM has data piling problems along the margin, because it is 
maximizing the minimum distance to the separating plane, and there are many data points 
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that achieve the minimum. A natural improvement is to replace the minimum distance by 
a criterion that allows all of the data to have an influence on the result. DWD does this by 
maximizing the sum of the inverse distances. This results in directions that are less 
adversely affected by spurious sampling artifacts, as shown in Figure 2D. 
 
Figure 4A shows the projection of the data onto the DWD direction for the same data as 
used in Figures 5 and 3. As one would expect from Figures 2D and 3, the sources are still 
well separated. A careful look at the horizontal scales shows that the “average population 
separation” is even larger in Figure 4A than it is in Figure 3. Furthermore these 
subpopulations now look much more symmetric (even more Gaussian), so the subtraction 
of respective subpopulation means in this direction will remove the source effect in an 
appealing manner. 
 
The specifics of the batch adjustment (thinking of the data as vectors with entries 
corresponding to genes) are:   

i. The DWD direction vector is found 
ii. The subpopulations (e.g. respective source subsets) are all projected in that 

DWD direction. 
iii. The subpopulation projected means are computed 
iv. Each subpopulation is shifted in the DWD direction, by an appropriate 

amount, through the subtraction of the DWD direction vector multiplied 
by each projected mean. 

 
Figure 4B checks the performance of DWD as a systematic bias effect removal tool, by 
applying the same DWD based method to the source adjusted data. Note that this time 
DWD does not even find a direction where the data are separated. Another verification of 
the good performance of DWD is the elimination of the source effect shown in Figure 6, 
where the different sources appear to be randomly intermingled. The relative behavior of 
SVM and DWD shown here is very typical of a number of other examples that we have 
studied. Some of these are shown in Section 3 and include adjustments for microarray 
print batch effects, and even for microarray experiments based on different platforms. 
 
Implementation 
3.1 Implementation of DWD to adjust for sample source bias 
We identified in our previous microarray data set, a set of genes whose expression very 
closely correlated with where the samples came from (i.e. Stanford University or 
Norway); we do not believe that this set of genes is due to true biological differences, but 
that it is instead, due to the systematic differences in how the sample RNAs were 
prepared. Useful views of this data can be based upon SVD, which is equivalent to 
Principal Component Analysis (PCA). Straightforward understanding of this analysis 
comes from thinking about the vectors of gene expressions, for each case, as points in a 
high dimensional point cloud. SVD and PCA can be viewed as finding “interesting 
directions” for understanding the structure of the point cloud. More precisely, they find 
“directions of greatest variability”. A view that makes the “source-effect” problem clearer 
is shown in Figure 5. This figure shows a matrix of plots of one and two-dimensional 
PCA projections. The plots on the diagonal show the 1-d projections (commonly called 
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“principal component scores”) of the data onto each of the first four eigenvectors (i.e. the 
directions of interest in the point cloud). The individual microarray experiments are 
shown as colored dots, where the colors indicate the two different sources of breast 
tumors used in our previous studies (i.e. Norway or Stanford). The horizontal axis shows 
the PC scores (an axis with the numerical values is not shown, because these numbers are 
not particularly interpretable), and the vertical axis shows a random height used for visual 
separation (the same “jitter plot” visualization used in Figures 3 and 4). The black curves 
in the 1-d diagonal projection plots are smoothed histograms (again as in Figures 3 and 
4). The off diagonal graphics all show the 2-d projections onto different pairs of 
eigenvectors (directions in the point cloud space) as scatterplots, with the x-axis 
corresponding to the component whose 1-d projection is directly above or below, and 
with the y-axis corresponding to the component whose 1-d projection is directly to the 
right or left. Thus Figure 5E is a “flip about the 45 degree line” of Figure 5B, and both of 
these show how the first PC direction relates to the second. 
 
Note that in Figure 5A, the red and blue points are somewhat separated. The approach 
suggested by Alter et al. (2000) is to remove this source effect by subtracting this PC 
direction from the data. However, for this data set, there is substantial overlap of source 
effects in the PC1 direction, suggesting that deeper investigation would be useful. A 
stronger suggestion that this is the case comes from Figure 5B, which compares the first 
and second eigen directions (i.e. PC1 and PC2). Note that better separation between the 
red and blue subpopulations is possible when using a diagonal separating line, rather than 
using a horizontal line that would be entailed from using only the PC1 direction. This 
casts doubt on the approach of simply removing the first principal component from the 
data; in particular, removal of some linear combination of the first and second directions 
(i.e. a slanted line in the plot) should provide a better source adjustment. This opens the 
question of finding other directions, which may be more appropriate for source 
adjustment. 
 
A main goal of this paper is to present some improved approaches to finding directions 
that better separate the data than the single first PC. The result of our “source effect” 
removal using DWD is shown in Figure 6. Now the colors, representing the two sources, 
are very well mixed, meaning that the systematic sample source effects in the data have 
been effectively removed. The same is true for higher order PC components (we have 
looked at orders up to 8, but these are not shown to save space). Our result is better than 
that where just the first eigen vector is removed, as recommended by Alter, Brown and 
Botstein (2000), which is summarized in Figures 5F-P (i.e. the plots below the top row 
and to the right of the first column in Figure 5).  For example, Figure 5H shows a strong 
systematic effect still present in the data. The good results in Figure 6 can be viewed as 
appropriately summarizing all of the directions in Figure 5, that show a need for 
adjustment, as well as many other directions not shown here. This summarization effect 
is why the visual separation apparent in Figure 4 is much more than any seen in Figure 5. 
 
3.2 Implementation of DWD to adjust for other systematic biases 
In this section, additional examples are considered that show the superiority of DWD for 
source adjustment over SVD approaches is not a fluke of the particular data set under 
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consideration. The first of these is another systematic microarray bias, known as the 
“batch effect”. Most spotted DNA microarrays, particularly those produced at academic 
facilities, are physically produced in groups of 100-200 due to the number of locations 
that are available on the microarray robot printing platter (see the “M guide” at 
http://cmgm.stanford.edu/pbrown/mguide/index.html for robot details). A given “print 
run” or “batch” of microarrays tends to show a “batch bias”, which is manifested as a set 
of genes whose high or low expression perfectly correlates with what print batch the 
sample was assayed on. This effect can be relatively small on some batches and very 
significant on others, however, it has been our experience that nearly every batch of 
microarrays shows some systematic batch bias. 
 
Figure 7 shows essentially the same PCA scatter plots as in Figure 5, using the same set 
of 107 breast tissue experiments, except this time the data points are colored according to 
microarray “batch” (three batches or different print runs of microarrays were used). As in 
Figure 5, it is clear that there is a systematic effect of batch on the structure of the data. 
However, note that this time, the effect appears most markedly in the 4th eigen direction, 
Figure 7P. It is clear that in this case the classical SVD batch adjustment (based on only 
the first eigen direction) would be ineffective at removing this batch bias. 
 
All of the methods discussed above apply to two class discrimination, but this data set 
came from three different batches, i.e. three different classes. To address this additional 
level of complexity, which is common in many microarray data sets (for example 
samples coming from three different sources), we took a step-wise approach. An 
inspection of Figure 7 shows that in the PC4 direction, the very small Batch 1 (red) 
appears more consistent with Batch 2 (green). Hence, we first made a batch adjustment 
between Batches 1 and 2 (combined) and Batch 3 (blue). Next we applied the same 
method to the adjusted data, to separate Batch 1 from Batch 2. Because these data also 
have a source effect, as illustrated in Figure 1, a third step, removing that source effect as 
well, is also sensible. The result of the three step process, shown in Figure 8, reveals 
subpopulations that are now well intermingled (i.e. the batch effect has been successfully 
removed). Analogs of Figures 3 and 4, for these adjustments, show quite similar lessons: 
the DWD gives excellent separation and good subpopulation shapes, whereas the SVM 
separated similarly well, but with the same resulting less appealing skewed projected 
subpopulation shapes. Because the lessons are so similar to the data presented in Figures 
3 and 4, these plots were not included.  
 
One of the most pressing challenges in the microarray field is how to combine data that 
comes from two different groups, and which utilized different microarray platforms. In 
this scenario, many different systematic biases will be present including microarray batch 
effects (which in this case will be even greater due to different microarray platforms), 
source effects as each group will utilize a different source of experimental samples, 
different RNA extraction protocols, and other potentially unknown sources of systematic 
effects. As briefly discussed above, there are a number of studies that have used DNA 
microarrays and a two-color experimental design, to study the gene expression patterns 
coming from grossly dissected human breast tumors (Perou et al. 2000, Sørlie et al. 2001 
and van’t Veer et al. 2002); the combined data set of Perou and Sørlie was utilized in the 
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earlier figures and consisted of 107 samples representing 78 grossly dissected breast 
tumors that were assayed using mRNA with direct labeling on cDNA microarrays 
produced at Stanford University (and which were assayed versus a common reference 
consisting of a cell line pool). The van’t Veer et al 2002 data set contained 117 grossly 
dissected breast tumor samples that were labeled using the linear amplification of total 
RNA, and which were assayed on Agilent long oligo DNA microarrays (and which were 
assayed versus a common reference consisting of a pool of 50 tumors). 
 
Figure 9 shows the PCA representation of this combined raw data set.  Again these two 
data sets are so different that simple SVD adjustment appears to offer a reasonable 
adjustment. However, note that both the second and third eigen directions appear to 
suggest some improvement (again slanted lines give better separation than horizontal 
ones in Figures 9B and 9C), so improvement is expected from the DWD method. We 
next adjusted the data using DWD and one view of the adjusted data is shown in Figure 
10. Note that the red and blue populations now have very good overlap, indicating a 
successful adjustment.  Figure 10 also shows why earlier attempts at this adjustment, 
based on simple mean based methods, were not successful: there is a substantial outlier 
(visible in both the PC2 and PC3 projections).  A strength of DWD, over mean based 
methods for bias adjustment, is its reduced sensitivity to such outliers.  In addition, 
Figure 10 shows that improvements beyond those made here are possible.  In particular, 
our proposal is very good at making the subpopulation "center points" correct.  However, 
there are other distributional aspects such as "spread" that are not accounted for.  This can 
be seen in several of the plots in Figure 10, where the red van't Veer population is 
generally "more spread" than the blue Stanford population.  Future work is intended to 
address this issue. 
 
One goal of our breast tumor studies was to identify the natural diversity of tumor 
subtypes present, and to accomplish this goal we identified a set of genes that we termed 
the “intrinsic” gene set (Perou et al. 2000), which when used to group breast tumors using 
hierarchical clustering analysis as implemented by Eisen et al. (1998), identified subsets 
of tumors/patients that predicted overall patient survival (Sørlie et al. 2001). The data 
displays presented in Figures 9 and 10 are suggestive of good integration, however, we 
wished to perform a combined hierarchical clustering analysis of the Stanford and van’t 
Veer et al data sets because these two data sets represent similar microarray analyses, 
namely two-color microarray experiments done on grossly dissected human breast 
tumors.  
 
In the combined data set cluster analysis, the common set of intrinsic genes across both 
data sets was determined (311 present in both data sets out of the initial 478 “intrinsic” 
genes); next each data set was separately imputed as described above, and then each gene 
was median centered within each data set. We next combined the data sets and performed 
a two-way average linkage hierarchical cluster analysis using the program “Cluster” and 
displayed the data using “TreeView” (http://rana.lbl.gov/EisenSoftware.htm) (Fig 11A). 
The “adjusted” and combined data set differed in that after each data set was imputed, we 
used DWD to adjust the Stanford to the van’t Veer data set as shown in Figure 9, then  
median centered each gene across all of the data and clustered (Fig 11B). 
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As can be seen in Figure 11A, before adjustment, there was very little intermixing of the 
Stanford (Blue line) and van’t Veer (Red line) samples as judged by examination of the 
hierarchical cluster sample associated dendrogram (the full cluster diagrams, with 
complete gene names are available as supplementary materials Figure 12 and 13 as 
TreeView files); even when there was mixing, these samples showed low correlations 
with the other samples in their dendrogram branches as evidenced by the length of the 
branches. After DWD adjustment, however, there was a great deal of intermixing of the 
Stanford and van’t Veer samples (Figure 11B); in particular, the left most dendrogram 
branch in the unadjusted data (Figure 11A) contained many of the estrogen receptor (ER) 
positive tumors and was broken into two sub-branches, each of which was almost entirely 
composed of samples from one source. The corresponding ER-positive branch in the 
adjusted data (Figure 11B) was also on the left and showed a much greater degree of 
source intermixing, and the gene expression data itself showed more continuity across the 
luminal-ER positive expression cluster, which is the expression cluster at the bottom of 
Figure 11B and contains the ER. 
 
One potential downfall of any type of normalization or correction applied to gene 
expression data is that meaningful information concerning the underlying biology is 
removed. The amount of information loss is difficult to quantify, however, in both 
corrections presented here we find that the qualitative biological structure remains. This 
is demonstrated through the retention of the major subtypes of breast cancer as originally 
defined by Sørlie et al. 2001. These classes are distinguished by the differential 
expression of a small subset of genes relative to the thousands of measurements on the 
array.  The structure defined by this subset remained after DWD correction of the source 
and batch biases.  Further, these classes were shown to occur in an independent analysis 
of the van’t Veer (2002) data set (Sørlie et al., submitted).  When the platform correction 
is applied to these data, an additional confirmation of the subtypes of breast cancer is 
demonstrated with the samples independently described as basal, luminal, or HER2+ are 
intermixed in sub-clusters of the same subtype despite being produced by different 
institutions on different platforms.   
 
CONCLUSION 
We have proposed a new method, based on Distance Weighted Discrimination, for the 
adjustment of various systematic differences across microarray experiment 
subpopulations.  In many cases the new method can provide large improvements over 
previously proposed methods based on subtracting the first eigen direction from the data 
using SVD analysis. The new method worked well making adjustments for a number of 
distinct types of systematic effects including source and batch effects. An even more 
powerful application, however, was the use of DWD to remove or lessen the 
compounded systematic biases that are present across similar data sets generated in 
different laboratories using different microarray platforms.  The message observed from 
the PCA projection visualization, that DWD successfully removed this platform effect, 
was confirmed using hierarchical clustering analysis.  We recommend DWD as a general 
approach for removing systematic bias effects from microarray data. 
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Figure 1: Hypothetical 2 gene example showing how PCA directions can be 
wrong for source adjustment, thereby motivating methods based on 
discrimination ideas.  Circles represent samples from source one and ‘+’ 
represents samples from source 2. 

Figure 2: 50 dimensional/gene Gaussian hypothetical example, to illustrate 
HDLSS failing of FLD, and superior performance of DWD over SVM.  
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Figure 4: Application of DWD to same data as in Figures 3, 5 and 6. Shows 
both good separation, and also reasonable subpopulation shape for mean shift 
adjustment.

Figure 3: Projection of data from Figure 5, onto the normal vector of the SVM 
separating plane.  Shows good separation of subpopulations, but data are piled 
up at margin. 
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Figure 6: Scatterplot matrix of PCA projections, after DWD adjustment, of 
Stanford data. Random dispersion of colors (instead of clustering as in 
Figure 5) shows that source adjustment was effective. 

Figure 5: PCA projection scatterplot matrix, showing 1-d (diagonal) and 
2-d projections of data onto Principal Component directions, of raw 
Stanford data. Groupings of colors indicate serious source effect 
problems. (Red = Norway, Blue = Stanford) 
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Figure 8: Scatterplot matrix of PCA projections, after DWD adjustment, of 
Stanford data. Random dispersion of colors again indicates adjustment was 
effective.  

Figure 7: PCA projection scatterplot matrix of raw Stanford data, using 
batch colorings. Groupings of colors this time indicate serious batch effect 
problems, in a way that leaves conventional PC1 adjustment completely 
ineffective.  
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Figure 10: Scatterplot matrix of PCA projections, for the adjusted Stanford - 
van’t Veer data. Overlap of the color groups shows an effective adjustment.  

Figure 9: PCA projection scatterplot matrix of raw combined Stanford (blue) 
- van’t Veer et al (red) data. Strong grouping by colors highlights the major 
differences between these platforms. 
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Figure 11: Hierarchical clustering analyses of unadjusted and adjusted data, with the 
van’t Veer et al cases shown in red, and the Stanford cases blue.  Figure 11A shows that 
simple median recentering, provides inadequate mixing across platforms, resulting in red-
green gene patterns driven in part by batch effect.  However, after the DWD platform 
adjustment resulting in Figure 11B, excellent mixing of the cases from the different 
platforms/groups was seen, resulting in red/green gene expression patterns of greater 
biological coherence. 
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