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Abstract

This paper investigates goodness of fit of the Gaussian distribution in
High Dimension, Low Sample Size settings, such as modelling populations
of medical images. The driving problem is simulation of synthetic images
of 3-d kidney shapes. Independent Component Analysis of a training data
set, shows that the population is non-Gaussian. Deeper analysis shows
that a power transformation provides reasonable simulation results.

1 Introduction

This paper illustrates the use of non-standard statistical tools, including Inde-
pendent Component Analysis, and graphically enhanced Q-Q plots, for investi-
gating the goodness of fit of the Gaussian distribution in High Dimension Low
Sample Size (HDLSS) contexts. The driving problem is the need for simula-
tion of a population of kidney images, based on a small training sample. It
is seen that the Gaussian distribution gives a poor approximation to this pop-
ulation. The analysis suggests an appropriate transformation, which is seen
to give a much better approximation, resulting in a carefully tuned method for
simulating from a population of kidney shape images. The general statisti-
cal techniques are expected to be useful in a wide variety of medical imaging
contexts, and to other HDLSS situations as well

Current trends in medical image analysis are in the direction of studying
populations of images, often in three dimensions. Because such populations
often exhibit complicated HDLSS structure, there is a need for development of
new statistical tools. Usually the focus is on the shapes of particular organs,
so segmentation of each member of the population is important. Current seg-
mentation methods typically require some human intervention with each image.
Thus populations of shapes are expensive to acquire, so sample sizes tend to be
small. HDLSS data result because typically large numbers of parameters are
needed to effectively represent 3-d objects.

For effective development and testing of new methodologies, an efficient
scheme is to compare them on a larger population of simulated images, which
“has the same behavior” as the original population. An appealing approach



to the simulation of synthetic images is to represent them as vectors, and then
simulate the pseudo population from a suitable multivariate Gaussian distrib-
ution. However, this leans heavily on the Gaussian distribution, which it is
advisable to check carefully.

These issues are studied here in the context of a population of CT images
of human kidneys, provided by the Department of Radiation Oncology at the
University of North Carolina, and previously studied by Blinded. There are
36 healthy and normal looking samples with no obvious outliers. The kidney
shapes are used as a starting point of a more complex longer term project with
the ultimate goal of generating a large number of synthetic medical images and
shapes for segmentation performance characterization. The human kidney was
chosen as a first step in this program because of its relatively simple shape.
Humans normally have a pair of kidneys. For this analysis only the right kidney

of each individual is used.
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Figure 1: Coronal view of four kidneys from training data sets.

Figure 1 shows a coronal view of CT images of four different human kidneys.
The variation between these kidneys is apparent in this figure. We shall not
be directly concerned with this variation in the raw data, as the kidneys will be



registered first as described briefly in Section 2. Of interest here is the variation
between kidneys that remains after registration.

HDLSS settings such as this arise commonly in the statistical analysis of
populations of medical images, and provide special statistical challenges. For
example, most classical multivariate analysis methods are often nearly useless,
because it is impossible to “sphere the data” (since the covariance is not of full
rank).

Alternate methods are developed to carefully check the assumption of Gaus-
sianity from several viewpoints in this paper. Standard Principal Component
Analysis, done in Section 3, shows that marginal distributions of the projec-
tions appear to be roughly Gaussian. But for high dimensional data, it is very
dangerous to consider only marginal distributions.

An appealing approach to “searching for directions of non-Gaussianity” is
Independent Component Analysis, motivated in Section 4. We extend the ICA
methodology to give a formal statistical hypothesis test of Gaussianity. For
the kidney data the ICA based test in Section 4.2 reveals strongly significant
non-Gaussian behavior. In particular, a number of outliers are revealed. There
are too many for outlier deletion to be sensible, see Sections 4.1 and 4.3, so some
modification of the Gaussian model is a feasible approach to generating data
with these characteristics.

General high dimensional modelling is impossible with so few observations,
but an approach based on power transformation appears useful. The prelimi-
nary choice of power is done in Section 5. A useful tool in the selection of the
appropriate power is a graphically enhanced version of the Q-Q plot.

The simulation properties of our Gaussian power transformation model are
studied in Section 6, where we show that the IC analysis gives results similar to
those for the real data.

2 Kidney Shape Representations

Human kidneys consist of a pair of kidneys. A single kidney, the right one, is
used here. Because of its relatively simple shape it is a good first step in the
development of models for creating synthetic images based on a few samples.
In this paper we are interested in modelling the shape of the kidney. We charac-
terize kidney shape by a set of “fiducial” points, selected as in Blinded. Figure 2
displays a typical kidney boundary in three dimensions, with highlighted fiducial
points. Fiducial points are mostly associated with salient geometric features on
a surface. The location and number of the fiducial points is determined via an
iterative procedure, starting with a seed set containing a small number of points,
with large surface curvature. Based on these points the shape is reconstructed
and volume comparisons are made between the reconstructed and the original
shape. The number of fiducial points is increased until the difference between
model reconstruction and original shape, averaged over the entire training set, is
smaller than a predefined threshold. Typically the discrepancy obtained from
inter-user manual segmentation by medical experts is used as such a threshold.



For the kidney samples 88 fiducial points were found to adequately describe its
shape in this sense. The (z,y, z) coordinates of these 88 fiducial points are put
into a single 264 dimensional vector, representing the kidney shape.

Figure 2: Single kidney with fiducial points.

As expected from the variation seen in Figure 1, normal kidneys differ in size
and shape. A registration procedure was applied between a kidney “template”
and the remaining kidneys in the sample. The first step in this procedure is an
affine scaling transformation which equalizes the size of the objects of interest
in the template and the training images prior to the non-linear registration
step. The 88 fiducial points were determined on the template and, via the
registration function, mapped onto fiducial points of the remaining 35 kidneys.
This registered data is referred to as the “scaled data” and is used when one
is primarily interested in “pure shape”. Scaling can introduce outliers in the
data. For the purpose of generating synthetic samples it is therefore preferable
to work with the “unscaled” data, that is, data for which the effect of scaling
has been removed as a final step in the registration process. For more details,
see Blinded. In this analysis we shall only be using the unscaled registered data
consisting of the 88 fiducial points.



3 Principal Component Analysis

The 36 vectors, representing the locations of the 88 fiducial points for each
kidney, are organized so that the 88 x coordinates appear first, the 88 y coordi-
nates second, and finally the 88 z coordinates. This organization allows useful
insights, using the parallel coordinates view shown in Figure 3. Parallel coordi-
nates were proposed by Inselberg (1985) and Inselberg and Dimsdale (1987) as
a means of visualizing high dimensional data. In this view, the entries of each
data vector are plotted as a function of the coordinate number (thus 1, ...,264
for these data), with different colors indicating the different data vectors.
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Figure 3: Parallel coordinate view of kidney data

A preliminary investigation, based on principal component analysis, deter-
mined the number of useful PC directions to be 7, because the magnitude of the
remaining components was less than the inter-user manual segmentation error,
see Blinded. Our analysis is therefore based on these first 7 PC directions only,
thus reducing the data from 264 x 36 to 7 x 36. Figure 4 shows the first three
directions of the PCA.

The three left panels of Figure 4 give intuitive insight into the PC directions
(eigenvectors), by plotting the projections of the data onto each eigenvector.
This display is a parallel coordinate plot as in Figure 3. The variability ex-
plained by PC1 (21.5% of the mean residual sum of squares, i.e. on the usual
R? scale) appears uniformly spread across coordinates. Considering Figure 3
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Figure 4: First three PC directions and PC scores

one might expect the z directions, given by the last third of the data, to dom-
inate PC1, as they appear to have more variation than the x and y directions.
However this greater variation disappears when the mean is subtracted from the
original data, and it is this mean corrected data which forms the basis for the
PC analysis. In PC2 two records are more noticeable, indicated by the blue
and purple data records. These records are picked up as outliers in the middle
plot of the right panel, but they are not noticeable in PC1. PC2 accounts for
10.7% of the mean residual sum of squares. PC3 (8.5% of the mean residual
sum of squares), and the other components did not show much useful structure.
The three right panels in Figure 4 present another view of the data, this time
showing the one-dimensional distributions of the coefficients of the projections
(also called PC scores). In these plots, the distributions are represented in two
ways. The curves are essentially “smooth histograms”, constructed as kernel
density estimates, see Wand and Jones (1995). The second representation is
a “itter plot” (see e.g. Cleveland (1993)), where the data points are shown
as colored dots (useful for identification across plots), with a random height
added for visual separation. These marginal distributions are a natural place
to check for Gaussianity. An enhanced Q-Q plot analysis of the PC scores, as in
Section 5, showed that the PC2 marginal distribution was not quite Gaussian,
because of the two outliers apparent in the middle right panel of Figure 4. PC1
and the remaining PC marginal distributions cannot be distinguished from the
Gaussian. It is tempting to conclude on the basis of this analysis, that the



data are reasonably Gaussian. However, this view is naive, because it considers
only a very few directions, while many more directions (having possibly non-
Gaussian behavior) are present in high dimensional space. While PCA was not
adequate in determining the distributional properties of our data, it provided a
valuable tool in the reduction of the dimension of the data, used in the rest of
this paper, to a relatively small number of useful components. Our notation for
PCA is carefully developed in Appendix 7.1.

Another simple test of Gaussianity is to study the one dimensional marginal
distributions of the individual coordinates of the raw data (as shown in Figure
3). We applied the Bera-Jarque moment test and the Lilliefors CDF test, imple-
mented in Matlab, and found that 37.5% (respectively 29%) of the coordinates
were significant at the 5% level. This is some suggestion that the data may not
be Gaussian, but does not account for the multiple comparison issue, and also
seems impossible to interpret because strong correlation is expected between
these variables. Also it is not clear how to usefully exploit this information to
obtain an improved simulation.

Because of these problems with classical tests of Gaussianity, in Section
4 we propose using Independent Component Analysis as a new and powerful
approach. A major benefit of this approach is that it points the way towards
a useful simulation model.

4 Independent Component Analysis

The Independent Component Analysis method comes from the signal process-
ing literature, where it was developed as a powerful method of “blind source
extraction”. Good detailed discussion of this method can be found in Hyviiri-
nen, Karhunen and Oja (2001). A quick and accessible introduction, with access
to Matlab software (that was used in this paper) is available in Hyvérinen and
Oja (1999).

Our application of ICA is nonstandard, in that we simply use it as an algo-
rithm for finding directions that are “maximally non-Gaussian”. This behavior
is the key to its excellent blind source extraction properties. Non-Gaussianity
was also studied much earlier than ICA, in the context of Projection Pursuit,
see Friedman and Tukey (1974), Friedman (1987) and Jones and Sibson (1987).
But our application is different, using the maximal non-Gaussianity principal
instead as the basis of our statistical test of multivariate Gaussianity.

Generally ICA is an iterative algorithm that attempts to produce an entire
new coordinate system, with the first IC direction the “most non-Gaussian”, so
we base our test only on that. An important aspect in this iterative search is the
choice of criterion of non-Gaussianity of the one dimensional projections. Typ-
ical candidates are skewness and kurtosis, but other criteria are also available,
and have interesting relationships between each other, see Hyvirinen, Karhunen
and Oja (2001). We considered skewness and kurtosis because of their statis-
tical interpretability. We found very similar results for both, but to save space
only report results for skewness here.



4.1 Maximally Non-Gaussian IC1 Directions

The first step in the ICA is a “whitening” or “sphering” of the data, that is,
uncorrelating the data by multiplying by the root inverse covariance matrix.
The full 264 x 36 kidney data set cannot be sphered, because the covariance
matrix is not of full rank. Hence we sphere the data after reduction to the first
7 PCs, as described in Appendix 7.1.

Figure 5 illustrates the application of ICA to the kidney data. The top
left panel shows the univariate distribution of the projection coefficients onto
the first IC direction, in the same smoothed histogram format as shown in the
three right panels of Figure 4. One obvious difference between the two figures
is the scale on the horizontal axis which is much smaller in Figure 5, because
the data have been normalized in the sphering process. The distribution in
the top left panel of Figure 5 is similar to the Figure 4 PC2 distribution in
looking largely Gaussian, but with a notable outlier. However, the outlier is
now farther out (i.e. more standard deviations from the mean), not surprising,
since this direction is “most non-Gaussian”. This shows the potential of ICA,
as a more powerful method than PCA, for finding non-Gaussian directions.
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Figure 5: Mazimally non-Gaussian IC1 directions

Because it is an iterative method, different runs of ICA (even for the same
input data) can give different answers (since it uses a randomly chosen starting
value). This is caused by the ICA optimization problem having several local
optima, with different answers found with different starting values. The top



right panel shows the first ICA direction for another run (thus different starting
value). This distribution also has an outlier, but the two outliers in the two
top panels have different colors. The outliers correspond to cases number 32
(in the left panel) and 35 (in the right top panel).

To analyze this ambiguity in the ICA directions, we calculated the first
independent component from the sphered data 10000 times and indexed each
run by the case number of the coefficient with largest absolute value. Six distinct
directions were found, driven by different outliers, and two of these directions
are much larger than the other four. The results are summarized in the bottom
panels of Figure 5. The lower left panel shows the relative frequencies of these
six cases (12,15,26,32,33 and 35) with case number on the horizontal axis.
The lower right panel provides a different view. For each IC1 run we calculate
the projection coefficients onto IC1 as in the top two panels of the figure. We
display case number on the horizontal axis, and for each case number we find
the maximum absolute value of the projection coefficients over the 10000 IC1
runs. This maximum value is displayed on the vertical axis. This analysis
shows quite clearly that two case numbers (namely 32 and 33) are separated by
their absolute value above 5, and that another four case numbers also have much
larger values (about 4) than the rest of the sample. It further shows that the six
outliers are four to five standard deviations from the mean, in some of the IC1
directions. It is not surprising that the larger the outlier, the more frequently
it is found by ICA (as shown in the bottom left panel). The distribution of
case 33 looks very similar to that of case 32 which is shown in the top left panel
of the figure. The main difference is the outlier as indicated by a different color
in the jitter plot. Similarly the distributions of the smaller outlier cases 12,15,
and 26 have shapes similar to that of case 35 which is shown in the top right
panel of the figure.

Another consequence of the iterative search algorithm is that ICA may fail to
find a non-Gaussian direction. We observed this occasionally. It happened most
frequently for simulated Gaussian data, which might be expected to sometimes
give a vague “direction of maximal non-Gaussianity”.

4.2 ICA Based Test of Gaussianity

The ICA direction vectors are determined sequentially starting with the most
non-Gaussian direction. To test for Gaussianity using ICA, it therefore suffices
to consider the first independent component. ICA is a powerful method and will
usually find something non-Gaussian even in Gaussian data. These observations
form the basis for our tests of Gaussianity.

For the kidney data six distinct IC1 directions were found as shown in the
bottom left panel of Figure 5. The directions 32 and 33 have an absolute
skewness value above 4.65 and 4.46 respectively, and the remaining four outlier
cases 12,15, 26 and 35 have absolute skewness values of 1.41, 1.87, 1.86 and 1.88
respectively. These last four outliers may not be clearly distinguishable from
the Gaussian case. To eliminate this situation where IC1 converges on one of
these four smaller directions, we have found it sufficient to run IC1 ten times



and to pick the direction which has maximum absolute skewness. We use this
maximum IC1 direction as our test statistic and compare it with the corre-
sponding maximum direction obtained for data generated from the Gaussian
distribution N7x36(0,1). For 1000 drawings from the Gaussian distribution
we calculate the p-value as the proportion of times that the simulated Gaussian
maximum directions exceed the test statistic. Figure 6 shows the result of this
test. On the horizontal axis we have displayed absolute skewness. The results
for the 1000 runs are given in a smoothed histogram with the individual values
displayed as points at random heights — similar to the jitter plots in Figure 3.
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Figure 6: Skewness hypothesis test of IC1 direction

The p-value of this test is zero. The red vertical line at 4.65 marks the
maximum absolute skewness obtained from the kidney data.  For Gaussian
data skewness is close to zero. ICA, however, finds non-Gaussian directions
even in Gaussian data, and the maximum over 10 IC1 directions will therefore
usually result in a strictly positive absolute skewness value . As can be seen
in Figure 6, some of the runs have a maximum absolute skewness value of zero.
The reason for this is that in 16 of the 1000 runs ICA did not find any non-
Gaussian directions and failed to converge in 1000 iterations for all 10 starting
values. For these runs we define the maximum absolute skewness to be zero.

The results obtained from the corresponding runs based on maximizing kur-
tosis are very similar and also produce a p-value of zero.
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4.3 Analysis of Outliers

The non-Gaussian directions are connected to the outlying cases 32, 33, 12, 15, 26
and 35. To examine whether these particular kidneys represent outliers, we
removed the two largest outliers from the original kidney data and carried out
the PC and IC1 analysis described above on the reduced data for the remaining
34 records. The first seven principal components were calculated, the PCA
data was sphered, and IC1 was calculated for this data. The hypothesis test on
the reduced data — similar to that leading to Figure 6 above — has a test statistic
with maximum absolute skewness of 3.38, and a p-value of 0.0014, showing that
the reduced data is also non-Gaussian. In this test 1000 drawings from the
normal distribution N7y34 (0, ) were used.

The top two panels of Figure 7 show the smoothed histograms of two distinct
IC1 directions, corresponding to case numbers 15 (on the top left) and 7 (on the
top right), in a similar form to the top two panels in Figure 5. As in Figure 5,
the distributions contain distinct outliers, marked by the different colors in the
two jitter plots. The lower two panels of Figure 7 contain similar information
to those of Figure 5. In both figures case numbers are shown in the horizontal
direction. The bottom left panel contains the frequency for each of three IC1
directions that were found in 10000 repetitions of IC1 for the reduced data, and
the bottom right panel shows the maximum absolute value by case number as
in Figure 5. For convenience of notation we use the original case numbers, with
purple vertical lines indicating where data records have been deleted. As can
be seen the IC1 analysis found four outliers, two of them (cases 15 and 35) were
present in the original analysis and are shown in Figure 5, and two new ones
(cases 20 and 7) were not apparent in the full data. Although the absolute
skewness of the new outlier case 20 is comparable to that of cases 15 and 35 it
was not found in the original analysis. In the presence of the very strong outlier
cases 32 and 33, these new outliers were apparently not ‘strong enough’ to be
found in the original ICA — see also the bottom panel of Figure 5. The outlying
records 12 and 26 which also appear in the original analysis — see Figure 5 —
are not observed as outliers in the bottom left panel of Figure 7, however their
maximum absolute values are considerably larger than that of the majority of
records as can be seen in the bottom right panel. It is worth noting that the
maximum absolute value of outliers 12, 15, 26 and 35 are all comparable in
the original analysis, but the absolute skewness of outlier 12 in particular is
considerably smaller than that of the other three outliers.

The analysis with the reduced data set has uncovered two further outliers.
This raises the question whether the data is a mixture of distributions and the
seven outliers form a cluster. We resolve this by calculating the pairwise angles
for all eight outlying directions. As above, we have identified the IC1 direction
with the case number of the coefficient with largest absolute value. Each of
the eight outlier direction vectors is of dimension seven, corresponding to the
seven PC directions. To calculate the angle between two such vectors, we first
normalize them and then use the fact that the dot or scalar product of two
vectors of unit length equals the cosine of the angle between them. For the

11



0.8
0.6
0.4
0.2

300 4 o

200 O

2 O

100 © g
O O O% @Q@ ©

D)OO O O CS)

10 20 30 10 20 30

Figure 7: IC1 directions for reduced data

six outliers found in the original analysis described in Section 4.1, the pairwise
angles are nearly orthogonal, and standardized to a range of 0 to 90 degrees the
smallest pairwise angle of 76 degrees occurs between case numbers 15 and 35
and between 26 and 35. For all eight outlier directions — which include the two
new ones — both new outlier cases 7 and 20 result in pairwise angles as low as
around 60 degrees with some of the smaller original outliers. This shows that
the outliers do not form a cluster, and suggests that the data is not a mixture
of two separated distributions.

Since six outliers appeared in the original analysis presented in Figure 5, we
also examined deleting more than the largest two outliers and repeating the IC
analysis and Gaussianity test for those reduced data sets. In all cases, more, and
sometimes new, outliers appeared, with the results similar to the ones presented
above.

An inspection of the original kidney records for these “outlier” cases was
inconclusive. These kidneys did not appear to be clinically different from the
other normal kidneys and could therefore not be regarded as outliers in any
meaningful medical sense. Removal of six or more records out of 36 therefore
is clearly not suitable. A more appropriate interpretation is that these records
demonstrate the natural variation inherent in normal kidneys. This variation
needs to be taken into account when we generate synthetic kidneys.
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5 Power Transformation

The analysis of the previous sections provides strong evidence against the nor-
mal distribution as appropriate for these data. Our goal is to generate synthetic
data which appropriately models the variability inherent in healthy kidney pop-
ulations. Since the Gaussian model is not adequate for this purpose, we will
proceed by suitably modifying a Gaussian model using parametric transforma-
tions. Our goal is a modified Gaussian model that exhibits the
same properties with respect to the IC1 analysis as the kidney population. This
suggests that the modification should be done at the level of the sphered PC
data as this provides the input to the IC1 analysis. Because the training sample
size is small, the modification must be rather simple in nature, yet capture the
“heavier than Gaussian” tails apparent in these data. We chose to approach
this using a power transform in the radial direction.

This simple parametric transformation involves a number of steps: We first
reduce the columns of the sphered PC matrix () = Pspp, to the squared lengths of
the data vectors s;, j = 1,..,n. We determine the parametric transformation,
indexed by its power «, which gives the closest fit of the s; to the Gaussian.
The parameter g which results in the best one-dimensional fit induces a matrix
transformation () — @4, at the level of the sphered PC data. The transformed
data matrix @Q,, is intended to be more Gaussian than ). We will apply the
IC1 analysis to Qq, to determine its deviation from the Gaussian. These two
steps are based on the actual kidney data. The final step is concerned with the
simulation of synthetic data. For this, an appropriate inverse transform will
be used to generate the synthetic kidney populations starting from Gaussian
random variables. The first two steps which involve the actual kidney data will
be described in this section, while the generation of the synthetic data and the
simulation verifications will be the topic of the following section.

First consider the sphered or normalized PC data @Q = Py, using the
notation defined in eq (6) in Appendix 7.1. For each data (or column) vector
4 (j =1,..,n), in @ we consider its squared length s; = s(g_j), see eq
(7) in Appendix 7.2. If the data — here ) — have a Gaussian distribution,
then the s;, appropriately normalized, follow a x*(k) distribution with k = 7
degrees of freedom. By applying the inverse probability integral transform
to the distribution of these squared lengths, we can compare them with the
quantiles of the uniform distribution. The top left panel in Figure 8 shows this
comparison with the uniform distribution for the kidney data in the form of a
smoothed quantile or Q-Q plot. The red line shows the quantiles of the data and
the green line indicates the quantiles of the uniform distribution. This plot is
enhanced by the blue curves which arise from 100 simulations from the uniform
distribution and which show the variability that exists in a uniform random
sample. This visual device for understanding the sampling variation in a Q-Q
plot was also used by Herndndez-Campos, Marron, Samorodnitsky and Smith
(2002). Since the kidney data are not Gaussian, it is not surprising that the
red line deviates significantly from the blue envelope representing the uniform

13



alpha =0.75

Figure 8: Power transformed sums of squares data

samples.

Our approach is to map the data into an approximately Gaussian shape
by applying a simple radial power transformation, which is based on the one-
dimensional level of the squared lengths s;. This is a simple way to generate
behavior of the type observed in this data.. For the squared lengths s; = s( q )

i = 1,..,n) with ¢; in @, and for 0 < a < 1, define the power transform
(J J
—

s; — 8§ asin eq (9) in Appendix 7.2. Note that a = 1 corresponds to the
identity transform. The distribution of the transformed squared lengths sf,
j=1,...,n, is compared to the uniform distribution under the assumption that
the data have a x?(k) distribution. The results can be seen in Figure 8 for
a number of values of a. The top right panel shows the case a = 0.75; in
the bottom panels @ = 0.5 (left) and o = 0.3 (right) were used. The value
ag = 0.5 shows the best agreement with the uniform distribution; o = 0.3
shows a bimodal structure, indicating that the transformation has gone too far.
Values of a > 1 remove the data even further from the Gaussian shape and are
therefore not displayed here.

The power transform is applied to the one-dimensional squared lengths s;,
since it is simpler to compare univariate data with Gaussians than high dimen-
sional data. For high dimensional data the results obtained in the Q-Q plot can
be misleading, and what appears to be Gaussian at the one-dimensional level
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of the s; may not be as Gaussian when examined with the more powerful ICA.
For each « the transform s; — s§ induces a natural matrix transform @ — Qq
of the sphered data @ to the a-transformed k x n matrix @),. Mathematical
details of this induced transformation are given in eq (11) in Appendix 7.2. To
examine the effect of the power transform at the level of the PC data, we applied
IC1 and the Gaussianity test to QQ,. The optimal value ag = 0.5 led to the
most Gaussian @), and we shall therefore report the results of the IC1 analysis
for Q.5 only. Observe that re-sphering is necessary before applying IC1 to @,
since the induced power transform changes the covariance structure, see Appen-
dix 7.2. Results of the IC1 analysis of (.5 showed that the maximum absolute
skewness is reduced to 3.81 compared to 4.65 of the original test. Only some of
the original outliers, namely 32, 33 and 15 are still present, and their maximum
values are decreased. The other three original outliers have no longer been
detected. The IC1 hypothesis test remains unchanged, resulting in a p-value of
0. Thus from this viewpoint, our simple radial power transformation has not
resulted in an exactly Gaussian result.

However, the IC1 test is very sensitive, and exact Gaussianity of this type
is a lot to request from a model based on such a small training set. A perhaps
better way of seeing that our result is reasonable is to study the characteristics
of the resulting simulated data, which we do in the next Section.

6 Simulation Verification

The transformed kidney data Qg5 with the best parameter ay = 0.5 still con-
tains significant non-Gaussian directions. This is further indication of the power
of the IC1 test of Gaussianity and the variability inherent to the kidney data.
Although this simple transformation did not result in a precisely Gaussian distri-
bution, the performance of backtransformed simulated data is more important.
This section describes how we generate such non-Gaussian samples, and shows
that the resulting synthetic data is reasonable by means of the IC1 analysis.
First recall the steps leading from the sphered kidney data @ to uncorrelated
almost Gaussian data. Schematically these steps can be represented by

QHQa_)Ra“’?a):Zv (1)

where the first transform is the induced power transform of the previous section.
The next arrow, leading to R,(Q.), denotes the re-sphering of @, required for
the IC1 analysis and described in Appendix 7.2. As discussed in the previous
section Ry (Q.), the transformed and re-sphered data, is closer to uncorrelated
Gaussians than the original sphered data (. This fact is indicated by Ry (Qq) =~
Z, where Z ~ Nix, (0,1).

For simulation of synthetic kidney data we reverse the process described
in eq (1). We start with a Gaussian generator matrix, also denoted by Z ~
Nixn (0,1), and obtain a non-Gaussian synthetic population, Qs;m, as follows:

Z — RNZ) — [R;1(Z)h/a = Qsim, (2)
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where R ! denotes the “un-sphering” of the Gaussian generator matrix Z. The
next arrow indicates the application of an appropriate inverse power transform
with power 1/« in order to obtain the non-Gaussian population @g;m, our syn-
thetic model of the sphered kidney data ). Mathematical details of the power
transformed data and its covariance structure are given in Appendix 7.2, and
details of the inverse transformation are given in eq (16) in Appendix 7.4.

Note that eq (1) made use of the parameter «. For the inverse path,
described in eq (2) we therefore use the inverse parameter 1/a. The best
parameter was found to be ag = 0.5, we therefore report this case only. In
particular, the synthetic data @ g, referred to below is generated using 1/cg =
2.

It remains to determine whether the synthetic data Qs;,, exhibits behavior
similar to the kidney data. As for the sphered data, Q;,, consists of 36 data
vectors each of length 7. To examine the variability and the existence of out-
lying data vectors in Qg;m, we use IC1. We calculate the most non-Gaussian
directions for these data, and carry out the IC1 test described in 4.2. Fig-
ure 9 illustrates the results of the IC1 analysis for three independent runs of
generating Qs;m, Where each column corresponds to one particular Q g, -
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Figure 9: IC1 results for synthetic data

The top row shows the univariate distribution of the projection coefficients
onto the IC1 direction which gives rise to the largest absolute skewness. These
distributions are similar to the top left panel of Figure 5 which displays the cor-
responding distribution for the kidney data. All three simulated distributions
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have notable outliers which are comparable in size to those of Figure 5. As in
the case of the kidney data, the simulated data should have a number of outliers
which can be found in repeated application of IC1, see Section 4.1. For each
simulated data set Q4;,, we calculated the first IC direction 1000 times. Similar
to the bottom right panel in Figure 5, the middle row shows the maximum (over
the 1000 ICA runs) of the absolute value of the projection coefficients for each
case number. This view of the simulated data allows us to assess the number
and size of the outliers. The case number of the outliers is not important for
the simulated data, however the size and number of outliers is relevant for a
comparison with the kidney data. It is worth noting that all simulated data
sets had at least one large outlier, but more commonly had three or four outliers
whose sizes are comparable to that of the kidney data.

The bottom row displays the results of the IC1 tests, based on 1000 draw-
ings from the Gaussian distribution, which are similar to the tests described in
Section 4.2. We observe that there is a reasonable amount of variability in the
p-values obtained in these tests. The p-values in these three data sets are from
left to right 0.124, 0, and 0.001.

A comparison of Figures 5 and 6 for the kidney data with the corresponding
parts of Figure 9 shows that our approach to generating non-Gaussian data
has been successful. The simulated data appear to have the same properties
as the kidney data when examined with the powerful IC tools, in particular
all synthetic data sets have a number of outlying samples which appear to
characterize the kidney data.

A last step in the modelling process consists in the generation of the synthetic
high-dimensional data at the level of the fiducial points - see Figure 2, as this
is the data used for segmentation purposes and medical investigations. Our
analysis is based on the k x n dimensional synthetic sphered data Q)s;,, which
exists at the PC level with K = 7. The generation of such d x n dimensional
data (with d = 264) is given in eq (17) in Appendix 7.4. Parallel coordinate
views of such synthetic data are very similar to that of Figure 3.

7 Appendix
7.1 PCA Notation

Let X = (X;,;) denote the d x n data matrix consisting of n (column) data
vectors, each of length d. We shall assume that d is much bigger than n. We
assume that X has mean 0. Let Y denote the d x d covariance matrix of
X, given by its “outer product” ¥ = X X?* where X? denotes the transpose of
X. Using the eigenvalue decomposition of 3 into ¥ = UDU?, where U is a
unitary transformation consisting of the eigenvectors of ¥, and D is a diagonal
mafrix consisting of the eigenvalues of X, the column vectors X; of X can be

represented as linear combinations of the eigenvectors w ;, the column vectors
in U:
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d r
Xi= E CijUj= ) Cijluj. (3)
j=1 j=1

Since d >> n, the covariance matrix does not have full rank, in particular
r = rank(X) < n. Here the ¢; j are the projections of the data vectors onto the
eigenvectors, ¢; ; = )_(jgj, and ¢; ; = 0 for j > 7, since D has only 7 non-zero
entries.

As d >> n, the first step in the data analysis is a reduction in dimension.
For k,m < d let Uy.x,. denote the first k rows of U (and all columns), U.,1.m,
the first m columns of U (and all rows), and let Uj.g,1., denote the matrix
consisting of the first k& rows and first m columns of U. As appropriate we will
regard Uy.x,1.m as an k X m matrix or a d X d matrix with zeros filled in.

If k£ denotes the number of significant PC directions, then the PC analysis
provides a “reduced principal component representation” P = Px of X, over
the subspace of the first k eigenvectors in U, that is, the PC matrix P is the
matrix of projections of X onto the first k& eigenvectors, and so

P =Uj,. X, (4)

making P a k x n matrix with £ < r <n. The k x k covariance matrix ¥, of
P is given by

Y, =cov(P) = cov(Uf:h.X) = Uf:k,‘ZU.,l;k. = Dik1:k, (5)

since ¥ = UDU?, and since Uf:k’,U = 11.,., the identity matrix with k rows
and d columns, and similarly, U'U. 1., = 1. 1.5
Normalizing a matrix, say P, means multiplying P by the inverse of the root
of its covariance matrix, say >,, and results in the whitened or sphered matrix,
Q = Psphv
Q=3,"P=D UL, X. (6)

Observe that () has mean 0 and covariance matrix Iy, and @ is referred to as
the sphered data. In Sections 4.1 and 4.2 the sphered data is decomposed into
independent directions.

7.2 Details of Power Transformation

For the sphered k x n data matrix () consider the column vectors ¢ ; as data
—

vectors. For each ¢ ; let s; denote the squared distance of ¢ ; given by
— —

k
s :s(gj) = Zq?j j=1,..n, (7)
i=1
and let H q; H denote the distance to the origin given by
—
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ngH:\/S_j’ j=1,...,n. (8)
If the data are Gaussian, then the s; will be x?(k). If the data vectors ¢ ; in
—

@ do not follow a Gaussian distribution, it might be possible to apply a power
transform which makes the transformed vectors approximately Gaussian in the
following sense. For a > 0, put

k
=1 a)%  i=1..n (9)
i=1

Normalize these n distances by their mean and divide by k. Determine that
value a > 0 which provides the best fit of the normalized squared distances (9)
to the x?(k) distribution. Here the best fit is determined experimentally.

To apply this power transformation to the sphered PC data prior to IC1,
we transform the sphered data matrix @ in such a way that each transformed

«
vector has length H q; H . The distances H q; H in eq (8) form a vector of length
— —

n. We use this vector to define the diagonal n x n matrix V,, with non-zero
entries v§* given by

a—1
= ji=1,..n. (10)

(o4
vV, = 5
] H&J

The power transformed matrix @, is given by

Qa = QVa. (11)

This is a k X n matrix, and it can easily be seen that the j** column vector
in , has a squared distance s§, and therefore distance to the origin of length

@
|,
matrix @, 1is correlated. Let X, denote the covariance matrix of @), and let
R, denote the re-sphering, so

A consequence of applying this power transform to @ is that the new

Ra(Qa) = Zgl/QQa (12)

is a k x n matrix. The transformed and sphered matrix R, (Q,) is used as the
new input to IC1 instead of the previous sphered data matrix Q.
7.3 Simulation of Sphered Gaussian Data

For a given covariance matrix X, it is desired to generate a Gaussian random
X ~ Ngxn (0,%). For k <r =rank (X) define the “random generator matrix”

Z ~ Nigxn (0,I). Let S. 1 = D1/12k, where D is the diagonal matrix as in eq
(5) consisting of the first k eigenvalues of X, and put

X =US. 1.4 2. (13)
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Note that

cov(X) = cov(US. 1.:2) = US<71;kCOU(ZZt>(US~,1:k)t (14)
= US 14181, . U" = UDyp 14U

For k = r it follows that UD;.,.1.,U* = %, and thus X ~ Ngx,, (0,%).

Some interpretations are that the random matrix X can be generated from
only r - n independent Gaussians, i.e. has r - n “degrees of freedom”. Also
X =US 1.7, can be viewed as “a rescaling by S”, followed by a “rotation by
U”.

If k£ < r, then the Gaussian random variable X can be more efficiently com-
puted by X = U. 1. S1:5,1:6Z with Z ~ Njyr, (0,1). Observe that UDy.j 1.,U" =
U.1.k Dl:k,l:ka:k)., and therefore the covariance matrix cov(X) of X is the same
as that obtained in eq (14). If k& denotes the number of significant PC directions,
then cov(X) has the same eigenvalues as the covariance matrix ¥, of P in eq
(5). Here it is more convenient to regard cov(X) as a d x d matrix with non-zero
entries only in the top k x k part, while ¥, in eq (5) is a k x k matrix.

Since the number of significant PCs is generally much smaller than r, X =
U.,1:k S1:k,1:1Z produces an eflicient computational approach for simulating Gaussian
random X. From eq (6) it follows that

Q=172 (15)

that is, the random generator matrix is a model for the sphered data.

7.4 Simulation of Sphered Non-Gaussian Data

By eq (15) the random generator matrix is a model for the sphered data matrix
if the data is Gaussian. To generate the sphered data when the process is
non-Gaussian, we make use of the transformation described in eqs (11) and (12)
and reverse this process.

To generate a random matrix Qs via inverse transforms as in eq (2), sim-
ulate from the Gaussian random generator matrix Z ~ Nix,, (0,1). For given
a >0, put 8 = 1/a. Define Qg by

Qsim = (22 Z2)W, (16)

where ¥, denotes the covariance matrix of @, see eq(12), which is used now
to un-sphere Z, and Wy is a diagonal n x n matrix which applies an inverse

power transforms to Z}X/ >Z.  The non-zero elements of Wpg are defined by
B—1
B8 _ |3~
w = |2
Eé 27Z. The matrix Qsim 1s a k X n matrix which describes the distributional
properties of the sphered kidney data ) more closely than Z. One can simulate
the non-Gaussian random variable matrix X from Qg;,, as follows

~ see also eq (10) — where 2 jdenotes the 4" column vector of

X = U-al:k Sl:k,l:stnn (17)
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with Qsim generated from Gaussian random matrix Z ~ Niy, (0,1) as de-
scribed in eq (16). Such simulated data X will have a covariance matrix which

depends on ¥,. The process of multiplying Z by Ei/ % can be thought of as a
type of "un-sphering’ the Gaussian Z, and transforming Z into a non-Gaussian
matrix with covariance matrix X,.
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