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For the purpose of comparing different nonparametric density estimators, 
Wegman (J. Statist. Compuf. Simulation 1 225-245) introduced an empirical error 
criterion. In a recent paper by Hall (Stochasfic Process. Appl. 13 1 l-25) it is shown 
that this empirical error criterion converges to the mean integrated square error. 
Here, in the case of kernel estimation, the results of Hall are improved in several 
ways, most notably multivariate densities are treated and the range of allowable 
bandwidths is extended. The techniques used here are quite different from those of 
Hall, which demonstrates that the elegant Brownian Bridge approximation of 
Komlos, Major, and Tusnady (2. Warsch. Verw. Gebrete 32 111-131) does not 
always give the strongest results possible. Ii‘) 1986 Academic Press, Inc. 

1. INTRODUCTION 

Consider the problem of estimating a probability densityf(x), defined on 
R”, using a sample of random vectors XI,..., X, from f: If T(x) = 
PC& x, ,..., X,) denotes some estimator of f(x), a very popular means of 
measuring the accuracy of p is Mean Integrated Square Error (MISE). 
Given a nonnegative function w(x), this error criterion is defined by 

MISE = E 
I 

[f(x) -f(x)]’ w(x)f(x) dx. (1.1) 

Writing the weight function in the form w(x)f(x) is for notational con- 
venience in the proof of this paper. There is little loss of generality in this 
device because if a weight function w*(x) is desired, simply take w(x) = 
w*(x)f(x)-l. 
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In a survey paper, Wegman [6] was interested in comparing the MISE 
of several different density estimators, in the case d = 1. Unfortunately, as 
Wegman pointed out, the computation of MISE can be quite tedious. 
Hence Wegman used the empirical error criterion 

M%=n-’ f [f(X,)-f(X,)]* w(Xj), 
j=l 

and gave some heuristic justification. 
Recently there has been some controversy regarding this practice. The 

difficulties have been essentially settled by Hall [ 11, who has shown that 
Wegman’s heuristics are valid if f(x) is either a kernel estimator or an 
orthogonal series estimator. Hall has shown that, in the case d= 1, under 
relatively mild conditions on f and w, as n + co, 

MISE = MISE + o,(MISE). 

In this paper, Hall’s Theorem 1 (dealing with kernel estimation) is 
extended in several ways. First, the assumptions made on f and K are 
substantially weaker here. Of more interest, the case of general dimension d 
is treated here. Also of importance is the fact that the bandwidth of the 
kernel estimator satisfies much weaker restrictions than in Hall’s theorem. 
This is vital to the results of Marron [3] where an asymptotically efficient 
means of choosing the bandwidth is proposed. 

It is interesting to note that the crude, “brute force” method of proof 
used in this paper gives stronger results than the elegant techniques 
employed by Hall. 

2. ASSUMPTIONS AND STATEMENT OF THEOREM 

Given a “bandwidth,” h > 0, and a “kernel function,” K, defined on I?‘, 
the usual kernel estimator off(x) is given by 

(2.1) 

For the rest of this paper it is assumed that K satisfies the following 
assumptions. 

(K.l) s K(x) dx= 1. 

(K.2) K is bounded, 

(K.3) j K(x)* dx < co, 

(K.4) G,,,,, + us llxll lK(x)l < m, 
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where the integrals are taken over II?’ and 11.11 denotes the usual Euclidean 
norm, It will also be assumed that the underlying density, f, and the kernel, 
K, satisfy the assumptions 

(f.1) f is bounded, 
(f.2) f is uniformly continuous, 

(w.1) W(X) is nonnegative, 

(w.2) W(X) is bounded. 

Assumption (K.3) and (f.1) are redundant, but are included because they 
seem to lend some insight to the upcoming proofs. Assumption (K.l) is 
required to make p(x, h) integrate to 1. Assumptions (K.2), (K.3), and 
(K.4) are milder than those used in Theorem 1 of Hall [l]. Assumptions 
(f.1) and (f.2) are much weaker than the bounded variation and differen- 
tiability assumptions used in Theorem 1 of Hall. It should be noted that the 
assumptions (w.1) and (w.2) are more restrictive than they appear at first 
glance, in particular the popular choice w(x) = l/j(x) (i.e., w*(x) = 1) is 
eliminated. 

Given sequences {a,> and {b,,} it will be convenient to let the phrase “h 
is between a, and b,” mean the sequence h = h(n) satisfies 

lim a,h ~ ’ = 0, lim b,h-’ = oo 
n-rcc n-a 

The main theorem of this paper can now be stated. 

THEOREM 1. Under the assumptions (K.l)-(K.4) (f.l), (f.2), (w.l), and 
(w.2), gfis the kernel estimator of (2.1) and ifh is between n-‘ld and 1, then 
as n+oo, 

M% = MISE + op( MISE). 

Using the expansion (3.1) in the next section, together with Taylor’s 
Theorem, it is easy to see that Theorem 1 of Hall (1982) follows easily from 
the above. The above theorem is in fact stronger because the case that f has 
fewer derivatives than K has vanishing moments is included here (this case 
has been treated, e.g., by Stone [ 51). 

3. PROOF OF THEOREM 1 

First, note that by the familiar variance and squared bias decomposition 
(see Rosenblatt [4]), 
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MISE=n-‘h-d (jf(x)‘W(X)dx)(~K(U)*du)+o(n-‘h-”) 

(3.1) 

It will be convenient to denote the squared bias part of this expansion by 

sj@)=/[/K(u)f(x-hu)du-f(x)]2w(x)f(x)dx. 
Note that by (f.2) 

lim .sAh) = 0. 
h-+0 

(3.2) 

(3.3) 

It is seen in Marron [3] that the rate of convergence of s,(h) to 0 provides 
a measure of the “smoothness” off: 

Next, for j= l,..., n, it will be useful to define the “leave one out” kernel 
estimator 

” 
.f;(xTh)=(&)hdi+j l z:K(Y). 

A quantity which is more tractable than Ma is 

MG=i ,f [J(Xj, A)-f(Xj)]‘w(Xj). 
/=I 

(3.4) 

(3.5) 

Note that for j = l,..., n 

Hence, by (K.2), for h between n - ‘Id and 1, 

sup sup 1$(x, h) -f(x, h)l = O(n-9-J). 
x j= l,...,n 

Theorem 1 is now a consequence of 

(3.6) 

THEOREM 2. Under the conditions of Theorem 1, 

M% = MISE + o,(MISE). 



MULTIVARIATE DENSITY ESTIMATION 

4. PROOF OF THEOREM 2 

First, for j = l,..., n define 

uj= CJ’itxjv h)-f(xj)12 w(xj) 
MISE 

Note that by (l.l), (3.1), and (3.6) for h between n- ‘ld and 1, 

EU, = MISE -’ j EC&(x, h) -f(x)]’ w(x) f(x) dx 

(4.1) 

= MISE-’ j E[f(x, h)-f(x)]’ w(x)f(x) dx+ O(n-‘h-“) 

= 1+0(l). (4.2) 

The proof of Theorem 2 will be complete when a weak law of large num- 
bers is established for the Vi. 

For i # j= l,..., n define 

v,= [n-l(y)-f(X,)] w(xj)l/? 

It follows from (3.4) that, for j= l,..., n, 

[j&Y,, h)-&Yj)]2 w(xj)= 

Hence, 

v, 1 2. 

[ 1 
2 

var(Uj)=(n-1))4MISE-2var 1 V, . 
i#i 

(4.3) 

Now if this last variance is expanded in terms of variances and covariances, 
there will be (n - 1)4 terms of the following types (where i, i’, i”, i*, j are all 
different). 

No. of terms General terms 

O(n) 
W2) 
Oh21 
OW) 
OW) 
ON 
OW) 

var( Vi) 
var( V, Vrj) 

co4 q,> v;‘,, 
cov( v’,, v, Va) 

cov( v’,P vzj vtwj) 
cov( v, VT,, v, vpj) 
cov( v, VP,, v,.:, vi.j) 
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Bounds will now be computed for each general term. 
Using (K.2), (K.3), (f.l), (w.2), and (4.3), as h+O, 

= [h-3dK(~)4-4h-2dK(~)3f(~)+6h-dK(~)2f(~)2 ss 
- 4K(z~)f(x)~ + I.+-(x)~] w(x)* f(x) f(x - hu) dudx 

= O(h -3d). (4.5) 

Similarly, 

= [h-dK(~)2-2K(u)f(x)+hdf(~)2]f(~-h~) du *f(x) dx 1 = O(Pd). (4.6) 

Very similar computations show that 

EL$ = O(hpd). (4.7) 

It follows from the above that 

cov( v& P-g = O(h -*d). 

In the same way it is easily seen that 

cov( ej,., v, v-,7) = O(h -*“), 

cov( vj, v, Vj,j) = O(h -d), 

cov( v, v<j, vij vrj) = O(h -“). 

To bound the final term, note that 

E[l’,lXj]=j[h~dK(~)-j-(Xj)]w(X-j)”2f(y)dy. (4.8) 
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Hence, by (3.2) 

E[V,V,.j] =E(E[V,IX,]‘) 

= 

0 
K(u)f(x-hu) du-f(x) 1 

2 

w(x)f(x) dx 

= s/(h). (4.9) 

As another consequence of (4.8) note that by (K.2) (f.1) and (w.2), 

sup IEIV,lXi=x]l =sup w(x)“2 
I D 

K(u)f(x+hu)du-f(x) <a~. 
x I II 

(4.10) 

It follows from the above that 

E[ v, vi, v, vi*j] = E(E[ v, 1 X,]“) 

~supE[~~IXi=X]*E(EIVijIX,]*) 
x 

= O(s/@)). 

Hence, 

cov( v,j v,y, vrj v,*i) = O(sj@)). 

Looking back to (4.4) it is now apparent that for h between ,-l/d and 1, 

Hence, by (3.1) and (3.2), there is a constant C so that, for h between n - ‘Id 
and 1, 

n ~ ‘var( Uj) = 
O(n-lh-d) + O(s#)) 

n[Cn-‘h-“+s~h)+o(n-‘h-d)]2 

O(n ~ ‘h -d) O(s,VN 
G C*n-‘h-*~+2Ch-$(h) 

= 0(/f”) -+ 0. (4.11) 

Next, for j # j’, a similar bound will be computed for 
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Once again, by the linearity of covariance, the right-hand covariance in 
(4.12) may be written as the sum of (n- 1)4 terms of the form (again 
assume i, i’, i”, i*, j, and j’ are all different): 

No. of terms General term 

O(1) 
O(n) 
O(n) 
W) 
O(n) 
W) 
O(n) 
O(n2) 
OW) 
W) 
O(n) 
O(n’) 
o(n2) 
O(n’) 
OW) 
O(n’) 
me 

cov( yj, 2') 

cov( v;',> V,') 

cov( v,, v',,, 

cov( v$ Vf,,) 

cov( qj, vff vif) 
cov( q,, v,, V,y) 
cov( v;, v,, v,y, 
cov( vj, vq vfy) 
cov( v’, V”, VP,,) 
cov( I$, v,,,. If,.,.) 
cov(vjj v~, vj’ vy’) 
cov( v,,, v,,, v,. v,y) 
cov( v,j v,, v,. v ,,,,) 
cov( v,j v,, v ,,,, VT,,) 
co4 v, v,j, v,,, V,j,) 
cov( v~ vlj3 vq’ vn”,‘) 
cov( v, v,,, v,.,. v ,.,,) 

These general terms will now be bounded in order of increasing difficulty. 
By the independence of X, ,.,., X,, 

cov( v& v$) = cov( cj, v,. VJ = cov( v, vcj, vry Vi./) = 0, 

Using the Schwartz Inequality, (4.5) and (4.6), each term which appears 
O(n) times may be bounded by O(he3“). 

Using (4.7) and (4.10) 

Thus, by (3.3) and (4.9), 

cov( v& v,. V<f) = O(P). 

Similarly, again using the Schwartz Inequality, 

E(v~jv,V~vi~)=E(v~jv~E[V,~Xj,x~]E[v~~~xj,x~]) 

~supEIV~~Xj=x]*E(V~jVjJ=O(h-~). 
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from which it follows that 

cov( vjfj v,, V-N VfT) = O(h -“). 

By the above techniques it is easy to see that 

cov( vi7 v,, vi,. vj,y) = O(gz)). 

The remaining terms will be a little more difficult. By (4.3), 

E[~jV,,l/~~]=E(~~:.V,EIVi~Ixi,xj,xj,]) 

x w(x + hu) w(x + htp E[ v, ( xj = x + hu] 

xf(x)f(x+hu)f(x+ho)dxdudu 

= O(h -q, 

and hence, 

cov( v& vjj! VJ = O(h -“). 

Similarly, 

xw(Y)w(z)“*ECVijIXj=ZIf(X)f(Y)f(Z)dxdydz 
= O(P), 

and so, 
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By the same technique, 

x [h-dK(y) -f(x)] 

xW(Y)W(X)1’2EC~~I~j=xlf(x)f(y)f(z)dxdYdz 
= O(hpd), 

and hence, 

cov( Vyj V,, V,, Viy) = O(h -“). 

The most difficult terms have been saved for last. It will be convenient to 
define the sets 

Note that 

A = {(x, y): /Ix - yll > 2h1’2}, 

A’= RdX l&4. 

Wan dxdy 

where 

=r+r, (4.13) 

I= ss A { >’ ~4x1 w(y)f(x)f(y) dxdy, 
Z’ = jj- 

AC 
1 >’ 4x1 w(v)fb)f(y) d-+. 
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Note that, uniformly over x, y, 

Thus, since for each x E R”, the set { y: (x, y) E A’} has Lebesgue measure 
O(hd’*), 

r = O(j-3d12). (4.14) 

Now given (x, y) E A, note that the sets A1 = {z: 11x - zll <h’/*} and A, = 
(z: Ily-zll <h”*} are disjoint. Let A3 = Wd\(A 1 u A,). Define I,, I,, and Z3 
by 

z=lj~A[~A~~z+l,*~~+~A~~z]2w(x)w(Y)f(x)l(Y)dxdy 

= 
ss C~,+~*+~,l* w(x) W(Y)f(X)f(Y)~X~Y. 

A 

Using (K.4), uniformly over (x, y) E A and z E A I, 

Hence, 

sup Z,=s;pjA, [h-dK-(~)-,,x)][h--dK(~)-j-(y)]f(z)dz 
(x.y)~A 

= O(h (l/*)-d ). 

Similarly, 

sup Z, = O(h(“*)- “), 
A 

sup Z, = O(h”‘2’-d). 
A 

It follows from the above that 

Z= O(h’-2d). 

Now from (4.13) and (4.14), 
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The above computations will prove useful in bounding the last term. 
Using the Schwartz Inequality and the independence of Xj and X,., 

(E(V,V~jV,.V~~)l 

=IE(EIV,T/,.Ixj,x~]E[vrjIxj]E[~~~lI~])l 

6 [E(EIV,V,.IXj, xJ’)]“2[E(E[v,Ixj]2) E(E[vi*yIxJ)]1’2. 

Note that the first factor on the right side appears in (4.13). Thus the com- 
putations following (4.13) together with (4.9) imply 

cov( v, Vfj, VW viy) = o(h -ds#l)). 

Now looking back to (4.12) it is apparent that, for h between .-‘jd 
and 1, 

cov( u,, Vi,) = 
o(n-*h-*d)+O(n-lh-d~~h)). 

MISE* 

Thus by computations similar to (4.11), for h between n ~ ‘Id and 1, 

COV(Uj, uj+o. 

It follows from this together with (4.11) that for h between nP’ld and 1, 

var (KIJ1 Uj) -0, 

and hence, by the Chebychev Inequality, 

n ~ ’ 2 U, -+ E( Uj) 
j= 1 

in probability. 

Theorem 2 is an easy consequence of this together with (3.5), (4.1), and 
(4.2). 
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