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Abstract: Various bootstrap methodologies are discussed for the
selection of the bandwidth of a kernel density estimator. The smoothed
bootstrap is seen to provide nmew and independent motivation of some
previously proposed methods. A curious feature of bootstrapping in this
context is that no simulated resampling is required, since the needed
functionals of the distribution can be calculated explicitly.

1. Introduction

"This is a review of results concerning application of bootstrap ideas to
bandwidth or smoothing parameter selection. The main ideas are useful in
all types of nonparametric curve estimation settings, including regression,
density and hazard estimation, and also apply to a wide variety of
estimators, including those based on kernels, splines, orthogonal series, etc.
However as much of the work so far has focused on perhaps the simplest of
these, kernel density estimation, the discussion here will be given in this
context.

The density estimation problem is often mathematically formulated
by assuming that observatioms NH,.:,N n are a random sample from a
probability density f(x), and it is desired to estimate f(x). The kernel
estimator of f(x) is defined by

- D
fp(x) = n WMHNHPAHIML,
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where K, denotes the rescaling K, (-} = K(-/h)/h, of the "kernel
function” K (assumed throughout to be a symmetric probability density) by
the "bandwidth™ k. See Silverman (1986) for early references, good practical
motivation, and useful intuitive discussion concerning this estimator.

The most important hurdle in the practical implementation of woa
(and indeed essentially any nonparametric curve estimator), is the choice of
the bandwidth h. While many methods have been proposed and studied, see
the survey Marron (1988} for example, this remains an important problem in
the application of curve estimators in general.

For a mathematical approach to this problem, most workers consider

error criteria. Here the focus will be on the expected Hm norm, or Mean
Integrated Squared Error,

MISE(k) = E [ [£, (x) ~ fx)]? dx.
Devroye and Gy&rfi (1984) provide an array of arguments in favor of the !
Dorm, but for simplicity of presentation and development of ideas, extensions
to this challenging case will only be briefly discussed at the end.

An important advantage of MISE(R) as ar errer criterion is that it

2

admits the simple variance—bias” representation

MISE(h) = V(h) + B(R)
where
1y =
Vin) = o K 4 K %)
2 2
B(h) = [(Ky*—1)
using * to demote the comvolution. Deep insight into the bandwidth

selection problem comes from the asymptotic analysis, a5 n -, h -0, with
nh -+ w, assuming two uniformly continuous derivatives on f,

V() = 2 b (K2 4 o,
2 4 2,02 2 4
B (k) = &* [(f")" (Jx°K/2)” + o(n"),
see Section 3.3.1 of Silverman (1986) for example. From this one can see

why choice of k is not a simple matter, h small gives too much variability
to the estimator (expected intuitively since there are not emough points in
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the effective local average when the window width is too small), h big
introduces too much bias (again intuitively clear since a large window width
introduces information from too far away).

Section 2 discusses bandwidth selection by minimization of bootstrap
estimates of MISE(h). In particular it is seen why the smoothed bootstrap
i§ very important here. An interesting and uwnusual feature of this case is
that the bootsirap expected value can be directly and simply calculated, so
the usual simulation step is unnecessary in this case.

Asymptotic analysis and comparison of these methods is described in
Section 3. Connection io other methods, including Least Squares Cross
Validation, is made in Section 4. Simulation experience and a real data
example are given in Section 5.

2. Bootstrap MISE Estimation
The essential idea of bootsirapping in general is to find a useful
approximation to the probability structure of the estimation process being

studied, denoted in this case by £{fy(x) —f(x)}. The usual simple means of
doing this involves thinking about "resampling with replacement”. One way
of thinking about this probability structure is through random variables
HHQ..;Hn which are independent of each other, and of NE:;NE and are
uniformly disttibuted on the integers {1,...,n}. These new random variables
contain the probability structure (conditioned on Hﬁ:sxnv of the

* *
"resample" X, ... X

- defined for i =1,...,n by

*
unw = ummm.

As a first attempt at using this new conditional probability structure
to model the bandwidth trade-off in the denmsity estimation problem, ome

might define the "bootstrap density estimator®

~” %k -1 n
HW AHV = 1 mWHHﬁFmH|HmV“
and then hope the approximation
* o~ %k

£ {8y ()~ 501Xy X ) 2 LF () ~ £},

is wseful.  Faraway and Jhun (1987} have pointed out that this
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approximation is in fact not useful for bandwidth selection because

* -~ %

x -
E{fy x)} = E ,ﬁmr?lumuvw = mwﬁuaq
*
where E  is expected value "in the bootstrap world", in other words with

respect to the bootstrap distribution h*ﬁ. _NH,...LﬁbT i.e. the average over
all possible values of L)y This shows that there 15 no bias in this
bootsirap world, which is disastrous because as shown by the MISE(h)
analysis in section 1, bias constitutes one of the two essential quantities to be

balanced in bandwidth selection. Actually this is not too surprising because

ww is not in fact the density of the h*.m. _N_.,:._Mbw distribution. Note
moreover that this philosophical flaw can not be simply fixed because this is
a discrete distribution {supported on ﬂﬂw:..xbt and has no density.

This motivates finding another bootstrap probability structure to

approximate £{ wwoa —1(x)}. A natural candidate, proposed for bandwidth
selection by Faraway and Jhun {1987) and Taylor (1989), which does have a
density is the smoothed bootstrap, introduced in Efron (1979). An
alternative clever idea based on subsampling is proposed in Hall (1990}, but
this will not be discussed further here because connections to other methods,
and comparison with them have not yet been well understood.

A means of studying the smoothed bootstrap, using notation as above,
is to define additional random variables TN independent of each other
and of HH....,N , and HH,..._HE having probability density L
g>0, L g denotes the rescaling L

bootstrap sample by, for i = 1,....n
*
Hm Aﬂ vﬁHw + &

Observe that the distribution of Xy |XpXy,

moc, where for

mﬁ.v = L(-/g)/g- Now redefine the

i.e. the bootstrap
distribution h*ﬁ- _NH....,HH_W has probability density
f (x) = "~ m L (x—X.).
g i=1 8 1
Hence it seems natural to study when the approximation
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* o~k

£y ()~ £091Xy, X} & LTy ()~ 1),

is useful. This depends on the choices of L and g which are discussed in
the next section.

This motivates the use of the bandwidth " which minimizes (break
ties arbitrarily) the MISE in the bootstrap world,

MISE'(h) = E [ {f, (x)—1 (P dx,
= V'(t) + B"(n),

where f; is defined as above but using the smoothed bootstrap data, and
where

ViE) = 2 e %,
* - -
B 2(n) = :zw*mmawm.

An interesting fact about this setup is that the desired functionals of
the bootstrap distribution can be simply calculated, so the usmal
computationally expensive simulation step is unnecessary. This is usually
the case only for very simple examples, see section Chapter 5 of Efron (1982),

although an interesting exception is in quantile estimation, see Sheather and
Marron (1990).

It is straightforward to compute gmm*?v because V. and B 2
admit the simple representations

* — — —
V@) = oK+ o PR "K KK - X))
i

*2 -2
B “(k) = n *ZE{K *K,*K *K_-2K *K *K_+ K * -~ X.).
(&) B {Ky ™Ky KKy = 2K KK + KKK = X)

*
Hence calculation of h  requires about the same computational effort as the
least squares cross—validated bandwidth. (discussed in section 3.4.3 of section
Silverman 1986).

For a completely different approach to bootstrapping in density
estimation, see Hall (1990).
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3. Asymptotics

In this section, choice of g and L is considered. A semsible fixst
attempt, see Taylor (1989), would be to try g="h and K =L. This can be
easily analyzed using the assumptions and asymptotics at the end of section
1, with the important part being

B 2 vt (5, ) UK/

This presents a problem, because for g ~ ult 5 which is the reasonable

b

range for h see section 3.3.2 of Silverman (1986) for example, wm~ “(x) does

not even converge to {//(x} (because the variance dees not tend to 0). For
this reason, Faraway and Jhun (1987) propose using g > h. However
observe that f//(x) 1is not what is needed here, instead we need the
functional :mtvm which is a different problem. Indeed for g~ n!w\ m, Hall
and Marron {1987) show that

I(CRE RN (GO
although this choice of the bandwidth g is quite inefficient in the sense that
it gives a slower than necessary rate of convergence.
A means of quantifying this Inefficiency, which is relevant to
bandwidth selection, is to study its effect on the relative rate of convergence.
In remark 3.6 of Hall, Marron and Park (1990}, it is shown that

*
(& /hg) -1 - o1,
when g="h, where h, denotes the minimizer of MISE(h). This very slow
rate of convergence is the same as that well known to obtain for least squares
cross—validation, and for the biased cross—validation method of Scott and

Terrell (1987) (which uses g = h in a slightly different way). For this
reason, as well as the fact that the approprate bandwidth for estimating

i ‘Uw is different from that for estimation of f(x}, the choice g="h does
not seem appropriate.
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Good insight for the problem of how to choose g has been provided
by the main resulis of Hall, Marron and Park (199¢). The minorx
modification of these results presented here is explicitly given in Jomes,
Marron and Park (1990), where it is seen that if f has slightly more than
four derivatives, and L is a probability density, for C,, Ow and Ow
constants depending on f, K and L,

* =1 — —
0 /mg)~1 & ¢4 (0 + Cp i),

where 7 is a standard normal random variable. Note Ow = 0 and

g~ Al gives the slow 210 ate in the above paragraph. This

expansion is important because it quantifies the trade-off involved in the
choice of g. In particular there is too much "variance” present if g0 too
rapidly, and a "bias" term that penalizes g -~ 0 too slowly. This variance
and bias can be combined them into an Masymptotic mean squared error”
which can then be optimized over g to see that the best g has the form

m - OﬁﬁMuHﬂuH._v leu..\ﬂv
which gives

*

®'/h) -1~ oM

Data based methods for estimating C, are given in Jones, Marron and Park

{1990). Note that this rate of convergence is much faster than 2110,

A natural question at this point is: can the rate hla\ 14 e

improved? As noted in remark 3.3 of Hall, Marron and Jones (1990), by
taking L to be a higher order kernel, this rate can be improved all the way

up to the parametric n 1/2 (L needs to be of "order 6" for this fast rate).
This rate has been shown to be best possible by Hall and Marron (1990).
However there is a distinct intnitive drawback to this in that when L isa
higher order kernel, it can no longer be thought of as a probability density,
50 r* is no longer a bootstrap bandwidth, at least in the usual sense of the
word.

A more intuitive way of achieving root m convergemce is given in
Jones, Marzon and Park (1990), who consider factorizations of g, in terms
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of h, of the form
g = CoPa™
In particular for m = —2 and suitable p they obtain
*
(B /h) -1 = 272,

in the much more natural case K = L.

4, Connection to Other Methods

Bandwidths that are essentially the same as w* have been derived
from considerations much different from bootstrapping. In particular note
that the dominant part of the representation of V(h) at the end of section 1

does not depend on £, so it is natural to estimate V(k} by uIHrIH—Nw,
whick is asymptotically equivalent to 4*90. The fact that w*wﬁa
provides a natural estimate of wNAE can also be derived in a natural way
by thinking about replacing the unknown f in B? by the pilot kernel
estimator mm. Such non-bootstrap motivations for a bandwidth selector

very close to w* were developed independently in an unpublished paper by
Ramlau—Hansen and in the related regression setting by Miiller (1985). See
Chiu {1990) for related ideas from the Fourier Transform point of view.

Hall, Marron and Park (1990) motivate a very similar bandwidth
selector, but by a different method. They propose decreasing the variability
of the least squares cross—validated bandwidtk through a "pre-smoothing” of

the pairwise differences of the data. Note that, using WE to denote the

kernel estimator based on the sample with N._. excluded, the least squares
cross—validation criterion can be written in the form

2o =10
CV(d) = [f,°~2n .MHHE@MV
u"

v 0K 4 0 e1)"L B B (K, *K, - 2K, J(X. — X.

where the approximation comes from replacing a factor of ot by QTSIH.
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Note that the first term provides the same sensible estimate of V(h)
discussed in the paragraph above, while the second term has features

&
reminiscent of the representation of B 2 given at the end of Section 2. To
make this connection more precise, note that when there are no replications
among N%..-.Nﬂ, the second term is the limit as g -0 of
2 -1 ],
B (h) =1 “(n—1) W.%m ”_uwmﬁm Ium.mvv
where
D, = {K *K. *K *_-—2K,*K _*K K *K }.
ng = {Ky Ky K Ky — 2Ky KKy + KTKh
Note also that by the associative law for convolutions, cne may view this as
first plugging the differences into K m*N g and then putting the result into
the bias part of CV, which is why this idea was called smoothed

cross—validation by Hall, Park and Marron (1990).

The important difference between Ww?v and w*u?v is whether or
not the "terms on the diagonal” are included in the double sum. At first
glance one may feel uncomfortable about these terms because they do not
depend on the data. At second glance it is not clear that they will have a
very large effect, unless g <= h, when they coniribute a term of order

p b} For this reason Taylor(1989) deleted these terms in his g =h
implementation of the smoothed bootstrap. However more careful analysis,

*
in the case g >> h, shows a rather slight theoretical superiority of B 2

over B® has been demonstrated by Jones, Marron and Park (1990) in terms
of the relative rate of comvergence. Simulation work has also indicated
usaally small superiority of the diagonals in approach, although the
improvement is sometimes much Jarger because the diagonals out version is

*.
less stable. Ome possible explanation as to why this happens is that B 2 is

the stmoothed bootstrap estimate of wm‘ while WM does not seem to have
any such representation.

Faraway and Jhun (1987) have pointed out that the bootstrap
approximation can be used to understand the bandwidth trade—off entailed

by other means of assessing the error in ww. For example one could replace
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the L? based MISE with the expected L! norm. A major drawback to

this is that it seems that an exact calculation of the bootstrap expected value
*

E  is no longer realistically available. Hence this expected value will need
to be evaluated by simulation, which will be far more {perhaps
prohibitively?) expensive from the computational viewpoint. Amnother
example is the replacement of MISE by the pointwise Mean Squared Error,
where cne focuses on estimation of f at one fixed location x. Here the exact

*
calculation of £ can be done, however this has not been explored carefully
yet, mostly because it seems sensible to postpone investigation of this more

challenging pointwise case until more is understood about the global MISE
problem.

5. Simulations and an Application

To see how these methods worked in a simulation context, various
versions of the bootstrap bandwidth selectors were tested. Several methods
of choosing the pilot bandwidth g, as discussed in Jones, Park and Marron

(1990), including immediate use of a Zﬁo.m ) reference distribution and also
estimation of the unknown functionals as suggested in Jones and Sheather
(1990), were tried. The results were usually better when estimates were
used, so ome step estimators of this type were used for the following
discussion. To speed the computations, 2 binned implementation of the type
described in Scott and Hardle (1990) was employed.

For this, 500 pseudosamples of size n = 100 were generated from
the rormal mean mixture density described in Park and Marron (1990). The
results are visually summarized in Figure 1, which is very similar to Figure
3b in that paper. The bandwidth selectors CV, BCV and OS there are
not shown here, becaunse as one would expect from the results of that paper
they were inferior to these newer ones. PI is the main bandwidth selector
discussed by Park and Marron. Note that Taylor’s g = h method
performed quite poorly in comparison to the others, with 2 strong bias
towards oversmoothing. This poor performance is not surprising in view of
the theoretical results described above. The simple bootstrap, denoted BSS,
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Figure t: MISE and kernel density estimates of the distributions
of the automatically selected bandwidths (log 3 scale). Based on
500 Monte Carlo replications of samples of size 100 from the model
SN(~1,4/9) + .5N(1,4/9).

which uses & data based g chosen independently of h, gave performance
roughly comparable to the Park and Marron PI. It is not straightforward to
compare these, because there is slightly more bias, but slightly less

variability. However the bandwidth factorized bootstrap, i.e. the o 1/2

method described at the end of Section 3, denoted BSF, gave much better
performance, having less variability and also less bias than the others.

These selectors have also been tried for other sample sizes and other
densities as well. For those densities not too far from the Normal in shape,
the asymptotics describe the situation well, with larger sample sizes giving
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more rapid improvements in BSF than the others (as expected from its
faster rate of convergence). For the N(0,1) BSF gave really superlative
performance, in fact even beating out the Normal reference distribution
bandwidth given at (3.28) of Silverman (1986). For densities which are still
unimodal, but depart strongly from the normal in directions of strong
skewness or kurtosis, the performance was mot so good (in fact CV is
typically the best in terms of MISE), but can be improved a lot by using a

>
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Figure 2: Expanded respresentation of 16 density estimates
for incomes in the United Kingdom, 1968—1983. Bandwidths
chosen by bandwidth factorized smoothed bootstrap.

scale estimate which is more reasonable than the sample standard deviation
in such situations, such as the interquartile range. On the other hand when
f is far from normal in the direction of heavy multimodality, again most of
these newer bandwidth selectors were inferior to CV in the MISE sense,
but the sample standard deviation was 2 more reasonable scale estimate than
the IQR. A way to view both of the above situations, is that they are cases
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where it takes very large sample sizes before the effects described by the
asymptotics take over. There is still work to be done in finding a bandwidth
selector which works acceptably well in a1l situations.

To see how well these methods work on a real data set, they were
tried on the income data shown in Figure 2 of Park and Marron (1990). The
data and importance of that type of display ate discussed there. Several of
the bootstrap bandwidth selectors considered in this paper were tried on this

data set. The best result was for SBF with the Zﬁo.mwv reference
distribution used immediately. Figure 2 here, which compares nicely to
Figure 2 in Park and Marron shows the result. The other variants, involving
estimation steps in the choice of g, tended to give smaller bandwidths,
which are probably closer to the MISE value, but gave estimates that are too
rough for effective presentatiorn of this type.
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