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AN ASYMPTOTICALLY EFFICIENT SOLUTION TO THE
BANDWIDTH PROBLEM OF KERNEL DENSITY ESTIMATION'

By JAMES STEPHEN MARRON

University of North Carolina at Chapel Hill

A data-driven method of choosing the bandwidth, h, of a kernel density
estimator is heuristically motivated by considering modifications of the
Kullback-Leibler or pseudo-likelihood cross-validation function. It is seen
that this means of choosing h is asymptotically equivalent to taking the h
that minimizes some compelling error criteria such as the average squared
error and the integrated squared error. Thus, for a given kernel function, the
bandwidth can be chosen optimally without making precise smoothness
assumptions on the underlying density.

1. Introduction. Consider the problem of estimating a univariate proba-
bility density function, f, using a sample Xj, - --, X, from f. An estimator which
has been studied extensively (see, for example, the survey by Wertz, 1978) is the
kernel estimator which is defined as follows. Given a “kernel function,” K (with
| K(x) dx = 1), and a “bandwidth,” h > 0, let

(1.1) f(x, h) = (1/nh) T K((x — X))/h).

The “bandwidth problem” consists of specifying h = h(n) in some asymptoti-
cally (as n — o) optimal fashion. Under very precise assumptions on the amount
of smoothness of f, there are many results where h(n) is given deterministically
to asymptotically minimize some error norm. See, for example, Rosenblatt (1956),
Parzen (1962), or Watson and Leadbetter (1963). Unfortunately, this type of
result is virtually useless in practice because the optimal h(n) is a function of the
(unknown) smoothness of f. This may be seen especially clearly from the results
of Stone (1980) who deals with a continuum of smoothness classes. Thus there
has been a considerable search for techniques which use the data to specify h.

A popular technique of this type is the “cross-validated” or “pseudo-maximum-
likelihood” method introduced by Habbema, Hermans and van den Broek (1974).
This is defined as follows. For j = 1, ..., n, form the “leave one out” kernel
estimator,

(1.2) filx, ) = (1/(n — 1)h) $h1m K((x — X)/h).
Then take A, to maximize the “estimated likelihood,”
Li(h) = T F(X5, h).

A recent paper by Chow, Geman and Wu (1983) contains some interesting
heuristics and a consistency theorem for the estimator f(x, h;), Despite these
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1012 J. S. MARRON

encouraging results, this estimator can be very poorly behaved. Section 2 contains
examples which illustrate some of the pitfalls that may be encountered by this
estimator. That section also contains a series of heuristically motivated modifi-
cations of L;(h), leading to the version that is seen to be asymptotically optimal
in the theorems of Section 3. The reader who is only interested in the form of
the optimal estimator should skip all of Section 2 but (2.8).

Section 4 contains some remarks. Section 5 gives the results of some simula-
tions. The last sections contain the proof of the main optimality theorem.

2. Modification of cross-validation. To see how f(x, h;) can be poorly
behaved, consider the following example. Suppose the density f has cumulative
distribution function F so that

F(x) =e™* for x>0.

Note that F is infinitely differentiable. Let X;) and X denote the first two
order statistics of X, - -, X,,. It follows from Example 1.7.5 and Theorem 2.3.2
of Leadbetter, Lindgren and Rootzén (1983) that,

lim;_olim inf, P[Xe) — Xy > 8/(log n)?] = 1.

But for compactly supported K (such as, for example, the “optimal kernels”
of Epanechnikov, 1969; or Sacks and Ylvisaker, 1981), I:l(fz) = 0 unless h =
¢(X(g) — X)) for some constant c. Thus, the cross-validated h, must converge to
0 slower than any algebraic rate. Yet it is well known that an algebraic rate such
as n”'® (depending on the assumptions made) is necessary for reasonable per-
formance of the estimator.

Analogous, though not so dramatic, examples can be constructed by taking,
for k large,

F(x) = x* for x€ (0, %),

or by taking K no longer compactly supported, but with suitably “light tails.”
These examples indicate that, even when f is very smooth and compactly
supported, ordinary cross-validated estimators can be drastically affected by data
points where f is close to 0.

A reasonable way to eliminate the above difficulty is the following. Find an
interval [a, b] on which f is known to be bounded above 0. Redefine the estimated
likelihood

La(h) = Ty Fi(X;, h)len®

and take A, to maximize L.(h). Note that cross-validation is performed only over
those observations which lie in [a, b].

The estimator f(x, /) has been studied by Hall (1982), although he seems to
have arrived at it by considerations different from the above. The notation used
here (different from that of Hall) is due to Peter Bloomfield and will facilitate
the rest of this discussion. Hall’s results show that, while the above pathologies
cause no problems, this version of cross-validation still behaves suboptimally
with respect to the rate of convergence of mean square error. It is interesting to
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note that the dominant term in his expansions depends only on the behavior of
f at the endpoints of [a, b].

David Ruppert has suggested the following heuristic explanation of this
endpoint effect. Note that if f'(a) < 0, there will be more X;’s “just to the left”
of a than “just to the right.” Hence if h is taken to be relatively large, more
probability mass (of the density f(x, h)) will be moved into the interval [a, b]
which will thus increase L,(h). Hence, there willbe a tendency for cross-validation
to “oversmooth” (i.e., take h too large). On the other hand, if f’(a) > 0, then, by
the same argument, cross-validation will tend to “undersmooth” in order to keep
as much probability mass inside [a, b] as possible. When this effect is taken
into account at both endpoints simultaneously, it is not surprising that Hall
reports oversmoothing when f’(b) — f’(a) > 0 and undersmoothing when
f'(b) —f'(a) <O.

With this insight, Rupport has proposed eliminating this effect in the following
way. For j=1, -- ., n, define

b
b= f fitx, h) dx,

redefine the estimated likelihood
La(h) = i1 (F(X5, B)/B) s,

and take ﬁg to maximize Ls(h).
This estimator will now be investigated using heuristics developed by Chow,
Geman and Wu (1983). First it will be convenient to define

b b
(2.1) p= f flx) dx, p= f f(x, h) dx.

For the heuristics, assume K is nonnegative and f(x)log f(x) is integrable. By a
Law of Large Numbers,

(1/n)log Ly(h) = (1/n) Ty 1u(X)llog F(X;, h) — log p]
(2.2) b )
~ f f(x)log f(x, h) dx — p log p.

But now by Jensen’s Inequality,

b A , b A
(2.3) f ) 1og(m> dx < 1og< f fx, h) dx) -0,
a D Pf(x) a D

with equality if and only if
f(x, B)/p = fx)/p, ae.on [a,b].

Hence,

b b
(2.4) f f(x)log f(x, h) dx — p log p < f f(x)log f(x) dx — p log p.
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Thus, Ls is essentially using the conditional Kullback-Leibler information (the
left-hand side of (2.3)) as a measure of how well f(x, h) approximates f(x). But
this measure has the disturbing property that it fails to distinguish between f
and f when they are unequal but proportional to each other.

Peter Bloomfield has suggested overcoming this difficulty by sharpening the
inequality (2.3) using the following device. Note that for x, y > 0,

(2.5) ylog(x/y) =x -y,

with equality only when x = y. Hence

plogp—plogp=p—p.
It now follows from (2.4) that

b b
(2.6) f fx)log f(x, h) dx — p < f f(x)log f(x) dx — p,

with equality if and only if f(x) = f(x, h) for almost all x € [a, b]. Now reversing
the heuristic argument (2.2) it is apparent that the estimated likelihood should
be redefined as

Li(h) = Tl [/i(X;, h)e #P)en®)

and h, taken to maximize Ly(h).
Using a Law of Large Numbers in a manner similar to the above, it can be
shown that L,(h) is very similar to the computationally simpler

Ls(h) = [1}=1 f1(Xj, h)ten®e=rX),

where

*1 y—x
2.7) p(x)=J; EK< 3 )dy.

One last refinement will now be made. Many authors, starting with Parzen
(1962) and Watson and Leadbetter (1963), have noticed that the asymptotic
properties of K can be greatly improved by allowing K(x) to be negative for some
x. The results of this paper apply to either this type of kernel or the nonneg-
ative kernels which guarantee that f is “range-preserving” (i.e., = 0). However
the proofs in this paper involve taking logarithms, so it is necessary to do some
truncation. Define, for x € R,

f*(x, h) = max(f(x, h), 0),

andforj=1, ..., n,

fi (x, ) = max(f(x, h), 0).
Now redefine the estimated likelihood
(2.8) L(h) = [ F}(X;, h)'eaXDe=rX

gnd gake h to maximize L(h). It will be seen in Section 3 that the estimator
f(x, h) has excellent asymptotic properties.
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An interesting side effect of the above truncation is that if K(0) = 0, f(x, ) is
range-preserving, and in fact is positive, at each data point in [a, b].

3. Asymptotic optiAmality theorems. Three compelling means of assess-
ing the performance of f(x,h) in estimating for f(x) are the Average Square Error,

(3.1) ASE(h) = n™' 3 [£(X;, ) — AX)Pw(X)),
the Integral Square Error,
8.2 ISE(h) = f [f(x, B) — f(x)Pw(x) dx,

and the Mean Integral Square Error,
(3.3) MISE(h) = E(ISE(h)).

The assumptions of the theorems which demonstrate good ASE, ISE and
MISE performance of f(x, ) will now be given. For some small ¢ > 0, define
sequences {h,} and {h,} by

(3.4) h=n" h=n",

where, here and below, the dependence on n is suppressed. Note that assuming
h € [h, h] is slightly stronger than the bandwidth assumptions made for the best
known uniform consistency results. Also assume that the density f satisfies

(3.5) f is bounded above 0 on |[a, b]
there are constants M, vy >0 sothatforall «x,y
[ fx) —f(y) | =M|x—y]|".

Another assumption is that the kernel function K satisfies

(3.6)

(3.7) f K(x) dx =1,
there are constants M, £>0 sothatforall x,y
|[Kx) —K(y)| =M|x—yl|

(3.8)

(3.9) Either X has some moment, or K is compactly supported.
The main theorem of this paper is
THEOREM 1. Under the assumptions (3.4)-(3. 9) if h= h(n) denotes any
sequence of maxima of L(h), subject to the restriction h € [h, h], then
ERR(h)/infuc, g ERR(B) > 1 a.s.
where ERR(h) denotes any one of:

(@) ASE(h), with w(x) = f(x) 144 (x)
(b) ISE(h), with w(x) = f(x)1g4(x)
(c) MISE(h), with w(x) = f(x) " 15(x).
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A drawback to this theorem is that it applies only to h in the interval [k, k).
This is not a big problem from the theoretical point of view because it is well
known that any “0pt1ma1 bandwidth” is easily inside the interval. Also, Monte
Carlo experience with L(h) (see Section 5) indicates that this assumption is not
a problem in practice. Further reassurance along these lines is provided by:

THEOREM 2. Assummg (3.5)-(3.8) and in addition assummg that K is com-
pactly supported, if b = h(n) denotes any sequence of maxima of L(h), then

i) h>0as. )
ii) lim,_olim sup,P[A < cn~@*V7] =0

It should be noted that while Theorem 2 does show h > h (for ¢ sufﬁc1ently
small) it does not show A < & or even establish the consistency of f(x h). It is
intended only to give some backing to the above remarks. To save space, the
proof of Theorem 2 will not be given here. The interested reader can find it in
the technical report of Marron (1983a). The proof of (i) is based on techniques
of Chow, Geman and Wu (1983) and it appears that these techniques may be
further extended to establish the consistency of f(x h) The proof of (ii) is based
on an order statistics result of Cheng (1983).

4. Remarks

REMARK 4.1. The reader may be surprised that no vanishing moment as-
sumption is made on K (see, for example, Parzen, 1962). Theorem 1 says f(x, h)
will have the best asymptotic properties for the given K, but how good that is is
irrelevant to the theorem.

REMARK 4.2. An inspection of the proofs shows that extending the theorems
to the case of f multivariate requires little more than notational changes. Also,
since the hardest part of the proof is a consequence of the results of Marron and
Hérdle (1984), extension of these results to the case of histogram and orthogonal
series estimators seems straightforward.

REMARK 4.3. At first glance, one might be disturbed by the fact that the
error criteria that are minimized here are limited to the interval [a, b]. In
somewhat similar settings and in the case of estimating a regression function,
Gasser and Miller (1979) and Rice and Rosenblatt (1983) have observed that
such criteria are strongly affected by the behavior of the unknown function at
the endpoints and hence the bandwidths which minimize them can provide
relatively poor estimates in the interior of [a, b]. However, with very little effort,
one may see that such an “endpoint effect” does not occur in the present setting.
This is because the density f extends (and is smooth) outside the interval [a, b]
and observations outside [a, b] are employed in the estimator of this paper. Hence,
the error criteria of this paper seem very reasonable.



BANDWIDTH PROBLEM OF KERNEL DENSITY ESTIMATION 1017

REMARK 4.4. For the Least Squares cross-validation function, which is quite
different from L(h), results similar to Theorem 1 have been established by Stone
(1984) and Burman (1984). A major difference between Theorem 1 and those
results is that there the weight function w(x) in ISE is identically one. The weight
functions used in this paper are quite natural because all three error criteria are
roughly (see Lemma B in Section 6) proportional to the expected relative square
error:

E[((f(x) — fx)/f(x))*| X € [a, b]].

It is seen in Marron (1983b) that this error norm is the most useful for the
application of density estimation to the classification problem. Dennis Boos has
remarked that this is also more useful for application to minimum Hellinger
distance estimation.

5. Simulations. As with any asymptotic theory, it still remains to check
that the properties described by the asymptotics “take effect” for sample sizes
which are not prohibitively large. The results of some simulations, in the spirit
of Hall (1982), are reported here. Following Hall, K and f were taken to be
standard normal, with a = —1, b = 1, and n = 2,000. The maximizer of L was
0.240, while the minimizer of ASE was 0.247. The expansions in the next few
sections indicate that these should be close to the minimizer of the familiar
asymptotic representation of MISE (given in (8.1)) which is 0.235 in this case.
The heuristic argument against the cross-validation curve Ly(h) is supported by
the fact that A, was 0.078 (note drastic undersmoothing, as predicted).

6. Proof of Theorem 1. This proof uses ideas developed by Hall (1982).
Note that choosing h to maximize L(h) is the same as finding a maximizer of
(6.1) n~'log L(h) + R,
where

R=p—n" 3% log AX)1en(X),
and p was defined in (2.1). For analyzing (6.1), it will be useful to define, for
j = ]_’ ey, n’
(X, h) — f(X)
(X))

(X5, h) — f(X)
Xy
andforn=1,2, -.-, the event
U, = {Af 1os(X) = Ajly(X;) for each h € [h, hland j =1, ---, n}.

The cornerstone of this proof is the fact that, for any h € [h, h] and on the
event U, (6.1) admits the expansion

n~'log L(h) + R
(6.3) =n7' Y [Lea(X)log(l + A) — p(X)) + pl
=n"' 3% Mes(X)A; — p(X)) + p] — %LASE(h) + n7' I rilgn(X)),

(62) Aj = A]+ =
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where K§E/ is the leave-one-out version of (3.1) given by
NS a
(6.4) ASE = n7' 31 [fi(X], h) — AX)PAX) ieu( X)),

and where r; denotes the remainder term of the Taylor expansion of the logarithm.
The fact that it makes sense to consider only what happens on the event U,
is established by

LEMMA A. Under the assumption of Theorem 1, letting Uy, denote the comple-
ment of U,
P[U; t0.] = 0.
The proof of Lemma A is in Section 7.

The fact that (3.1), (3.2), (3.3) and (6.4) are asymptotically the same error
criterion is established by

LEMMA B. Under the assumptions of Theorem 1, letting ERR(h) denote any

of ASE, ASE or ISE,
sup, | ERR(h) — MISE(h) |/MISE(h) — 0, a.s.

where sup,, denotes supremum over h € [h, h).
The proof of Lemma B is in Section 8.

The fact that the first term on the right side of (6.3) is negligible is established
by

LEMMA C. Under the assumptions of Theorem 1,

sups | n7t Tt [1as(X)Aj — p(X)) + p]|/MISE — 0, a.s.

The proof of Lemma C is in Section 9.

The fact that the final term of (6.3) is negligible is established by

LEMMA D. Under the assumptions of Theorem 1,

sup, | n”' X riles(X)) |/MISE — 0, a.s.

The proof of Lemma D is in Section 10.
To arrive at the conclusion of Theorem 1, Stone (1984) has noticed that it is
enough to check that

|ERR(h) — ERR(K’) + n"'(log L(h) — log L(h")) |
» ERR(h) + ERR(K')

almost surely, where inf, ;- denotes infimum over h, h’ € [h, h]. But in view of
Lemma B, this can be done by showing

| ERR(k) — ERR(K’) + n~'(log L(h) — log L(k")) | R
" MISE(h) + MISE(h’)

infh,

infh,

0,
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almost surely. However this follows easily from the expansion (6.3) and Lemmas
A, B, C, and D. This completes the proof of Theorem 1.

7. Proof of Lemma A. By Lemma 1 of Hardle and Marron (1984), letting
sup, and sup;, denote supremum over x € [a, b] and h € [h, h], respectively,

sup,sups | f*(x, h) — f(x) | < sup.supx| f(x, h) — f(x) | = 0,

almost surely. In a similar spirit, letting sup; denote supremum over j = 1,
..+, n, the computations leading to (5.5) of Hardle and Marron (1984) yield

(7.1)  sup;sup,sups | f7(x, h) — f(x) | < sup;sup,sups | f;(x, h) — f(x)| — 0,
almost surely. It follows from this and (3.5) that
sup;supy | A7 | < sup;supi| Aj| — 0,

almost surely.
Lemma A is an easy consequence of this.

8. Proof of Lemma B. In the case of ASE and ISE, Theorems 1 and 2,
respectively, of Marron and Hardle (1984) show that Lemma B is true if the
supremum is taken over any finite set of h whose cardinality increases algebrai-
cally fast. It is straightforward to use the Lipschitz continuity assumptions (3.6)
and (3.8) to extend the supremum to [h, h).

To check the case of ASE, first observe that

fix, b) = f(x, ) = (n = 1) H(x, B) — (n — 1)K TK(0).
Now write
ASE = ASE + A + B,
where
A =207 Y [(n — D7H(f(x, ) — RTKODIAX;, h) — AX)IAX) 2 LX),
B =n7" 3% (n— 1)7%(f(x, h) — 7' K(0)*(X) 2 Liau(X)).

s
Lemma B in the case of ASE now follows easily from the case of ASE, from
Lemma A, and from the well-known ‘(see, for example, Rosenblatt, 1971)
variance-bias? expansion,

(8.1) MISE(h) = n‘lh‘1<f flx)w(x) dx)(f K(u)? du) +o(n"h™Y) + b(h),

where the bias? part has been denoted

(8.2) b(h) = f [ Ku)f(x — hu) du — f(x)] w(x) dx.

This completes the proof of Lemma B.
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9. Proof of Lemma C. Note that, by (1.2) and (6.2)
n™ Eia [Lea(X)4) — p(X)) + p
(9.1) =n"'(n = D)7 Toy [((I/WEK(X; — X)/WFX)™ = 1)
* lan(X)) — p(X)) + pl.

Thus, to finish the proof of Lemma C, it is enough to show that

suppn~'(n — 1) | Y Vi IMISE™ - 0 a.s.,
where
(9.2) Vi = (1/MK(X; — X)/MfX) " Liao(X)) — p(Xi) — 1n(X) + p.
Observe that p(Xj;) in (9.1) has been replaced by p(X;) in (9.2), to allow

E[V;;| Xi] = 0.
To make the other conditional mean also vanish (in effect), write
Vij=Vij+ W,
where
W; = E[Vi;| Xj].
Note that
9.3) E[V{;| X] = E[Vi;1 X] = 0, E[Wj]=0.
The proof of Lemma C will be complete when it is seen that
(9.4) suppn?| Y VL, IMISE™! - 0 as.
and that
(9.5) suppn!| Y%, W;|MISE™! - 0 as.

As above, using the Lipschitz continuity assumptions (3.6) and (3.8), it is
enough to verify (9.4) and (9.5), when sup;, denotes supremum over any sequence
of finite sets, H,, whose cardinality increases algebraically fast (in n). For (9.4),
note that givene >0and k=1,2, ...

2:=1 P[Sl.lphe]-["n_2 | Zi#j V,/J | MISE™! > 8]
< Y1 #(Hn)supren,E[n"2 Y VI, MISE 'z ™12,

s0 (9.4) will be established when it is seen that there is a constant > 0, so that
for k=1, 2, - - - there are constants %, so that

E[n_2 Dinj Vi/,jMISE_I]2k < &n7™

To verify this, by the cumulant expansion of the 2kth centered (since V/; has
mean 0) moment (see, for example (3.33) of Kendall and Stuart, 1963), it is
enough to show that, for k =2, 3, . . -, there is a constant %, so that

| cump(n™? Yis; V,MISE™Y) | < Zn ™,
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where cumg(-) denotes the kth order cumulant with all k£ arguments the same.
But to check this, using the linearity property of cumulants (see, for example,
Theorem 2.3.1 of Brillinger, 1979), it is enough to show that, for k =2, 3, ...,
there is a constant &, such that

(9.6) | n2#MISE~* ¥ cump(V/ ,, -, Vi) | < @n™™,

where Y denotes summation over i1, ji, -+, i, je = 1, -+, n subject to
b# i, ey B # e

To check (9.6), note that by (9.3), most of the terms in the summation will be
0. In particular, cum, can be nonzero only when each of iy, ji, -- -, ix, jk is the
same as one of the others. For each such term, let m denote the number of unique
elements of {1, - - -, n} appearing among i1, ji, - - -, ik jk. It follows from integration
by substitution and the assumptions of Theorem 1 that there is a constant & so
that

' Cumk(Vi,l,jly cet lk Jk ' = % h_k+M/2

Next observe that there is a constant %, so that for m = 2, . - -, k, the number
of nonzero terms in the summation of (9.6) with exactly m distinct indices is
bounded by %.n™. It follows from the above, together with the expansion (8.1),
that there is a constant % so that the left side of (9.6) is bounded by

gkn—Zk(n—lh—l)—k mh—k+m/2 %k Ek on k+mhm/2

The inequality (9.6) follows easily from this and (3.4). This verifies (9.4).
To verify (9.5), write

w; = f ( )f(x) dx 1o (XNAX)™

f f ( )f(x) dx dy = lu(X;) + f f(y) dy

KWIAX; — hw) — AX)] duf(X) ™ Lian(X))

9.7

b
B J‘: f KWy — hu) — f(y)] du dy.

It follows from Taylor’s theorem and the assumptions of Theorem 1 that there
is a constant % so that
| W;| <= ®h" = &n™".

Since the variance of W; is bounded by the second moment of the first term on
the right of (9.7), note that

o? = var W; < b(h),

where the notation (8.2) has been used. Since the W; are i.i.d., mean 0 random
variables, an application of Bernstein’s Inequality (see (2.13) of Hoeffding, 1963
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with (in Hoeffding’s notation)
A=bt/c?, 7=nt/b, b=%n"%, t=MISE .,
yields
P[|n™" Sy W;| > MISE - ¢]
exp(—7A/2(1 + N\/3)) = exp(—nt2/2(c% + bt/3))
exp(—n MISE/2) < exp(—n?/2),

IA

IA

for n sufficiently large.

The inequality (9.5) follows easily when the supremum is taken over finite
sets whose cardinality increases algebraically fast. This completes the proof of
Lemma C.

10. Proof of Lemma D. Lemma D follows immediately from Lemma B
and (7.1).
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