Due: Tuesday, December 7, 1999
$9.12 \mathrm{a} \quad(\mathrm{p}-\mathrm{val} .=0.495)$
$9.15 \mathrm{a}, \mathrm{b} \quad(\mathrm{p}-\mathrm{val}=0.0579)$
$9.18 \quad\left(p-v a l=2.45 \times 10^{-9}\right)$
$9.25 \quad(\mathrm{p}-\mathrm{val}=0.0129)$
$9.30 \mathrm{a}, \mathrm{b}, \mathrm{c} \quad(\mathrm{p}-\mathrm{val}=0.00240)$
$9.33 \mathrm{~b}, \mathrm{c} \quad(\mathrm{pval}=0.000240)$
$9.34 \mathrm{a}, \mathrm{b}, \mathrm{c}$ and give p -val assuming independent sampling $\quad(\mathrm{pvals}=0.000597,0.695)$
9.50 pooled and conservative $\quad(p$-vals $\approx 0, \approx 0)$
9.52 a pooled and conservative $\quad(\mathrm{p}$-vals $=0.832,0.834)$

