Statistics 23, Section 1, Midterm I Tuesday, September 21, 1999

Name: <u>Solution</u>

Pledge: I have neither given nor received aid on this examination.

Signature:

Instructions: <u>Show</u> all work, but do <u>not</u> do hard arithmetic (an answer of the form $\begin{pmatrix} 8 \\ 3 \end{pmatrix} \cdot 3^7$ is fine).

- A company makes 50% of its cars at Factory A, 30% at Factory B and the rest at Factory C. Factory A produces 10% lemons, Factory B produces 15% lemons, and Factory C produces 20% lemons. If a car is randomly selected for the overall production system,
 - a. What is the probability that it is a lemon?
- [8]

 $P{A} = 0.5, P{B} = 0.3, P{C} = 0.2, P{L|A} = 0.1, P{L|B} = .15, P{L|C} = 0.2$

 $P{L} = P{(L \text{ and } A) \text{ or } (L \text{ and } B) \text{ or } (L \text{ and } C)} = P{L \& A} + P{L \& B} + P{L \& C}$

 $= P\{L|A\} P\{A\} + P\{L|B\} P\{B\} + P\{L|C\} P\{C\}$

= (0.1) (0.5) + (0.15) (0.3) + (0.2) (0.2) = 0.05 + 0.045 + 0.04 = 0.135

b. If it turns out to be a lemon, then what is the probability that it was built at Factory C?

[7]

 $P{C|L} = P(C \text{ and } L) / P{L} = P{L|C} P{C} / P{L} = (0.2) (0.2) / 0.135$

Or use Bayes rule:

$$P\{C|L\} = \frac{P\{L|C\} P\{C\}}{P\{L|A\} P\{A\} + P\{L|B\} P\{B\} + P\{L|C\} P\{C\}}$$

=
$$\frac{(0.2) (0.2)}{(0.1) (0.5) + (0.15) (0.3) + (0.2) (0.2)}$$

- 2. The IRS says about 5 in 1000 tax returns with income below \$50,000 are audited, as are 10 in 1000 for income between \$50,000 and \$99,999, and 25 in 1000 for income $P{A|Lo} = 0.005$, $P{A|mid} = 0.01$, $P{A|Hi} = 0.025$. \$100,000 and more.
 - (a) If 10 taxpayers are chosen at random from the high income group, write a (complete) formula that could be used in an Excel formula bar to calculate the probability that: X = # A, $X \sim Bi(10, 0.025)$.
 - (i) Either none, or else at least 4 of them get audited.

[5]

 $P{X = 0 \text{ or } X \ge 4} = P{X = 0} + 1 - P{X \le 3} =$

=BINOMDIST(0,10,0.025,FALSE) + 1 - BINOMDIST(3,10,0.025,TRUE)

(ii) Exactly 2 of them gets audited, if it is known that at least 2 are audited.

[5]

 $P{X = 2|X \ge 2} = P{(X = 2) and (X \ge 2)} / P{X \ge 2} = P{X = 2} / P{X \ge 2} =$

=BINOMDIST(2,10,0.025,FALSE)/(1-BINOMDIST(1,10,0.025,TRUE))

(b) Fill out the Excel menu below to calculate the probability that from a group of 15 taxpayers chosen randomly from the low income group, exactly one of them gets dited.

5	au
-	200

BINOMDIST	
Number_s	🚺 = number
Trials	🛃 = number
Probability_s	🛃 = number
Cumulative	💽 = logical
Returns the individual term binomial distribution probability. Number s is the number of successes in trials.	=
Formula result =	OK Cancel
1 15 0.005	false

(c) If three taxpayers are randomly selected from the low income groups, and four are selected from the high income group, write a complete Excel formula to calculate the probability that none of these will be audited.

[5]

 $P\{(\text{none Lo}) \text{ and } (\text{none Hi})\} = P\{\text{none Lo}\} P\{\text{none Hi}\} =$

=BINOMDIST(0,3,0.005,TRUE)*BINOMDIST(0,4,0.025,TRUE)

3. Suppose events *A*, *B* and *C* all have probability 0.5, and *A* and *B* are mutually exclusive, and *B* and *C* are independent.

a. Find
$$P\{A \text{ or } B\}$$
.

[5]

$$= P{A} + P{B} - P{A and B} = 0.5 + 0.5 - 0 = 1$$

b. Find
$$P\{B \text{ or } C\}$$
.
[5]

$$= P\{B\} + P\{C\} - P\{ \text{ and } C\} = P\{B\} + P\{C\} - P\{B \text{ and } C\} =$$

$$= 0.5 + 0.5 - (0.5) (0.5) = 0.75$$

4. The random variable X has distribution:

$$\frac{x \quad 0 \quad 1 \quad 2 \quad 4}{f(x) \quad 0.3 \quad 0.2 \quad 0.1 \quad 0.4}$$

a. Find $P\{l \le X < 4\}$. [5] = f(1) + f(2) = 0.2 + 0.1 = 0.3

b. Find
$$P{X = 4 | X \ge 2}$$
.
[5]

$$= P{(X = 4) \text{ and } (X \ge 2)} / P{X \ge 2} = P{X = 4} / P{X \ge 2} =$$

$$= f(4) / [f(2) + f(4)] = 0.4 / (0.1 + 0.4) = 0.8$$

c. Find
$$P\{X = 4 | X \le 2\}$$
.
[5]
 $= P\{(X = 4) \text{ and } (X \le 2)\} / P\{X \ge 2\} = 0$

	E6	-	= =SUM(B8	5:D6)	00000-2 VV	
l.	A	B	C	D	E	F
1			Income			
2	Age	<\$20K	\$20K-50K	>\$50K	Totals	
3	<25	5793	3689	2594	12076	
4	25-45	2309	4712	3695	10716	
5	>45	249	938	1219	2406	
6	Totals	8351	9339	7508	25198	
7					1	

5 The following table shows the numbers of adults from a small town in age income categories, entered into an Excel spreadsheet, for marketing research purposes.

Consider the following events, for a randomly chosen person:

- A: {Person is 25 or over }
- B: {Person is 45 or under}
- C: {Person has income between \$20K and \$50K}
- D: {Person has at least \$20K income}
- a. Write (complete) Excel formulas that could be entered into a formula bar to calculate:

i.
$$P\{A \text{ and } B\}$$
.

[5]

 $= P\{(25 \text{ or over})\}$ and $\{45 \text{ or under}\} = P\{25 - 45\} = E4/E6$

[5]

ii.
$$P\{A \mid B\}$$
.

$$= P{A and B} / P{B} = E4/(E3+E4)$$

[5]
iii.
$$P{D | A}.$$

= P{D and A} / P{A} =(C4+D4+c5+D5)/(E4+E5)

iv. $P\{A \text{ or } B\}.$

[5]

 $= P\{(25 \text{ or over}) \text{ or } (45 \text{ or under})\} = 1$

since includes everything

b. One way of finding $P\{A \text{ or } C\}$, is by a sum of table values, divided by the total. Fill out this menu, to calculate the sum needed in the numerator.

[5]

SUM	lumber1	5	= numbe	r
	Number2	3	= numbe	r.
Adds all ti	he numbers in a range of cells,		.=	
N	umber1: number1, number2, a are ignored in cells, incl	are 1 to 30 numbers to uded if typed as argu) sum. Logica ments.	l values and text
2	Formula result =	[ОК	Cancel
	E4:E5	C3		

c. Another way to find $P\{A \text{ or } C\}$, is via the "or" rule for probabilities. Write an Excel formula for solving the problem this way.

[5]

 $= P{A} + P{C} - P{A and C} =((E4+E5+C6-(C4+C5))/E6$

d. Describe how you would check whether the events *A* and *D* are independent or not.

[5]

Show any one of $P{A|D} = P{A}$, $P{D|A} = P{D}$

or $P{A and D} = P{A} P{D}$.

e. Are the events *A* and *B* mutually exclusive? Why or why not?

No, P{A and B} is not 0.

[5]