Statistics 23, Section 1, Midterm I
Tuesday, September 21, 1999

Name: \qquad Solution

Pledge: I have neither given nor received aid on this examination.

Signature:

\qquad
Instructions: Show all work, but do not do hard arithmetic (an answer of the form $\left(\begin{array}{l}8 \\ 3\end{array} \cdot 3^{7}\right.$ is fine).

1. A company makes 50% of its cars at Factory A, 30% at Factory B and the rest at Factory C. Factory A produces 10% lemons, Factory B produces 15% lemons, and Factory C produces 20% lemons. If a car is randomly selected for the overall production system,
a. What is the probability that it is a lemon?
[8]
$\mathrm{P}\{\mathrm{A}\}=0.5, \mathrm{P}\{\mathrm{B}\}=0.3, \mathrm{P}\{\mathrm{C}\}=0.2, \mathrm{P}\{\mathrm{L} \mid \mathrm{A}\}=0.1, \mathrm{P}\{\mathrm{L} \mid \mathrm{B}\}=.15, \mathrm{P}\{\mathrm{L} \mid \mathrm{C}\}=0.2$
$\mathrm{P}\{\mathrm{L}\}=\mathrm{P}\{(\mathrm{L}$ and A$)$ or $(\mathrm{L}$ and B$)$ or $(\mathrm{L}$ and C$)\}=\mathrm{P}\{\mathrm{L} \& \mathrm{~A}\}+\mathrm{P}\{\mathrm{L} \& \mathrm{~B}\}+\mathrm{P}\{\mathrm{L} \& \mathrm{C}\}$
$=P\{L \mid A\} P\{A\}+P\{L \mid B\} P\{B\}+P\{L \mid C\} P\{C\}$
$=(0.1)(0.5)+(0.15)(0.3)+(0.2)(0.2)=0.05+0.045+0.04=0.135$
b. If it turns out to be a lemon, then what is the probability that it was built at Factory C?
[7]

$$
\mathrm{P}\{\mathrm{C} \mid \mathrm{L}\}=\mathrm{P}(\mathrm{C} \text { and } \mathrm{L}\} / \mathrm{P}\{\mathrm{~L}\}=\mathrm{P}\{\mathrm{~L} \mid \mathrm{C}\} \mathrm{P}\{\mathrm{C}\} / \mathrm{P}\{\mathrm{~L}\}=(0.2)(0.2) / 0.135
$$

Or use Bayes rule:

$$
\begin{aligned}
\mathrm{P}\{\mathrm{C} \mid \mathrm{L}\} & =\frac{\mathrm{P}\{\mathrm{~L} \mid \mathrm{C}\} \mathrm{P}\{\mathrm{C}\}}{\mathrm{P}\{\mathrm{~L} \mid \mathrm{A}\} \mathrm{P}\{\mathrm{~A}\}+\mathrm{P}\{\mathrm{~L} \mid \mathrm{B}\} \mathrm{P}\{\mathrm{~B}\}+\mathrm{P}\{\mathrm{~L} \mid \mathrm{C}\} \mathrm{P}\{\mathrm{C}\}} \\
& =\frac{(0.2)(0.2)}{(0.1)(0.5)+(0.15)(0.3)+(0.2)(0.2)}
\end{aligned}
$$

2. The IRS says about 5 in 1000 tax returns with income below $\$ 50,000$ are audited, as are 10 in 1000 for income between $\$ 50,000$ and $\$ 99,999$, and 25 in 1000 for income $\$ 100,000$ and more. $\mathrm{P}\{\mathrm{A} \mid \mathrm{Lo}\}=0.005, \quad \mathrm{P}\{\mathrm{A} \mid \mathrm{mid}\}=0.01, \quad \mathrm{P}\{\mathrm{A} \mid \mathrm{Hi}\}=0.025$.
(a) If 10 taxpayers are chosen at random from the high income group, write a (complete) formula that could be used in an Excel formula bar to calculate the probability that: $\quad \mathrm{X}=\# \mathrm{~A}, \quad \mathrm{X} \sim \operatorname{Bi}(10,0.025)$.
(i) Either none, or else at least 4 of them get audited.

$$
\mathrm{P}\{\mathrm{X}=0 \text { or } \mathrm{X}>=4\}=\mathrm{P}\{\mathrm{X}=0\}+1-\mathrm{P}\{\mathrm{X}<=3\}=
$$

$$
\text { =BINOMDIST(0,10,0.025,FALSE) + } 1 \text { - BINOMDIST(3,10,0.025,TRUE) }
$$

(ii) Exactly 2 of them gets audited, if it is known that at least 2 are audited.

$$
\mathrm{P}\{\mathrm{X}=2 \mid \mathrm{X}>=2\}=\mathrm{P}\{(\mathrm{X}=2) \text { and }(\mathrm{X}>=2)\} / \mathrm{P}\{\mathrm{X}>=2\}=\mathrm{P}\{\mathrm{X}=2\} / \mathrm{P}\{\mathrm{X}>=2\}=
$$

$$
=\mathrm{BINOMDIST}(2,10,0.025, \mathrm{FALSE}) /(1-\mathrm{BINOMDIST}(1,10,0.025, \mathrm{TRUE}))
$$

(b) Fill out the Excel menu below to calculate the probability that from a group of 15 taxpayers chosen randomly from the low income group, exactly one of them gets
[5] audited.

(c) If three taxpayers are randomly selected from the low income groups, and four are selected from the high income group, write a complete Excel formula to calculate the probability that none of these will be audited.
3. Suppose events A, B and C all have probability 0.5 , and A and B are mutually exclusive, and B and C are independent.
a. Find $P\{A$ or $B\}$.

$$
\begin{equation*}
=\mathrm{P}\{\mathrm{~A}\}+\mathrm{P}\{\mathrm{~B}\}-\mathrm{P}\{\mathrm{~A} \text { and } \mathrm{B}\}=0.5+0.5-0=1 \tag{5}
\end{equation*}
$$

b. Find $P\{B$ or $C\}$.
[5]

$$
\begin{aligned}
& =\mathrm{P}\{\mathrm{~B}\}+\mathrm{P}\{\mathrm{C}\}-\mathrm{P}\{\text { and } \mathrm{C}\}=\mathrm{P}\{\mathrm{~B}\}+\mathrm{P}\{\mathrm{C}\}-\mathrm{P}\{\mathrm{~B} \text { and } \mathrm{C}\}= \\
& =0.5+0.5-(0.5)(0.5)=0.75
\end{aligned}
$$

4. The random variable X has distribution:

x	0	1	2	4
$f(x)$	0.3	0.2	0.1	0.4

a. Find $P\{1 \leq X<4\}$.

$$
\begin{equation*}
=f(1)+f(2)=0.2+0.1=0.3 \tag{5}
\end{equation*}
$$

b. Find $P\{X=4 \mid X \geq 2\}$.
[5]

$$
\begin{aligned}
& =\mathrm{P}\{(\mathrm{X}=4) \text { and }(\mathrm{X}>=2)\} / \mathrm{P}\{\mathrm{X}>=2\}=\mathrm{P}\{\mathrm{X}=4\} / \mathrm{P}\{\mathrm{X}>=2\}= \\
& =\mathrm{f}(4) /[\mathrm{f}(2)+\mathrm{f}(4)]=0.4 /(0.1+0.4)=0.8
\end{aligned}
$$

c. Find $P\{X=4 \mid X \leq 2\}$.

$$
\begin{equation*}
=\mathrm{P}\{(\mathrm{X}=4) \text { and }(\mathrm{X}<=2)\} / \mathrm{P}\{\mathrm{X}>=2\}=0 \tag{5}
\end{equation*}
$$

5 The following table shows the numbers of adults from a small town in age income categories, entered into an Excel spreadsheet, for marketing research purposes.

E6		$=$ =SUM(B6:D6)				
	A	B	C	D	E	F
1			Income			
2	Age	<\$20K	\$20K-50K	> $\$ 50 \mathrm{~K}$	Totals	
3	<25	5793	3689	2594	12076	
4	25-45	2309	4712	3695	10716	
5	>45	249	938	1219	2406	
6	Totals	8351	9339	7508	25198	
7						

Consider the following events, for a randomly chosen person:
A: $\{$ Person is 25 or over $\}$
B: \{Person is 45 or under $\}$
C: \{Person has income between $\$ 20 \mathrm{~K}$ and $\$ 50 \mathrm{~K}\}$
D: \{Person has at least \$20K income\}
a. Write (complete) Excel formulas that could be entered into a formula bar to calculate:
i. $\quad P\{A$ and $B\}$.

$$
=\mathrm{P}\{(25 \text { or over }\} \text { and }\{45 \text { or under })\}=\mathrm{P}\{25-45\}=\mathrm{E} 4 / \mathrm{E} 6
$$

ii. $\quad P\{A \mid B\}$.

$$
=\mathrm{P}\{\mathrm{~A} \text { and } \mathrm{B}\} / \mathrm{P}\{\mathrm{~B}\}=\mathrm{E} 4 /(\mathrm{E} 3+\mathrm{E} 4)
$$

iii. $\quad P\{D \mid A\}$.
iv. $\quad P\{A$ or $B\}$.
[5]
$=\mathrm{P}\{(25$ or over $)$ or (45 or under $)\}=1$
since includes everything
b. One way of finding $P\{A$ or $C\}$, is by a sum of table values, divided by the total. Fill out this menu, to calculate the sum needed in the numerator.

$$
=\mathrm{P}\{\mathrm{~A}\}+\mathrm{P}\{\mathrm{C}\}-\mathrm{P}\{\mathrm{~A} \text { and } \mathrm{C}\}=((\mathrm{E} 4+\mathrm{E} 5+\mathrm{C} 6-(\mathrm{C} 4+\mathrm{C} 5)) / \mathrm{E} 6
$$

d. Describe how you would check whether the events A and D are independent or not.

$$
\begin{gathered}
\text { Show any one of } \mathrm{P}\{\mathrm{~A} \mid \mathrm{D}\}=\mathrm{P}\{\mathrm{~A}\}, \mathrm{P}\{\mathrm{D} \mid \mathrm{A}\}=\mathrm{P}\{\mathrm{D}\} \\
\text { or } \mathrm{P}\{\mathrm{~A} \text { and } \mathrm{D}\}=\mathrm{P}\{\mathrm{~A}\} \mathrm{P}\{\mathrm{D}\} .
\end{gathered}
$$

e. Are the events A and B mutually exclusive? Why or why not?

