Statistics 23, Section 1, Midterm I Tuesday, September 21, 1999

Name:	

Pledge: I have neither given nor received aid on this examination.

Signature: _____

Instructions: <u>Show</u> all work, but do <u>not</u> do hard arithmetic (an answer of the form $\binom{8}{3} \cdot 3^7$ is fine).

- A company makes 50% of its cars at Factory A, 30% at Factory B and the rest at Factory C. Factory A produces 10% lemons, Factory B produces 15% lemons, and Factory C produces 20% lemons. If a car is randomly selected for the overall production system,
 - a. What is the probability that it is a lemon?

b. If it turns out to be a lemon, then what is the probability that it was built at Factory C?

- 2. The IRS says about 5 in 1000 tax returns with income below \$50,000 are audited, as are 10 in 1000 for income between \$50,000 and \$99,999, and 25 in 1000 for income \$100,000 and more.
 - (a) If 10 taxpayers are chosen at random from the high income group, write a (complete) formula that could be used in an Excel formula bar to calculate the probability that:
 - (i) Either none, or else at least 4 of them get audited.

(ii) Exactly 2 of them gets audited, if it is known that at least 2 are audited.

(b) Fill out the Excel menu below to calculate the probability that from a group of 15 taxpayers chosen randomly from the low income group, exactly one of them gets audited.

Number_s	🔁 = number		
Trials	= number = number		
Probability_s			
Cumulative	💽 = logical		
	=		
Returns the individual term binomial distribution probability. Number_s is the number of successes in trials.			

(c) If three taxpayers are randomly selected from the low income groups, and four are selected from the high income group, write a complete Excel formula to calculate the probability that none of these will be audited.

- 3. Suppose events *A*, *B* and *C* all have probability 0.6, and *A* and *B* are mutually exclusive, and *B* and *C* are independent.
 - a. Find $P\{A \text{ or } B\}$.

b. Find $P\{B \text{ or } C\}$.

4. The random variable X has distribution:

x	0	1	2	4
f(x)	0.3	0.2	0.1	0.4

a. Find $P\{l \le X < 4\}$.

b. Find $P\{X = 4 \mid X \ge 2\}$.

c. Find $P\{X = 4 \mid X \le 2\}$.

(E6 = = SUM(B6:D6)					
ļ.	A	B	C	D	E	F
1			Income			
2	Age	<\$20K	\$20K-50K	>\$50K	Totals	
3	<25	5793	3689	2594	12076	
4	25-45	2309	4712	3695	10716	
5	>45	249	938	1219	2406	
6	Totals	8351	9339	7508	25198	
7					4	

5 The following table shows the numbers of adults from a small town in age income categories, entered into an Excel spreadsheet, for marketing research purposes.

Consider the following events, for a randomly chosen person:

- A: {Person is 25 or over }
- B: {Person is 45 or under}
- C: {Person has income between \$20K and \$50K}
- D: {Person has at least \$20K income}
- a. Write (complete) Excel formulas that could be entered into a formula bar to calculate:
 - i. $P\{A \text{ and } B\}$.

ii. $P\{A \mid B\}$.

iii. $P\{D \mid A\}$.

c. One way of finding $P{A \text{ or } C}$, is by a sum of table values, divided by the total. Fill out this menu, to calculate the sum needed in the numerator.

Number1		🗾 = number		
N	umber2		🗐 = numbe	r:
dds all the	numbers in a range of cells.			
Nun	nber1: number1, number2, a are ignored in cells, incl	are 1 to 30 numbers t uded if typed as argu	o sum, Logica Iments,	l values and tex
2	Formula result =		ОК	Cancel

c. Another way to find $P\{A \text{ or } C\}$, is via the "or" rule for probabilities. Write an Excel formula for solving the problem this way.

d. Describe how you would check whether the events *A* and *D* are independent or not.

e. Are the events *A* and *B* mutually exclusive? Why or why not?