Functional Singular Value Decomposition

Lingsong Zhang
October 6, 2005
Email: Iszhang@email.unc.edu
Advised by
J. S. Marron, Zhengyuan Zhu and Haipeng Shen

Outline

- Motivating example - Network traffic data
- Visualization methods
- SVD and PCA (If time permits)
- Future work

Motivating example

- Internet traffic data
- UNC campus, main Internet link of campus to outside
- Packet counts data
- Half-an-hour bin size
- 49 days, covered fully 7 weeks
- June 9, 2003 - July 27, 2003
- Cover two summer sessions of UNC summer school

Time series plot of the 49 days packet count data, bin size half an houk

Main Observations

- 49 spikes, clear daily pattern
- Weekly pattern
- Weekday-weekend effect

Matrix view of the data

- Rearrange the data as a 49×48 matrix
- Days in rows, Time-of-day in columns i.e. Rearrange the ($x_{1}, x_{2}, \cdots, x_{2} 352$) into time-of-day

Two different FDA views

(a) Treat daily shapes as (functions) curves

(b) Treat cross-day time series as (functions) curves

Motivation of matrix view

- Show the daily shapes and Cross day time series at the same time.
- Combining both Functional Data Analysis views

Decomposition into Modes of Variation

- PCA is a typical FDA method, SVD is very similar
- SVD can be done directly to the data matrix, might help to explore the original data matrix.
- (Surface plots of network traffic data)

Major Modes of Variations

- First Component
- Smoothed version of original data
- Daily shapes
- Weekly pattern
- Second Component
- Weekday-Weekend effect
- Weekday and Weekend might not share the same shapes
- Third Component
- Outliers
- Residual
- Seems to be noise

Different angles might help

Different angles might help

Different angles might help

SVD Rotation Movie for SV3

Rotation Movies for network data

- First component
- Common daily shapes, clearly weekly pattern
- Long Weekend, July 4
- Second component
- Weekday-weekend effect
- July 27
- Third component
- Outlier effect

Singular Value Decomposition

- Decompose the data matrix into several rank 1 (matrix) components.
- Each component has both column and row features.
- Surface plots highlight those features simultaneously.

Singular Value Decomposition

$$
\begin{aligned}
& X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right)_{m \times n} \\
& =U S V^{T} \\
& =\left(\begin{array}{c|c|cc}
u_{11} & u_{12} & \cdots & u_{1 r} \\
u_{21} & u_{22} & \cdots & u_{2 r} \\
\vdots & \vdots & \ddots & \vdots \\
u_{m 1} & u_{m 2} & \cdots & u_{m r}
\end{array}\right)_{m \times r}\left(\begin{array}{ccccc}
s_{1} & 0 & \cdots & 0 \\
0 & s_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & s_{r}
\end{array}\right)\left(\begin{array}{cc|cc|}
v_{11} & v_{12} & \cdots & v_{1 r} \\
v_{21} & v_{22} & \cdots & v_{2 r} \\
\vdots & \vdots & \ddots & \vdots \\
v_{n 1} & v_{n 2} & \cdots & v_{n r}
\end{array}\right)_{n \times r}^{T} \\
& =\left(\begin{array}{lll}
\mathbf{u}_{1} & \mathbf{u}_{2} \uparrow \cdots & \mathbf{u}_{r}
\end{array}\right) \mathscr{S}\left(\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r}
\end{array}\right)^{T} \\
& =s_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}+s_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T}+\cdots+s_{r} \mathbf{u}_{r} \mathbf{v}_{r}^{T}
\end{aligned}
$$

Singular Value Decomposition

- Let $\left\{r_{i}\right\},\left\{c_{j}\right\}$ be the row and column vectors of the matrix X respectively
- Singular Columns $\left\{u_{i}\right\}$ form an orthonormal basis for the column vector space
- Singular Rows $\left\{v_{i}\right\}$ form an orthonormal basic for the row vector space
- The first $k(K \leq r=r a n k(X))$ SVD components provide the best rank k approximation of the data matrix X

SVD curve movie

SVD curve movie for the network traffic data

SVD curve movie

- Help to understand what SVD component is from
- Outer product of singular column and singular row
- Show time varying features
- SVD curve movie for the third component
- June 29, First Sunday of the Second Session
- June 27, Last registration day for the Second Session
- July 18, With 8 minutes missing data gap

Other Visualization Methods

- Scatter plots of singular columns
- Treat the daily shapes as the functional curves, it is like the projection to the subspace spanned by the PCs.
- Will help to find some special days.

Scatter plot of singular columns u_{1} vs. u_{2}

Scatter plot of singular columns u_{1} vs. u_{3}

Matlab software is available

http://www.unc.edu/~Iszhang/research/network/SVDmovie/

- SVD surface plots
- SVD rotation movie
- SVD curve movie
- Zoomed version of SVD curve movie
- Some plots and movies for the network traffic data and a chemometrics data

PCA and SVD

- Connections
- If X is column centered at 0 (i.e. Column means are zeros), PCA is the factorization of $X^{\top} X$.
- SVD helps to get the PCs.
- Differences?
- Different factorization
- PCA is the factorization of $X^{\top} X$ (covariance matrix)
- SVD is the factorization of X (original data matrix)
- Dual PCA is the factorization of $X X^{\top}$
- Recentering?
- Why column centered at Zero?
- Four types of centering: None, Column, Row and Both?

Approximation View

Four types of recentering

- SVD with no recentering is the best rank k approximation
- SVD with column recentering or row recentering are sub-models of SVD with double recentering.
- There are no clear relation between column recentering and row recentering. Neither do between no recentering and double recentering.
- It provides more insights to do all types of recentering at the exploration step.

Scree plot might help

What does the "best" mean?

- What kind of criterion should be used?
- Best approximation?

SVD with no recentering is always the best

- Best interpretation?

Provide more insights? How to find the best one?

These problems are still under exploration

Summary

- SVD and PCA
- SVD surface plots
- SVD rotation movie
- SVD curve movie
- Matlab codes, movies and plots are online

Future work

- R package
- MATLAB package of SVD visualizations, combining our methods with other methods
- Other stuff related to SVD

