#### **Functional Singular Value Decomposition**

Lingsong Zhang October 6, 2005 Email: lszhang@email.unc.edu

Advised by J. S. Marron, Zhengyuan Zhu and Haipeng Shen

# Outline

- Motivating example Network traffic data
- Visualization methods
- SVD and PCA (If time permits)
- Future work

# Motivating example

- Internet traffic data
- UNC campus, main Internet link of campus to outside
- Packet counts data
- Half-an-hour bin size
- 49 days, covered fully 7 weeks
- June 9, 2003 July 27, 2003
- Cover two summer sessions of UNC summer school



# Main Observations

- 49 spikes, clear daily pattern
- Weekly pattern
- Weekday-weekend effect

### Matrix view of the data

- Rearrange the data as a 49×48 matrix
- Days in rows, Time-of-day in columns
   i.e. Rearrange the (x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>2</sub>352) into
   time-of-day

|     | $(x_1)$            | <i>x</i> <sub>2</sub> | • • • | $x_{48}$            |  |
|-----|--------------------|-----------------------|-------|---------------------|--|
| day | $x_{49}$           | $x_{50}$              | •••   | x96                 |  |
|     | ÷                  | •                     | •••   | ÷                   |  |
|     | \x <sub>2305</sub> | <i>x</i> 2306         | •••   | x <sub>2352</sub> / |  |

#### Two different FDA views



(a) Treat daily shapes as (functions) curves

(b) Treat cross-day time series as (functions) curves

# Motivation of matrix view

- Show the daily shapes and Cross day time series at the same time.
- Combining both Functional Data Analysis views



#### **Decomposition into Modes of Variation**

- PCA is a typical FDA method, SVD is very similar
- SVD can be done directly to the data matrix, might help to explore the original data matrix.
- (Surface plots of network traffic data)







# Major Modes of Variations

- First Component
  - Smoothed version of original data
  - Daily shapes
  - Weekly pattern
- Second Component
  - Weekday-Weekend effect
  - Weekday and Weekend might not share the same shapes
- Third Component
  - Outliers
- Residual
  - Seems to be noise

# Different angles might help



SVD Rotation Movie for SV1

# Different angles might help



SVD Rotation Movie for SV2

# Different angles might help



SVD Rotation Movie for SV3

### Rotation Movies for network data

- First component
  - Common daily shapes, clearly weekly pattern
  - Long Weekend, July 4
- Second component
  - Weekday-weekend effect
  - July 27
- Third component
  - Outlier effect

# Singular Value Decomposition

- Decompose the data matrix into several rank 1 (matrix) components.
- Each component has both column and row features.
- Surface plots highlight those features simultaneously.

### **Singular Value Decomposition**



# Singular Value Decomposition

- Let {r<sub>i</sub>}, {c<sub>j</sub>} be the row and column vectors of the matrix X respectively
  - Singular Columns  $\{u_i\}$  form an orthonormal basis for the column vector space
  - Singular Rows  $\{v_i\}$  form an orthonormal basic for the row vector space
- The first k (K ≤ r =rank(X)) SVD components provide the best rank k approximation of the data matrix X

#### SVD curve movie



SVD curve movie for the network traffic data

### SVD curve movie

- Help to understand what SVD component is from
  - Outer product of singular column and singular row
- Show time varying features
- SVD curve movie for the third component
  - June 29, First Sunday of the Second Session
  - June 27, Last registration day for the Second Session
  - July 18, With 8 minutes missing data gap

## **Other Visualization Methods**

- Scatter plots of singular columns
  - Treat the daily shapes as the functional curves, it is like the projection to the subspace spanned by the PCs.

- Will help to find some special days.





# Matlab software is available

http://www.unc.edu/~lszhang/research/network/SVDmovie/

- SVD surface plots
- SVD rotation movie
- SVD curve movie
- Zoomed version of SVD curve movie
- Some plots and movies for the network traffic data and a chemometrics data

# PCA and SVD

- Connections
  - If X is column centered at 0 (i.e. Column means are zeros), PCA is the factorization of  $X^T X$ .
  - SVD helps to get the PCs.
- Differences ?
  - Different factorization
    - PCA is the factorization of  $X^T X$  (covariance matrix)
    - SVD is the factorization of X (original data matrix)
    - Dual PCA is the factorization of  $XX^{T}$
  - Recentering?
    - Why column centered at Zero?
    - Four types of centering: None, Column, Row and Both?

#### **Approximation View**



# Four types of recentering

- SVD with no recentering is the best rank k approximation
- SVD with column recentering or row recentering are sub-models of SVD with double recentering.
- There are no clear relation between column recentering and row recentering. Neither do between no recentering and double recentering.
- It provides more insights to do all types of recentering at the exploration step.

### Scree plot might help



29

# What does the "best" mean?

• What kind of criterion should be used?

Best approximation?
 SVD with no recentering is always the best

– Best interpretation?
Provide more insights? How to find the best one?

These problems are still under exploration

# Summary

- SVD and PCA
- SVD surface plots
- SVD rotation movie
- SVD curve movie
- Matlab codes, movies and plots are online

## Future work

- R package
- MATLAB package of SVD visualizations, combining our methods with other methods
- Other stuff related to SVD