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High-Dimensional Data

I Dimension d is very large (often d > n):

 

n

d
  

I Exploratory analysis

I Heatmaps, Principal components analysis (PCA), projection
pursuit, clustering, etc...
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Example: Mice
I Expression data available for 21,289 genes (d = 21, 289) on

142 mice (n = 142).
I Mice from 21 genetic strains.
I 79 mice given dose of alcohol.
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I Heatmap (red = high values; blue=low values)



Principal Components Analysis (PCA)

I Data matrix X : d × n

I Approximate X in factorized form:

 

 
 
 

U X 

 

≈ 

 S 

I U : d × r are the variable “loadings”
I S : r × n are the sample “scores”

I X̃ = US is the rank r matrix that minimizes

||X − X̃ ||2F =
∑
i ,j

(xij − x̃ij)
2.

I Computation
I Eigen-analysis of X ′X .
I Singular Value Decomposition (SVD) of X .
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PCA: Mice (r=3)

I Data matrix X : 21, 289× 142

I Approximate X in factorized form:

 

 
 
 

U ≈ 

 S 

I U : 21, 289× 3 are the variable “loadings”
I S : 3× 142 are the sample “scores”
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Mice PCA scores
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Challenge
I Multiple high-dimensional data types from the same objects.

I Example:
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Integrated Analysis

I Goals

I Examine global associations across datatypes.

I Identify sample patterns consistent across multiple datatypes.

I Identify patterns unique to a particular datatype.



Toy Example: Two Datatypes
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PCA Approximation

I PCA as a low rank approximation:
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PCA Approximation (r = 1)
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JIVE decomposition

I Joint and Individual Variation Explained (JIVE):
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JIVE decomposition (r = r1 = r2 = 1)
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PCA vs JIVE
I PCA:
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JIVE decomposition

I Multiple datatypes X1, ...,Xk of dimension p1, ..., pk on the
same set of n samples.

I Decomposition:

X =


X1

X2
...
Xk

 =

J︷ ︸︸ ︷
J1
J2
...
Jk

+

A︷ ︸︸ ︷
A1

A2
...
Ak

+

R︷ ︸︸ ︷
R1

R2
...
Rk


I J : p × n is rank r .

I Ai : pi × n are rank ri .

I Ri : pi × n are residual matrices.



JIVE decomposition (factorized form)

I Relationship to PCA:

X1 =

J1︷︸︸︷
U1S +

A1︷ ︸︸ ︷
W1S1 +R1

...

Xk = UkS + WkSk + Rk .

I S is an r × n score matrix explaining joint variation across
datatypes.

I Ui are pi × r loading matrices.

I Si are ri × n score matrices explaining unique variation.

I Wi are pi × ri loading matrices.



Estimation

I Fixed ranks r , r1, . . . , rk .

I Minimize sum of squared residuals ||R||2F , where

R =


R1

R2
...
Rk

 =


X1 − J1 − A1

X2 − J2 − A2
...

Xk − Jk − Ak

 .

I Iterative approach:
I Fix J. Find A1,A2, . . . ,Ak to minimize ||R||2F
I Fix A1,A2, . . . ,Ak . Find J to minimize ||R||2F .

I WLOG may enforce orthogonality of J and A1, . . . ,Ak :

JA′ = 0p×p.
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Dimension Reducing Shortcut

I Given singular value decompositions

SVD(X1) = U1Λ1V
T
1

...

SVD(Xk) = UkΛkV
T
k .

define X⊥i = ΛiV
T
i for each i = 1, ..., k .

I Then, X⊥i are n × n (assuming pi > n) and preserve
covariance and Euclidian distance between columns (samples).

I Performing iterative process on X⊥i instead of Xi can be
substantially faster and gives identical results.



Key Issue: Scaling of Individual Datasets

I X1,X2, . . . ,Xk of different scale and dimension.

I Suggest centering and scaling by total variation.

I Subtract mean from each row: Xi → X centered
i

I Divide by ||X centered
i ||F :

X scaled
i =

X centered
i

||X centered
i ||F

I Gives each dataset same total signal power.
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Rank Selection: Permutation Testing Approach

I Extends Peres-Neto et al. (2005)...

I To estimate rank of joint structure

I Compare

I Singular values of concatenated matrix

I Singular values after permuting samples within each datatype.

I To estimate rank of individual structure

I Compare:

I Singular values of individual matrix

I Singular values after permuting samples within each row.



The Cancer Genome Atlas (TCGA) Data

I Multiple kinds of data for the same set of 348 breast cancer
tumors, from TCGA.

I Gene expression data (17814 genes)
I miRNA data (655 miRNAs)
I Copy number data ( 200,000 probes / 19,780 genes)
I Methylation data (21,986 CG regions)
I Mutation data (12,481 genes)
I Protein data

I Tumors classified into 5 subtypes based on the expression
data:

I Basal (66 samples)
I Her2 (42 samples)
I Luminal A (154 samples)
I Luminal B (81 samples)
I Normal (5 samples)
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JIVE application: Gene expression and miRNA
I Applied JIVE decomposition to Gene expression and miRNA.

I Permutation testing identifies
I Rank 4 joint structure
I Rank 22 structure individual to gene expression
I Rank 9 structure individual to miRNA

I Variation decomposition:
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JIVE Estimates
I Gene individual (reorder rows and columns)
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JIVE Estimates
I miRNA individual (reorder rows and columns)
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JIVE Estimates (factorized)
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JIVE Estimates (factorized)
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Joint PCs
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JIVE Estimates (factorized)
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Individual PCs: Expression
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JIVE Estimates (factorized)
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Individual PCs: miRNA
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Variable sparsity

I Important signal only on a subset of variables

I Motivates use of a sparse model

I Can aid results and interpretation.



Variable Sparsity

I Penalized sum-of-squares criterion

||R||2F + λPen(U) +
∑

λi Pen(Wi )

where Pen is a penalty designed to induce sparsity in the
loading vectors and λ, λi are weights.

I E.g, Pen may be an L1 penalty, corresponding to the Lasso:

Pen(U) =
∑
|uij |.

I Iterative approach:
I Fix U,S : Find Wi ,Si to minimize ||Ri ||2F − λi Pen(Wi ), for

each i = 1, ..., k.
I Fix W1, ...,Wk ,S1, ...,Sk : Find U,S to minimize
||R||2F − λPen(U) .
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Sparsity Illustration

I JIVE:
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Joint component row loadings (without sparsity)
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Joint component row loadings (with sparsity)
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Gene-miRNA Sparse JIVE
I First “Sparse” joint component sample scores:
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miRNAs:

I red: positive loading; blue: negative loading
I miRNA linked if gene is a predicted target in at least two of

Pictar, miRanda, TargetScan and RNA22



Gene-miRNA Sparse JIVE
I First “Sparse” joint component sample scores:

−0.01 −0.005 0 0.005 0.01 0.015 0.02
0

20

40

60

80 Basal

Her2

Luminal A

Luminal B

Normal

I Genes and miRNAs with non-zero loadings:

FSIP1AGR2C1orf64ROPN1BFOXA1ROPN1ESR1AGR3

mir-577 mir-135b mir-190b mir-9 mir-934 mir-224

Genes:

miRNAs:

I red: positive loading; blue: negative loading

I miRNA linked if gene is a predicted target in at least two of
Pictar, miRanda, TargetScan and RNA22



Gene-miRNA Sparse JIVE
I First “Sparse” joint component sample scores:

−0.01 −0.005 0 0.005 0.01 0.015 0.02
0

20

40

60

80 Basal

Her2

Luminal A

Luminal B

Normal

I Genes and miRNAs with non-zero loadings:

FSIP1AGR2C1orf64ROPN1BFOXA1ROPN1ESR1AGR3

mir-577 mir-135b mir-190b mir-9 mir-934 mir-224

Genes:

miRNAs:

I red: positive loading; blue: negative loading
I miRNA linked if gene is a predicted target in at least two of

Pictar, miRanda, TargetScan and RNA22



Gene-miRNA Sparse JIVE
I First “Sparse” joint component sample scores:

−0.01 −0.005 0 0.005 0.01 0.015 0.02
0

20

40

60

80 Basal

Her2

Luminal A

Luminal B

Normal

I Genes and miRNAs with non-zero loadings:

FSIP1AGR2C1orf64ROPN1BFOXA1ROPN1AGR3 ESR1

mir-224mir-135bmir-577
mir-9 mir-934mir-190b

Genes:

miRNAs:

I red: positive loading; blue: negative loading
I miRNA linked if gene is a predicted target in at least two of

Pictar, miRanda, TargetScan and RNA22



Future work: Factorial JIVE
I More than two datasets (standard JIVE):

 

X ≈

   

 

Y 
Y 

≈ 

Z ≈ +   

+   
 

 

 

+   



Future work: Factorial JIVE
I Factorial model:
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Related work

I Canonical Correlation Analysis (CCA) and Partial Least
Squares (PLS)

I H Hotelling, 1936; H. Wold, 1965.
I Find pairs of direction vectors to maximize correlation (CCA)

or covariance (PLS)
I Limited to two datasets
I Overfitting in high-dimensionsal cases (esp. CCA)
I Interference from individual structure (esp. PLS)

I Integrative Network Models
I A Adourian et al., 2008; C Xing and DB Dunson, 2011.
I Focused on pairwise relationships, not global variation

I Hierarchical Latent Variable Models
I V. Baladandayuthapani et al., 2008; C Di, 2009; L Zhou et al.,

2010.
I Analysis of different sample groups on the same kind of data
I Models differences between groups, not shared structure across

datatypes



JIVE: additional applications

I For a single datatype, could look over different sample sets
I Sick vs healthy
I Treatment vs control

I Image analysis
I Estimate “background” and unique characteristics from

collection of images

I Financial data
I Explore variation across and within financial markets
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Horizontal JIVE
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Mixed Art



Mixed Art: Estimated decomposition 
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I For a single datatype, could look over different sample sets
I Sick vs healthy
I Treatment vs control

I Image analysis
I Estimate “background” and unique characteristics from

collection of images

I Financial data
I Explore variation across and within financial markets
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Thanks to Philip Howard, UNC Kenan-Flagler Business School
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