Joint and Individual Variation Explained (JIVE) for the Integrated Analysis of Multiple Data Types

Eric F. Lock

Joint work with J.S. Marron, Andrew Nobel, and Katherine Hoadley
11/15/2012

High-Dimensional Data

- Dimension d is very large (often $d>n$):

- Exploratory analysis

High-Dimensional Data

- Dimension d is very large (often $d>n$):

- Exploratory analysis
- Heatmaps, Principal components analysis (PCA), projection pursuit, clustering, etc...

Example: Mice

- Expression data available for 21,289 genes $(d=21,289)$ on 142 mice ($n=142$).
- Mice from 21 genetic strains.
- 79 mice given dose of alcohol.

- Heatmap (red = high values; blue=low values)

Principal Components Analysis (PCA)

- Data matrix $X: d \times n$
- Approximate X in factorized form:

- U:d×r are the variable "loadings"
- S: $r \times n$ are the sample "scores"

Principal Components Analysis (PCA)

- Data matrix $X: d \times n$
- Approximate X in factorized form:

- U:d×r are the variable "loadings"
- S: $r \times n$ are the sample "scores"
- $\tilde{X}=U S$ is the rank r matrix that minimizes

$$
\|X-\tilde{X}\|_{F}^{2}=\sum_{i, j}\left(x_{i j}-\tilde{x}_{i j}\right)^{2}
$$

- Computation
- Eigen-analysis of $X^{\prime} X$.
- Singular Value Decomposition (SVD) of X.

PCA: Mice $(r=3)$

- Data matrix $X: 21,289 \times 142$
- Approximate X in factorized form:

- U:21, 289×3 are the variable "loadings"
- S: 3×142 are the sample "scores"

PCA: Mice $(r=3)$

- Data matrix $X: 21,289 \times 142$
- Approximate X in factorized form:

Rank 142

Rank 3

- U:21, 289×3 are the variable "loadings"
- S: 3×142 are the sample "scores"

PCA: Mice $(r=3)$

- Data matrix $X: 21,289 \times 142$
- Approximate X in factorized form:

- U:21, 289×3 are the variable "loadings"
- S: 3×142 are the sample "scores"

Mice PCA scores

Challenge

- Multiple high-dimensional data types from the same objects.

Challenge

- Multiple high-dimensional data types from the same objects.
- Example:

Challenge

- Multiple high-dimensional data types from the same objects.
- Example:

Challenge

- Multiple high-dimensional data types from the same objects.
- Example:

Integrated Analysis

- Goals
- Examine global associations across datatypes.
- Identify sample patterns consistent across multiple datatypes.
- Identify patterns unique to a particular datatype.

Toy Example: Two Datatypes

Toy Example: Two Datatypes

PCA Approximation

- PCA as a low rank approximation:

PCA Approximation $(r=1)$

JIVE decomposition

- Joint and Individual Variation Explained (JIVE):

JIVE decomposition $\left(r=r_{1}=r_{2}=1\right)$

PCA vs JIVE

- PCA:

- JIVE:

JIVE decomposition

- Multiple datatypes X_{1}, \ldots, X_{k} of dimension p_{1}, \ldots, p_{k} on the same set of n samples.
- Decomposition:

$$
X=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{k}
\end{array}\right]=\overbrace{\left[\begin{array}{c}
J_{1} \\
J_{2} \\
\vdots \\
J_{k}
\end{array}\right]}^{J}+\overbrace{\left[\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{k}
\end{array}\right]}^{A}+\overbrace{\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{k}
\end{array}\right]}^{R}
$$

- $J: p \times n$ is rank r.
- $A_{i}: p_{i} \times n$ are rank r_{i}.
- $R_{i}: p_{i} \times n$ are residual matrices.

JIVE decomposition (factorized form)

- Relationship to PCA:

$$
\begin{aligned}
X_{1} & =\overbrace{U_{1} S}^{J_{1}}+\overbrace{W_{1} S_{1}}^{A_{1}}+R_{1} \\
\vdots & \\
X_{k} & =U_{k} S+W_{k} S_{k}+R_{k}
\end{aligned}
$$

- S is an $r \times n$ score matrix explaining joint variation across datatypes.
- U_{i} are $p_{i} \times r$ loading matrices.
- S_{i} are $r_{i} \times n$ score matrices explaining unique variation.
- W_{i} are $p_{i} \times r_{i}$ loading matrices.

Estimation

- Fixed ranks r, r_{1}, \ldots, r_{k}.
- Minimize sum of squared residuals $\|R\|_{F}^{2}$, where

$$
R=\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{k}
\end{array}\right]=\left[\begin{array}{c}
X_{1}-J_{1}-A_{1} \\
X_{2}-J_{2}-A_{2} \\
\vdots \\
X_{k}-J_{k}-A_{k}
\end{array}\right]
$$

Estimation

- Fixed ranks r, r_{1}, \ldots, r_{k}.
- Minimize sum of squared residuals $\|R\|_{F}^{2}$, where

$$
R=\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{k}
\end{array}\right]=\left[\begin{array}{c}
X_{1}-J_{1}-A_{1} \\
X_{2}-J_{2}-A_{2} \\
\vdots \\
X_{k}-J_{k}-A_{k}
\end{array}\right] .
$$

- Iterative approach:
- Fix J. Find $A_{1}, A_{2}, \ldots, A_{k}$ to minimize $\|R\|_{F}^{2}$
- Fix $A_{1}, A_{2}, \ldots, A_{k}$. Find J to minimize $\|R\|_{F}^{2}$.

Estimation

- Fixed ranks r, r_{1}, \ldots, r_{k}.
- Minimize sum of squared residuals $\|R\|_{F}^{2}$, where

$$
R=\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{k}
\end{array}\right]=\left[\begin{array}{c}
X_{1}-J_{1}-A_{1} \\
X_{2}-J_{2}-A_{2} \\
\vdots \\
X_{k}-J_{k}-A_{k}
\end{array}\right]
$$

- Iterative approach:
- Fix J. Find $A_{1}, A_{2}, \ldots, A_{k}$ to minimize $\|R\|_{F}^{2}$
- Fix $A_{1}, A_{2}, \ldots, A_{k}$. Find J to minimize $\|R\|_{F}^{2}$.
- WLOG may enforce orthogonality of J and A_{1}, \ldots, A_{k} :

$$
J A^{\prime}=0_{p \times p}
$$

Dimension Reducing Shortcut

- Given singular value decompositions

$$
\begin{aligned}
\operatorname{SVD}\left(X_{1}\right) & =U_{1} \Lambda_{1} V_{1}^{T} \\
\vdots & \\
\operatorname{SVD}\left(X_{k}\right) & =U_{k} \Lambda_{k} V_{k}^{T}
\end{aligned}
$$

define $X_{i}^{\perp}=\Lambda_{i} V_{i}^{\top}$ for each $i=1, \ldots, k$.

- Then, X_{i}^{\perp} are $n \times n$ (assuming $p_{i}>n$) and preserve covariance and Euclidian distance between columns (samples).
- Performing iterative process on X_{i}^{\perp} instead of X_{i} can be substantially faster and gives identical results.

Key Issue: Scaling of Individual Datasets

- $X_{1}, X_{2}, \ldots, X_{k}$ of different scale and dimension.

Key Issue: Scaling of Individual Datasets

- $X_{1}, X_{2}, \ldots, X_{k}$ of different scale and dimension.
- Suggest centering and scaling by total variation.
- Subtract mean from each row: $X_{i} \rightarrow X_{i}^{\text {centered }}$
- Divide by $\left\|X_{i}^{\text {centered }}\right\|_{F}$:

$$
X_{i}^{\text {scaled }}=\frac{X_{i}^{\text {centered }}}{\left\|X_{i}^{\text {centered }}\right\|_{F}}
$$

Key Issue: Scaling of Individual Datasets

- $X_{1}, X_{2}, \ldots, X_{k}$ of different scale and dimension.
- Suggest centering and scaling by total variation.
- Subtract mean from each row: $X_{i} \rightarrow X_{i}^{\text {centered }}$
- Divide by $\left\|X_{i}^{\text {centered }}\right\|_{F}$:

$$
X_{i}^{\text {scaled }}=\frac{X_{i}^{\text {centered }}}{\left\|X_{i}^{\text {centered }}\right\|_{F}}
$$

- Gives each dataset same total signal power.

Rank Selection: Permutation Testing Approach

- Extends Peres-Neto et al. (2005)...
- To estimate rank of joint structure
- Compare
- Singular values of concatenated matrix
- Singular values after permuting samples within each datatype.
- To estimate rank of individual structure
- Compare:
- Singular values of individual matrix
- Singular values after permuting samples within each row.

The Cancer Genome Atlas (TCGA) Data

- Multiple kinds of data for the same set of 348 breast cancer tumors, from TCGA.
- Gene expression data (17814 genes)
- miRNA data (655 miRNAs)
- Copy number data (200,000 probes / 19,780 genes)
- Methylation data (21,986 CG regions)
- Mutation data (12,481 genes)
- Protein data
- Tumors classified into 5 subtypes based on the expression data:
- Basal (66 samples)
- Her2 (42 samples)
- Luminal A (154 samples)
- Luminal B (81 samples)
- Normal (5 samples)

The Cancer Genome Atlas (TCGA) Data

- Multiple kinds of data for the same set of 348 breast cancer tumors, from TCGA.
- Gene expression data (17814 genes)
- miRNA data (655 miRNAs)
- Copy number data (200,000 probes / 19,780 genes)
- Methylation data (21,986 CG regions)
- Mutation data (12,481 genes)
- Protein data
- Tumors classified into 5 subtypes based on the expression data:
- Basal (66 samples)
- Her2 (42 samples)
- Luminal A (154 samples)
- Luminal B (81 samples)
- Normal (5 samples)

JIVE application: Gene expression and miRNA

- Applied JIVE decomposition to Gene expression and miRNA.
- Permutation testing identifies
- Rank 4 joint structure
- Rank 22 structure individual to gene expression
- Rank 9 structure individual to miRNA
- Variation decomposition:

JIVE Estimates

miRNAs

JIVE Estimates

miRNAs

JIVE Estimates

- Gene individual (reorder rows and columns)

JIVE Estimates

JIVE Estimates

- miRNA individual (reorder rows and columns)

JIVE Estimates

miRNAs

JIVE Estimates (factorized)

miRNAs

JIVE Estimates (factorized)

miRNAs

Joint PCs

JIVE Estimates (factorized)

miRNAs

Individual PCs: Expression

JIVE Estimates (factorized)

miRNAs

Individual PCs: miRNA

Variable sparsity

- Important signal only on a subset of variables
- Motivates use of a sparse model
- Can aid results and interpretation.

Variable Sparsity

- Penalized sum-of-squares criterion

$$
\|R\|_{F}^{2}+\lambda \operatorname{Pen}(U)+\sum \lambda_{i} \operatorname{Pen}\left(W_{i}\right)
$$

where Pen is a penalty designed to induce sparsity in the loading vectors and λ, λ_{i} are weights.

Variable Sparsity

- Penalized sum-of-squares criterion

$$
\|R\|_{F}^{2}+\lambda \operatorname{Pen}(U)+\sum \lambda_{i} \operatorname{Pen}\left(W_{i}\right)
$$

where Pen is a penalty designed to induce sparsity in the loading vectors and λ, λ_{i} are weights.

- E.g, Pen may be an L_{1} penalty, corresponding to the Lasso:

$$
\operatorname{Pen}(U)=\sum\left|u_{i j}\right|
$$

Variable Sparsity

- Penalized sum-of-squares criterion

$$
\|R\|_{F}^{2}+\lambda \operatorname{Pen}(U)+\sum \lambda_{i} \operatorname{Pen}\left(W_{i}\right)
$$

where Pen is a penalty designed to induce sparsity in the loading vectors and λ, λ_{i} are weights.

- E.g, Pen may be an L_{1} penalty, corresponding to the Lasso:

$$
\operatorname{Pen}(U)=\sum\left|u_{i j}\right|
$$

- Iterative approach:
- Fix U, S : Find W_{i}, S_{i} to minimize $\left\|R_{i}\right\|_{F}^{2}-\lambda_{i} \operatorname{Pen}\left(W_{i}\right)$, for each $i=1, \ldots, k$.
- Fix $W_{1}, \ldots, W_{k}, S_{1}, \ldots, S_{k}$: Find U, S to minimize $\|R\|_{F}^{2}-\lambda \operatorname{Pen}(U)$.

Sparsity Illustration

- JIVE:

Joint component row loadings (without sparsity)

Joint component row loadings (with sparsity)

Gene-miRNA Sparse JIVE

- First "Sparse" joint component sample scores:

Gene-miRNA Sparse JIVE

- First "Sparse" joint component sample scores:

- Genes and miRNAs with non-zero loadings:

- red: positive loading; blue: negative loading

Gene-miRNA Sparse JIVE

- First "Sparse" joint component sample scores:

- Genes and miRNAs with non-zero loadings:

- red: positive loading; blue: negative loading
- miRNA linked if gene is a predicted target in at least two of Pictar, miRanda, TargetScan and RNA22

Gene-miRNA Sparse JIVE

- First "Sparse" joint component sample scores:

- Genes and miRNAs with non-zero loadings:

- red: positive loading; blue: negative loading
- miRNA linked if gene is a predicted target in at least two of Pictar, miRanda, TargetScan and RNA22

Future work: Factorial JIVE

- More than two datasets (standard JIVE):

Future work: Factorial JIVE

- Factorial model:

Related work

- Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS)
- H Hotelling, 1936; H. Wold, 1965.
- Find pairs of direction vectors to maximize correlation (CCA) or covariance (PLS)
- Limited to two datasets
- Overfitting in high-dimensionsal cases (esp. CCA)
- Interference from individual structure (esp. PLS)
- Integrative Network Models
- A Adourian et al., 2008; C Xing and DB Dunson, 2011.
- Focused on pairwise relationships, not global variation
- Hierarchical Latent Variable Models
- V. Baladandayuthapani et al., 2008; C Di, 2009; L Zhou et al., 2010.
- Analysis of different sample groups on the same kind of data
- Models differences between groups, not shared structure across datatypes

JIVE: additional applications

- For a single datatype, could look over different sample sets
- Sick vs healthy
- Treatment vs control
- Image analysis
- Estimate "background" and unique characteristics from collection of images
- Financial data
- Explore variation across and within financial markets

JIVE: additional applications

- For a single datatype, could look over different sample sets
- Sick vs healthy
- Treatment vs control
- Image analysis
- Estimate "background" and unique characteristics from collection of images
- Financial data
- Explore variation across and within financial markets

Horizontal JIVE

Tumor	Normal
samples	samples

12
11

Individual	Individual
$\left(\right.$ rank $\left.r_{1}\right)$	$\left(\right.$ rank $\left.r_{2}\right)$

Horizontal JIVE

JIVE: additional applications

- For a single datatype, could look over different sample sets
- Sick vs healthy
- Treatment vs control
- Image analysis
- Estimate "background" and unique characteristics from collection of images
- Financial data
- Explore variation across and within financial markets

Mixed Art

Mixed Art: Estimated decomposition

\because

$+$

Mixed Art: Actual decomposition

$+$

JIVE: additional applications

- For a single datatype, could look over different sample sets
- Sick vs healthy
- Treatment vs control
- Image analysis
- Estimate "background" and unique characteristics from collection of images
- Financial data
- Explore variation across and within financial markets

India + G7 Country Returns
 (5 year Rolling Window, 1 World Factor, 1 Unique Country Factor)

Thanks to Philip Howard, UNC Kenan-Flagler Business School

THANK YOU!

References

- Mice-Alcohol Project
- BU Bradford, EF Lock, O Kosyk, S Kim, T Uehara, D Harbourt, M DeSimone, DW Threadgill, V Tryndyak, IP Pogribny, L Bleyle, DR Koop, and I Rusyn. Inter-strain differences in the liver effects of trichloroethylene in a multi-strain panel of inbred mice. Toxicological Sciences, 120(1), 2010.
- JIVE
- EF Lock, KA Hoadley, JS Marron, and AB Nobel. Joint and Individual Variation Explained (JIVE) for Integrated Analysis of Multiple Datatypes. AOAS, to appear.
- miRNA target predications
- H Dweep, C Sticht, P Pandey, and N Gretz. miRWalk database: prediction of possible miRNA binding sites by "walking" the genes of $\mathbf{3}$ genomes. Journal of Biomedical Informatics, 44(5):839-847, 2011.
- Image data / multi-way tensor decompositions
- EF Lock, AB Nobel, and JS Marron. Comment: Population Value Decomposition, a Framework for the Analysis of Image Populations. JASA, 106(495), 2011.

