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Two Sample Problems - Equality of Means

(a) William Sealy Gosset: two sample t-test (b) Harold Hotelling:

Hotelling T
2 test



The Challenge

High Dimensional Low Sample Size (HDLSS) data. Hotelling T
2

completely breaks down when dimension exceeds sample size.
Most existing methods for HDLSS data try to “fix” the classical
Hotelling T

2 by some kind of diagonalization of the covariance
matrix.



Statement of Problem

We observe {X1, . . . ,Xm} from distribution F1 and {Y1, . . . ,Yn}
from distribution F2. We are interested in testing

H0 : F1 = F2 versus H1 : F1 6= F2

and the weaker hypothesis

H0 : µ(F1) = µ(F2) versus H1 : µ(F1) 6= µ(F2)



DiProPerm

◮ Three step framework: Direction-Projection-Permutation

1 project samples onto an appropriate direction

2 calculate univariate two sample statistic

3 assess significance using permutation test



DiProPerm - Direction

◮ Train binary linear classifier on the original class labels.

◮ Possibilities include Mean Difference direction, SVM, DWD,
etc.



DiProPerm - Projection

◮ Project data onto the normal vector of the separating
hyperplane

◮ Calculate univariate two-sample statistic on the projections

◮ Possibilities include two-sample t-statistic, difference of
sample means, etc.



DiProPerm - Permutation

◮ Assess significance of this univariate two-sample statistic by
permutation test

1 Permute class membership

2 Re-train binary linear classifier

3 Re-calculate univariate two-sample statistic

◮ For level α test, reject H0 if original statistic is among 100α%
largest among all permuted statistics



Remarks

◮ PCA for Direction step?

◮ Why use permutation test in the last step?



Features of DiProPerm

◮ Nonparametric test

◮ Intrinsically linked to data visualization

◮ Designed for high dimensional low sample size datasets



The Many Flavors of DiProPerm

Direction Univariate Statistic

Mean Difference (MD) Difference of Sample Means
(MD)

SVM Two-sample t-statistic (t)

DWD Difference of Sample Medians

Fisher’s LD Area Under the Curve



Toy Example

F1 = F2 = standard multivariate Normal with dimension 1000 and
sample sizes m = n = 50
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Toy Example Continued
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Figure: Colors represent original class labels. Symbols represent
permuted class labels.



Validity

Idea originally developed by Chihoon Lee in 2007 consulting
course. Dr. Marron’s favorite flavor of DiProPerm is DWD-t, uses
it to test equality of means. But DiProPerm is ultimately a
permutation test. In general, can permutation tests be used to test
equality of means?



Permutation Test

The null hypothesis is equality of distributions since only under this
null assumption can labels be exchanged. If permutation test is
used to test equality of means, it is very likely to obtain a test with
seemingly high power which is actually invalid.
Then is it hopeless to use DiProPerm to test equality of means? It
turns out this is possible with a careful choice of the univariate
statistic in the Projection step of DiProPerm.



The choice of the univariate statistic

Simulation: N(0, Id ) versus t(5)
d for d = 1000.
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MD statistic is similar across all three panels. Two-sample
t-statistic is much higher in the first panel. This simulation
suggests MD-MD test is valid for testing equality of means while
MD-t is not.



Asymptotic Validity

Was able to provide a proof that MD-MD is asymptotically valid
for testing equality of means while MD-t is not under the following
conditions

◮ The distributions F1 and F2 are Gaussian with spherical
covariance structure

◮ Asymptotic regime of dimension going to infinity for fixed
sample size



Asymptotic Validity

The theorem predicts that the MD-t statistic is of the order
√
d in

the original world and of the order 1 in the permutation world.
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Figure: The unconditional and permutation distribution of the MD-t
statistic for the distributions F1 = N(0, Id) and F2 = N(0, 100Id), sample
sizes m = n = 50.



Asymptotic Validity

Optimistic that the theorem also extends to directions besides MD
direction. Reason is all binary linear classifiers “look alike” in high
dimensions.



Application

◮ Breast Cancer Dataset from Chuck Perou

◮ UNCGEO study: 50 patients

◮ UNCUP study: 80 patients

◮ 9674 genes measured on each patient



Application: Projection plots
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Application: Test results
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UNCGEO: 1000 t-stats from random relabs

t-stat = 17.6799

Emprical pval = 0.31335

Gaussian fit pval = 0.33961

Gaussian fit Z-score = 0.41354
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UNCUP: 1000 t-stats from random relabs

t-stat = 22.7955

Emprical pval = 0

Gaussian fit pval = 3.667e-012

Gaussian fit Z-score = 6.851


