Cell-Well Data Objects \& Fisher Rao Curve Warping

Xiaosun Lu
UNC Chapel Hill

October 16, 2012

Outline

Two topics in cell culture biology
(1) Object Oriented Data Analysis (OODA)

- Motivation: Analysis of cell images
- How the choice of data objects orient further analyses

Outline

Two topics in cell culture biology
(1) Object Oriented Data Analysis (OODA)

- Motivation: Analysis of cell images
- How the choice of data objects orient further analyses
(2) Functional Data Analysis
- Motivation: Analysis of cell growth curves
- Decompose horizontal and vertical variabilities

Object Oriented Data Analysis

- Proposed by Wang \& Marron, 2007
- Data objects: Atoms of statistical analysis
- Numbers
- Vectors (Multivariate analysis)
- Curves (Functional data analysis)
- More complex objects
- Trees
- Images
- Shapes

Background

Goal: Media development for cell culture

Data Objects

- Wells?
- Cells?

How OODA works

(1) Fully understand data structure
(2) Choose appropriate data objects
(3) Come up with an "appropriate" analysis

Motivation

- Confluence: Percent of environment used by cells
- Passage cell culture based on confluence level
- Image a well \rightarrow Estimate confluence level \rightarrow Passage

The Challenge: Bright Field Imaging

- Defocused image of cell shadows
- Difficult to estimate confluence using BF images

The Challenge: Bright Field Imaging

Cell shadows

IPLab cell identification

How to Estimate Confluence

(1) Counting the cells (cyan objects)
(2) Biologists' manual estimation
(3) Objective statistical estimation

- Improves over the counting approach
- Support automated passaging

How to Estimate Confluence

(1) Counting the cells (cyan objects)
(2) Biologists' manual estimation

- Varies among people
- Consensus estimation bio-rank
bio-classification
(3) Objective statistical estimation
- Improves over the counting approach
- Support automated passaging

Image Feature Extraction

- Image preprocessing
- Remove uneven background shading
- Remove granular noise
- Intensity normalization
- Two types of confluence-related features
- Features of An Individual Cell (32)
- Additional Entire-Well Features (13)

Features of An Individual Cell

- Intensity
- Shape \& size
- Local density
- Cell orientation

Additional Entire-Well Features

- Cell number
- Cell gap size/intensity

The Choice of Data Objects

- Two data sets
- Cell data (features of each individual cell);
- Well data (additional entire-well features)
- Different choices of data objects
- Cells-alone
- Wells-alone
- A new type of data objects: Wells \cup Cells

The Choice of Data Objects

The Choice of Data Objects

- Cells-Alone: Ignore additional well data
- Wells-Alone vs. C-W Unions

How to summarize the cells?
E.g. feature-wise summaries, PC summaries

Compare Data Objects

- DWD of passaging groups
- \% of false passaging decision
- Cells-Alone: 25\%
- Wells-Alone: 8.6\%
- Cell-Well Unions: 5.2\%
- Cells-alone are not a good choice
- Further study of the wells-alone and the unions...

Cell Summarization

Can either impair or preserve the bio-pattern in cell data

Cell Summarization

- How well the bio-pattern is pressved depends on
- Choice of statistics
- Variability of cell distributions across wells
- Rotation of cell data before summaring
- OODA is independent of and suggests analysis method
- C-W unions are a good choice for such data structure

Outline

Two topics in cell culture biology
(1) Object Oriented Data Analysis (OODA)

- Motivation: Analysis of cell images
- How the choice of data objects orient further analyses
(2) Functional Data Analysis
- Motivation: Analysis of cell growth curves
- Decompose horizontal and vertical variabilities

Motivation

- Cell growth curves: Media effect, Batch effect, etc. - Analysis of variabilities among curves

How to Understand the Variability?

- Toy Example to develop appropriate approaches

How to Understand the Variability?

- Toy Example to develop appropriate approaches
- Insightful decomposition

\rightarrow Horizontal var + Vertical var

Curve Registration

- Consider domain warping $\gamma:[0,1] \rightarrow[0,1]$
- $\gamma(x)$ is a diffeomophism (smooth)

Curve Registration

- Consider domain warping $\gamma:[0,1] \rightarrow[0,1]$
- $\gamma(x)$ is a diffeomophism (smooth)

Curve Registration

- Consider domain warping $\gamma:[0,1] \rightarrow[0,1]$
- $\gamma(x)$ is a diffeomophism (smooth)

Curve Registration

- Consider domain warping $\gamma:[0,1] \rightarrow[0,1]$
- $\gamma(x)$ is a diffeomophism (smooth)

Curve Registration

- Consider domain warping $\gamma:[0,1] \rightarrow[0,1]$
- $\gamma(x)$ is a diffeomophism (smooth)

How to Understand the Variability?

- Toy Example to develop appropriate approaches
- Insightful decomposition

\rightarrow Horizontal var + Vertical var

Raw Functions

Horizontal Variation

Aligned Functions

How to Understand the Variability?

- Toy Example to develop appropriate approaches
- Curve registration: $f(\gamma(x))=\tilde{f}(x)$
\rightarrow Warping functions + Aligned functions \rightarrow Horizontal var + Vertical var

What Are the Data Objects?

- "Equivalence" of two curves: $f_{1} \sim f_{2}$
- $\exists \gamma$ so that $f_{1} \circ \gamma=f_{2}$

Horizontal Variation

What Are the Data Objects?

- Data object $=$ Equivalence group of curves
- A representer of the group: f
- Notation of a data object: [f]
- Orbit, Quotient space

Karcher Mean

Curve Registration

- Align f_{2} to f_{1}
- Find a "good" representer of $\left[f_{2}\right]$, i.e. $f_{2} \circ \gamma$
- $\inf _{\gamma \in \Gamma} d\left(f_{1}-f_{2} \circ \gamma\right)$

Metrics in Curve Space

- What is the appropriate metric d ?
- Traditional choice: $\|$.
- $\inf _{\gamma \in \Gamma} d\left(f_{1}-f_{2} \circ \gamma\right)$

Metrics in Curve Space

- Issues in \mathcal{L}^{2} Metric
$\bullet \inf _{\gamma \in \Gamma}\left\|f_{1}-\left(f_{2} \circ \gamma\right)\right\| \neq \inf _{\gamma \in \Gamma}\left\|\left(f_{1} \circ \gamma\right)-f_{2}\right\|$

Aligned to K-mean

Metrics in Curve Space

- Solution: Warping-invariant metric

$$
d\left(f_{1}, f_{2}\right)=d\left(f_{1} \circ \gamma, f_{2} \circ \gamma\right)
$$

Metrics in Curve Space

- Fisher Rao Metric (C. R. Rao, 1945)
- It is the unique solution (Cencov, 1982)

$$
d_{F R}\left(f_{1}, f_{2}\right)=d_{F R}\left(f_{1} \circ \gamma, f_{2} \circ \gamma\right)
$$

- Challenge: Complicated Sample statistics are not clear

Metrics in Curve Space

- Square Root Velocity Function

$$
\begin{gathered}
q_{f}(t)=\frac{\dot{f}(t)}{\sqrt{|\dot{f}(t)|}} \\
f(t)=f(0)+\int_{0}^{t} q_{f}(s)\left|q_{f}(s)\right| d s
\end{gathered}
$$

- Simplifies FR framework (Srivastava et al, 2010)

$$
d_{F R}\left(f_{1}, f_{2}\right)=\left\|q_{f_{1}}-q_{f_{2}}\right\|
$$

Metrics in Quotient Space

- Distance between equivalence groups

$$
d_{Q}\left(\left[f_{1}\right],\left[f_{2}\right]\right)=\inf _{\gamma \in \Gamma} d_{F R}\left(f_{1}, f_{2} \circ \gamma\right)=\inf _{\gamma \in \Gamma}\left\|q_{f_{1}}-q_{f_{2} \circ \gamma}\right\|
$$

- Independent of the choice of f_{1}, f_{2}

Mean in Quotient Space

- Consider equivalence groups

$$
\left[f_{1}\right],\left[f_{2}\right], \ldots,\left[f_{n}\right]
$$

- Karcher mean $[\mu]=\operatorname{argmin}_{[f]} \sum_{i=1}^{n} d_{Q}\left([f],\left[f_{i}\right]\right)^{2}$
- Choose "best" representer of $[\mu]$ so that the mean of warping functions = Identity

Mean in Quotient Space

Proteomics Data

- Measurements: TIC (Total lon Count) Chromatograms Modern type of chemical spectra
- Intensity as a function of time
- 15 functions
- Samples: A, B, C, X, Y
- Runs: 1, 2, 3

Functions are colored by sample

- 14 features are marked, including "spiked in" features (1, 3, 5, 7)
- Goal: Warp the functions to line up the features

Unaligned Functions

Aligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Warping Functions

Appendix

Additional Information

Appendix: Fisher Rao Metric

- Define Fisher Rao metric as

$$
\ll v_{1}, v_{2}>_{f}=\frac{1}{4} \int_{0}^{1} \dot{v}_{1}(t) \dot{v}_{2}(t) \frac{1}{|\dot{f}(t)|} d t
$$

where $f \in \mathcal{F}$ and $v_{1}, v_{2} \in T_{f}(\mathcal{F})$

- Define Fisher Rao distance as

$$
d_{F R}\left(f_{1}, f_{2}\right)=\inf _{\alpha:[0,1] \rightarrow F, \alpha(0)=f_{1}, \alpha(1)=f_{2}} L[\alpha]
$$

where $\alpha(\tau)$ is a differentiable path connecting f_{1} and f_{2} in \mathcal{F}

$$
L[\alpha]=\int_{0}^{1}\left(\ll \dot{\alpha}(\tau), \dot{\alpha}(\tau)>_{\alpha(\tau)}\right)^{1 / 2} d \tau
$$

Cell Image Data Visualization

