Cell-Well Data Objects & Fisher Rao Curve Warping

Xiaosun Lu

UNC Chapel Hill

October 16, 2012

Outline

Two topics in cell culture biology

- (1) Object Oriented Data Analysis (OODA)
 - Motivation: Analysis of cell images
 - How the choice of data objects orient further analyses

Outline

Two topics in cell culture biology

- (1) Object Oriented Data Analysis (OODA)
 - Motivation: Analysis of cell images
 - How the choice of data objects orient further analyses
- (2) Functional Data Analysis
 - Motivation: Analysis of cell growth curves
 - Decompose horizontal and vertical variabilities

Object Oriented Data Analysis

- Proposed by Wang & Marron, 2007
- Data objects: Atoms of statistical analysis
 - Numbers
 - Vectors (Multivariate analysis)
 - Curves (Functional data analysis)
- More complex objects
 - Trees
 - Images
 - Shapes

Background

Goal: Media development for cell culture

Data Objects

- Wells?
- Cells?

How OODA works

- (1) Fully understand data structure
- (2) Choose appropriate data objects
- (3) Come up with an "appropriate" analysis

7 / 62

Motivation

- Confluence: Percent of environment used by cells
- Passage cell culture based on confluence level
- ullet Image a well o Estimate confluence level o Passage

The Challenge: Bright Field Imaging

- Defocused image of cell shadows
- Difficult to estimate confluence using BF images

The Challenge: Bright Field Imaging

Cell shadows

IPLab cell identification

How to Estimate Confluence

- (1) Counting the cells (cyan objects)
- (2) Biologists' manual estimation

- (3) Objective statistical estimation
 - Improves over the counting approach
 - Support automated passaging

How to Estimate Confluence

- (1) Counting the cells (cyan objects)
- (2) Biologists' manual estimation
 - Varies among people
 - Consensus estimation bio-rank bio-classification

- (3) Objective statistical estimation
 - Improves over the counting approach
 - Support automated passaging

Image Feature Extraction

- Image preprocessing
 - Remove uneven background shading
 - Remove granular noise
 - Intensity normalization
- Two types of confluence-related features
 - Features of An Individual Cell (32)
 - Additional Entire-Well Features (13)

Features of An Individual Cell

- Shape & size
- Local density
- Cell orientation

Additional Entire-Well Features

- Cell number
- Cell gap size/intensity

The Choice of Data Objects

- Two data sets
 - Cell data (features of each individual cell);
 - Well data (additional entire-well features)
- Different choices of data objects
 - Cells-alone
 - Wells-alone
 - A new type of data objects: Wells ∪ Cells

The Choice of Data Objects

The Choice of Data Objects

- Cells-Alone: Ignore additional well data
- Wells-Alone vs. C-W Unions
 How to summarize the cells?
 E.g. feature-wise summaries, PC summaries

Compare Data Objects

- DWD of passaging groups
- % of false passaging decision
 - Cells-Alone: 25%
 - Wells-Alone: 8.6%
 - Cell-Well Unions: 5.2%
- Cells-alone are not a good choice
- Further study of the wells-alone and the unions...

Cell Summarization

Can either impair or preserve the bio-pattern in cell data

Cell Summarization

- How well the bio-pattern is pressved depends on
 - Choice of statistics
 - Variability of cell distributions across wells
 - Rotation of cell data before summaring
- OODA is independent of and suggests analysis method
- C-W unions are a good choice for such data structure

Outline

Two topics in cell culture biology

- (1) Object Oriented Data Analysis (OODA)
 - Motivation: Analysis of cell images
 - How the choice of data objects orient further analyses
- (2) Functional Data Analysis
 - Motivation: Analysis of cell growth curves
 - Decompose horizontal and vertical variabilities

Motivation

- Cell growth curves: Media effect, Batch effect, etc.
- Analysis of variabilities among curves

How to Understand the Variability?

Toy Example to develop appropriate approaches

24 / 62

How to Understand the Variability?

- Toy Example to develop appropriate approaches
- Insightful decomposition
 - \rightarrow Horizontal var + Vertical var

- ullet Consider domain warping $\gamma:[0,1]
 ightarrow [0,1]$
- $\gamma(x)$ is a diffeomorhism (smooth)

- ullet Consider domain warping $\gamma:[0,1]
 ightarrow [0,1]$
- $\gamma(x)$ is a diffeomorhism (smooth)

- ullet Consider domain warping $\gamma:[0,1]
 ightarrow [0,1]$
- $\gamma(x)$ is a diffeomorhism (smooth)

- ullet Consider domain warping $\gamma:[0,1]
 ightarrow [0,1]$
- $\gamma(x)$ is a diffeomorhism (smooth)

- ullet Consider domain warping $\gamma:[0,1]
 ightarrow [0,1]$
- $\gamma(x)$ is a diffeomorhism (smooth)

How to Understand the Variability?

- Toy Example to develop appropriate approaches
- Insightful decomposition

 \rightarrow Horizontal var + Vertical var

How to Understand the Variability?

- Toy Example to develop appropriate approaches
- Curve registration: $f(\gamma(x)) = \tilde{f}(x)$
 - → Warping functions + Aligned functions
 - \rightarrow Horizontal var + Vertical var

What Are the Data Objects?

- ullet "Equivalence" of two curves: $\emph{f}_1 \sim \emph{f}_2$
- ullet $\exists \ \gamma \ \mathsf{so} \ \mathsf{that} \ \mathit{f}_1 \circ \gamma = \mathit{f}_2$

What Are the Data Objects?

- Data object = Equivalence group of curves
- A representer of the group: f
- Notation of a data object: [f]
- Orbit, Quotient space

- Align f_2 to f_1
- Find a "good" representer of $[f_2]$, i.e. $f_2 \circ \gamma$
- $\inf_{\gamma \in \Gamma} d(f_1 f_2 \circ \gamma)$

Metrics in Curve Space

- What is the appropriate metric *d*?
- Traditional choice: ||.||
- $\inf_{\gamma \in \Gamma} d(f_1 f_2 \circ \gamma)$

- Issues in \mathcal{L}^2 Metric
- $\inf_{\gamma \in \Gamma} \|f_1 (f_2 \circ \gamma)\| \neq \inf_{\gamma \in \Gamma} \|(f_1 \circ \gamma) f_2\|$

• Solution: Warping-invariant metric

$$d(f_1,f_2)=d(f_1\circ\gamma,f_2\circ\gamma)$$

- Fisher Rao Metric (C. R. Rao, 1945)
- It is the unique solution (Cencov, 1982)

$$d_{FR}(f_1,f_2)=d_{FR}(f_1\circ\gamma,f_2\circ\gamma)$$

Challenge: Complicated
 Sample statistics are not clear

Square Root Velocity Function

$$q_f(t) = rac{\dot{f}(t)}{\sqrt{\mid \dot{f}(t) \mid}}$$
 $f(t) = f(0) + \int_0^t q_f(s) |q_f(s)| ds$

• Simplifies FR framework (Srivastava et al, 2010)

$$d_{FR}(f_1,f_2) = \|q_{f_1} - q_{f_2}\|$$

Metrics in Quotient Space

Distance between equivalence groups

$$d_Q([f_1],[f_2]) = \inf_{\gamma \in \Gamma} d_{FR}(f_1,f_2 \circ \gamma) = \inf_{\gamma \in \Gamma} \|q_{f_1} - q_{f_2 \circ \gamma}\|$$

• Independent of the choice of f_1 , f_2

Mean in Quotient Space

Consider equivalence groups

$$[f_1], [f_2], ..., [f_n]$$

- Karcher mean $[\mu] = argmin_{[f]} \Sigma_{i=1}^n d_Q([f], [f_i])^2$
- Choose "best" representer of $[\mu]$ so that the mean of warping functions = Identity

42 / 62

Mean in Quotient Space

Proteomics Data

- Measurements: TIC (Total Ion Count) Chromatograms
 Modern type of chemical spectra
- Intensity as a function of time
- 15 functions
 - Samples: A, B, C, X, Y
 - Runs: 1, 2, 3

Functions are colored by sample

- 14 features are marked, including "spiked in" features (1, 3, 5, 7)
- Goal: Warp the functions to line up the features

Unaligned Functions

Aligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Zoom-in

Zoom-in: Aligned Functions

Zoom-in: Unaligned Functions

Warping Functions

Appendix

Additional Information

Appendix: Fisher Rao Metric

Define Fisher Rao metric as

$$\ll v_1, v_2 \gg_f = \frac{1}{4} \int_0^1 \dot{v}_1(t) \dot{v}_2(t) \frac{1}{|\dot{f}(t)|} dt$$

where $f \in \mathcal{F}$ and $\upsilon_1, \upsilon_2 \in T_f(\mathcal{F})$

Define Fisher Rao distance as

$$d_{FR}(f_1, f_2) = \inf_{\alpha:[0,1]\to\mathcal{F}, \alpha(0)=f_1, \alpha(1)=f_2} L[\alpha]$$

where $\alpha(\tau)$ is a differentiable path connecting f_1 and f_2 in \mathcal{F}

$$L[\alpha] = \int_0^1 (\langle \dot{\alpha}(\tau), \dot{\alpha}(\tau) \rangle_{\alpha(\tau)})^{1/2} d\tau$$

Cell Image Data Visualization

