

Sparse PCA Asymptotics & Analysis of Tree Data

Dan Shen Department of Statistics & Operations Research University of North Carolina at Chapel Hill

dshen@live.unc.edu

October 11, 2012

- Motivation & Background
- PCA Asymptotics
- Spike Covariance Models
- Theoretical Results of PCA
- Sparse PCA
- Summary
- Analysis of Tree Data

- Motivation & Background
- PCA Asymptotics
- Spike Covariance Models
- Theoretical Results of PCA
- Sparse PCA
- Summary
- Analysis of Tree Data

Modern Dataset Features

UNC, Stat & OR

- High Dimensionality
 - Microarray, image, ...
 - Dimension reduction techniques
 - Principle component analysis (PCA) Pearson (1901)
 - Partial least squares Wold (1985)
 - Canonical correlation analysis Hotelling (1936)

• . . .

- Sparsity
 - Signal sparse ... most signal dimensions insignificant
 - Sparsity constraints
 - Sparse PCA

```
• • • •
```


Modern Dataset Features

UNC, Stat & OR

- High Dimensionality
 - Microarray, image, ...
 - Dimension reduction techniques
 - Principle component analysis (PCA) Pearson (1901)
 - Partial least squares Wold (1985)
 - Canonical correlation analysis Hotelling (1936)

• . . .

- Sparsity
 - Signal sparse ... most signal dimensions insignificant
 - Sparsity constraints
 - Sparse PCA

```
• . . .
```


Data Matrix

Principle Component Analysis

UNC, Stat & OR

Principle Component Analysis (PCA):

- Purpose: dimension reduction & visualization
- Goal: few linear combinations of the raw variables to explain majority of the data variation
- Calculation: eigen-decomposition of sample covariance matrix

As $n \rightarrow \infty$, $d \rightarrow \infty$, or $d \& n \rightarrow \infty$

- Consistency: $\theta \rightarrow 0$
- Strong Inconsistency: $\theta \rightarrow \pi/2$

- Motivation & Background
- PCA Asymptotics
- Spike Covariance Models
- Theoretical Results of PCA
- Sparse PCA
- Summary
- Analysis of Tree Data

PCA Asymptotics

- PCA very popular tool
 - Offers useful insights
 - Reveals simple low-dimensional structure in high-dimensional data
- Important to understand asymptotic properties of PCA
 - Consistency
 - Strong inconsistency
 - Subspace consistency
 - Studied through mathematical statistics

Sample size n, dimension (# of variables) d

- Classical asymptotics: d fixed and $n \rightarrow \infty$
- Random matrix asymptotics: $d/n \rightarrow c$, as $n \rightarrow \infty$
- High Dimension, Low Sample Size (HDLSS) asymptotics:
 n fixed and d→∞

UNC, Stat & OR

Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$

UNC, Stat & OR

Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$

•
$$\Sigma_d = U\Lambda U^T$$

- Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$
 - $\Sigma_d = U \Lambda U^T$
 - Λ = diag ($\lambda_{1,}$... , λ_{d})

- Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$
 - $\Sigma_d = U \Lambda U^T$
 - Λ = diag ($\lambda_{1,}$... , λ_{d})
 - U=[u_{1}, \ldots, u_{d}]

- Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$
 - $\Sigma_d = U \Lambda U^T$
 - Λ = diag ($\lambda_{1,}$... , λ_{d}) • U=[$u_{1,}$... , u_{d}]
- Denote $\stackrel{\wedge}{\Sigma}_{d} = n^{-1}XX^{T}$, where $X = [X_{1}, \dots, X_{n}]$

- Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$
 - $\Sigma_d = U \Lambda U^T$
 - Λ = diag ($\lambda_{1,}$... , λ_{d}) • U=[$u_{1,}$... , u_{d}]

Denote
$$\hat{\Sigma}_{d} = n^{-1}XX$$
, where $X = [X_1, \dots, X_n]$

•
$$\hat{\Sigma}_{d} = \hat{U}\hat{\Lambda}\hat{U}^{T}$$

UNC, Stat & OR

- Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$
 - $\Sigma_d = U \Lambda U^T$
 - Λ = diag ($\lambda_{1,}$... , λ_{d}) • U=[$u_{1,}$... , u_{d}]

Denote $\hat{\Sigma}_{d} = n^{-1}XX^{T}$, where $X = [X_{1}, \dots, X_{n}]$

•
$$\hat{\Sigma}_{d} = \hat{U}\hat{\Lambda}\hat{U}^{T}$$

• $\hat{\Lambda} = \text{diag}(\hat{\lambda}_{1}, \dots, \hat{\lambda}_{d})$

UNC, Stat & OR

- Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$
 - $\Sigma_d = U \Lambda U^T$
 - Λ = diag ($\lambda_{1,}$... , λ_{d}) • U=[$u_{1,}$... , u_{d}]

Denote $\hat{\Sigma}_{d} = n^{-1}XX^{T}$, where $X = [X_{1}, \dots, X_{n}]$

•
$$\hat{\Sigma}_{d} = \hat{U}\hat{\Lambda}\hat{U}^{T}$$

• $\hat{\Lambda} = \text{diag}(\hat{\lambda}_{1,}...,\hat{\lambda}_{d})$
• $\hat{U} = [\hat{u}_{1,}...,\hat{u}_{d}]$

UNC, Stat & OR

- Assume that $X_1, \ldots, X_n \sim N(0, \Sigma_d)$
 - $\Sigma_d = U \Lambda U^T$
 - Λ = diag ($\lambda_{1,}$... , λ_{d}) • U=[$u_{1,}$... , u_{d}]

Denote $\stackrel{\wedge}{\Sigma}_{d} = n^{-1}XX^{T}$, where $X = [X_{1}, \dots, X_{n}]$

•
$$\hat{\Sigma}_{d} = \hat{U}\hat{\Lambda}\hat{U}^{T}$$

• $\hat{\Lambda} = \text{diag}(\hat{\lambda}_{1,}...,\hat{\lambda}_{d})$
• $\hat{U} = [\hat{u}_{1,}...,\hat{u}_{d}]$

Study angle $(\stackrel{\wedge}{u}_{j}, u_{j})$

Information Contribution

- Contribution to consistency
- n: positive
- d: negative
- Spike size (e.g. λ_1 / λ_2) : positive
 - relative sizes of the leading eigenvalues

Information Contribution

UNC, Stat & OR

- Contribution to consistency
- n: positive
- d: negative
- Spike size (e.g. λ_1 / λ_2) : positive
 - relative sizes of the leading eigenvalues

Question:

• Interaction among the three informations ←→ Consistency of PCA???

- Motivation & Background
- PCA Asymptotics
- Spike Covariance Models
- Theoretical Results of PCA
- Sparse PCA
- Summary
- Analysis of Tree Data

Spike Covariance Model

- UNC, Stat & OR
 - Johnstone (2001)
 - General math description of m-component spike model
 - Examples:
 - m=1: single component spike model
 - $\lambda_1 >> \lambda_2 \sim \ldots \sim \lambda_d \sim 1$
 - m>1: multi-component spike model
 - $\lambda_1 > \ldots > \lambda_m >> \lambda_{m+1} \sim \ldots \sim \lambda_d \sim 1$
 - multi-component with tiered eigen-values
 - $\lambda_1 \ge \ldots \ge \lambda_m >> \lambda_{m+1} \sim \ldots \sim \lambda_d \sim 1$

Single-Component Spike Model

UNC, Stat & OR

Example 1:

- $\lambda_1 \sim d^{\alpha}$, $\lambda_2 = \ldots = \lambda_d = 1$
- $n \sim d^{\gamma}$
- Sample index: γ and Spike index: α

UNC, Stat & OR

Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

- Johnstone and Lu (2009): consistent when $\alpha=0$, $\gamma>1$
- Johnstone and Lu (2009): str. incon. when $\alpha=0, \gamma<1$

UNC, Stat & OR Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

- Johnstone and Lu (2009): consistent when $\alpha=0$, $\gamma>1$
- Johnstone and Lu (2009): str. incon. when $\alpha=0, \gamma<1$

• Nadler (2008) : boundary case $\alpha=0, \gamma=1$

 $\lambda_1 \sim d^{\alpha}$ $n \sim d^{\gamma}$ (0,0) I Spike Index (λ

UNC, Stat & OR

- Classical asymptotics
- Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

- Johnstone and Lu (2009): consistent when $\alpha=0, \gamma>1$
- Johnstone and Lu (2009): str. incon. when $\alpha=0, \gamma<1$
- Nadler (2008) : boundary case $\alpha=0, \gamma=1$

HDLSS asymptotics

• Jung and Marron (2009): consistent when $\alpha > 1$, $\gamma = 0$

UNC, Stat & OR

Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

- Johnstone and Lu (2009): consistent when $\alpha=0, \gamma>1$
- Johnstone and Lu (2009): str. incon. when $\alpha=0, \gamma<1$
- Nadler (2008) : boundary case $\alpha=0, \gamma=1$

HDLSS asymptotics

- Jung and Marron (2009): consistent when $\alpha > 1$, $\gamma=0$
- Jung and Marron (2009): strongly inconsistent when $\alpha < 1$, $\gamma = 0$

UNC, Stat & OR

Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

- Johnstone and Lu (2009): consistent when $\alpha=0, \gamma>1$
- Johnstone and Lu (2009): str. incon. when $\alpha=0, \gamma<1$
- Nadler (2008) : boundary case $\alpha=0, \gamma=1$

HDLSS asymptotics

- Jung and Marron (2009): consistent when $\alpha > 1$, $\gamma=0$
- Jung and Marron (2009): strongly inconsistent when $\alpha \le 1, \gamma=0$

• Jung et al. (2010): boundary case $\alpha=1, \gamma=0$

UNC, Stat & OR

Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

- Johnstone and Lu (2009): consistent when $\alpha=0$, $\gamma>1$
- Johnstone and Lu (2009): str. incon. when $\alpha=0, \gamma<1$
- Nadler (2008) : boundary case $\alpha=0, \gamma=1$

HDLSS asymptotics

- Jung and Marron (2009): consistent when $\alpha > 1$, $\gamma=0$
- Jung and Marron (2009): strongly inconsistent when $\alpha < 1$, $\gamma=0$
- Jung et al. (2010): boundary case $\alpha=1, \gamma=0$

Our result : bridge between settings

- consistent when $\alpha + \gamma > 1$
- strongly inconsistent when $\alpha + \gamma < 1$

Multi-Component Spike Model

UNC, Stat & OR

Example 2:

• $\lambda_j = c_j d^{\alpha}$, $j \le m$, where $c_j > c_{j-1} > 0$

Multi-Component Spike Model

UNC, Stat & OR

Example 2:

- $\lambda_j = c_j d^{\alpha}$, $j \le m$, where $c_j > c_{j-1} > 0$
- $\lambda_{m+1} = \ldots = \lambda_d = 1$

Multi-Component Spike Model

UNC, Stat & OR

Example 2:

- $\lambda_j = c_j d^{\alpha}$, $j \le m$, where $c_j > c_{j-1} > 0$
- $\lambda_{m+1} = \ldots = \lambda_d = 1$
- $n \sim d^{\gamma}$

Multi-Component Spike Model

UNC, Stat & OR

Example 2:

- $\lambda_j = c_j d^{\alpha}$, $j \le m$, where $c_j > c_{j-1} > 0$
- $\lambda_{m+1} = \ldots = \lambda_d = 1$
- $n \sim d^{\gamma}$

- Sample index: γ and Spike index: α
 - Common α for λ_i , j=1,...,m

Subspace Consistency

UNC, Stat & OR

Introduced by Jung and Marron (2009) under HDLSS asymptotics

Similar eigenvalues:

- Eigen-direction not identified
- Focus on subspace (generated)

Subspace=span{ $u_1, ..., u_m$ }

As $n \rightarrow \infty$, $d \rightarrow \infty$, or $d \& n \rightarrow \infty$

• Subspace consistency: $\theta \rightarrow 0$

UNC, Stat & OR

Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Sample Index**Y**

(0,0)

UNC, Stat & OR

Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

• Paul (2007) : boundary case $\alpha=0, \gamma=1$

 $\lambda_j = c_j d^{\alpha}$ $n \sim d^{\gamma}$

Spike Index (X

UNC, Stat & OR

Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

• Paul (2007) : boundary case $\alpha=0, \gamma=1$

UNC, Stat & OR

Classical asymptotics

• Anderson (1963): consistent when d fixed and $n \rightarrow \infty$

Random matrix asymptotics

• Paul (2007) : boundary case $\alpha=0, \gamma=1$

HDLSS asymptotics

• Jung and Marron (2009): subspace consistent when $\alpha > 1$, $\gamma=0$

• Jung and Marron (2009): str. incon. when $\alpha < 1$, $\gamma = 0$

 $\lambda_j = c_j d^{\alpha}$ $n \sim d^{\gamma}$

Our result : bridge between settings

- consistent when $\alpha + \gamma > 1$, $\gamma > 0$
- strongly inconsistent when $\alpha + \gamma < 1$

- Our result : bridge between settings
- consistent when $\alpha + \gamma > 1, \gamma > 0$
- strongly inconsistent when $\alpha + \gamma < 1$

 $\alpha + \gamma > 1, \gamma > 0$

Sample Index γ

(0,0)

- Motivation & Background
- PCA Asymptotics
- Spike Covariance Models
- Theoretical Results of PCA
- Sparse PCA
- Summary
- Analysis of Tree Data

• $\lambda_{m+1}, ..., \lambda_d \sim 1$

•
$$\lambda_{m+1}, ..., \lambda_d \sim 1$$

• $\lambda_1, ..., \lambda_{b_1} \rightarrow \delta_1$

•
$$\lambda_{m+1}, ..., \lambda_d \sim 1$$

• $\lambda_1, ..., \lambda_{b_1} \rightarrow \delta_1$

•
$$\lambda_{m+1}, ..., \lambda_d \sim 1$$

• $\lambda_1, ..., \lambda_{b_1} \rightarrow \delta_1$
:
• $\lambda_{a_h}, ..., \lambda_{b_h} \rightarrow \delta_h$

•
$$\lambda_{m+1}, \dots, \lambda_d \sim 1$$

• $\lambda_1, \dots, \lambda_{b_1} \rightarrow \delta_1$
:
• $\lambda_{a_h}, \dots, \lambda_{b_h} \rightarrow \delta_h$
• $\lambda_{a_{h+1}}, \dots, \lambda_{b_{h+1}} \rightarrow \delta_{h+1}$

•
$$\lambda_{m+1}, \dots, \lambda_d \sim 1$$

• $\lambda_1, \dots, \lambda_{b_1} \rightarrow \delta_1$
:
• $\lambda_{a_h}, \dots, \lambda_{b_h} \rightarrow \delta_h$
• $\lambda_{a_{h+1}}, \dots, \lambda_{b_{h+1}} \rightarrow \delta_{h+1}$

•
$$\lambda_{m+1}, \dots, \lambda_d \sim 1$$

• $\lambda_1, \dots, \lambda_{b_1} \rightarrow \delta_1$
:
• $\lambda_{a_h}, \dots, \lambda_{b_h} \rightarrow \delta_h$
• $\lambda_{a_{h+1}}, \dots, \lambda_{b_{h+1}} \rightarrow \delta_{h+1}$
:
• $\lambda_{a_r}, \dots, \lambda_m \rightarrow \delta_r$

•
$$\lambda_{m+1}, \dots, \lambda_d \sim 1$$

• $\lambda_1, \dots, \lambda_{b_1} \rightarrow \delta_1$
· $\lambda_{a_h}, \dots, \lambda_{b_h} \rightarrow \delta_h$
• $\lambda_{a_{h+1}}, \dots, \lambda_{b_{h+1}} \rightarrow \delta_{h+1}$
· $\lambda_{a_r}, \dots, \lambda_m \rightarrow \delta_r$

• $\overline{lim} \delta_{i+1}/\delta_i < 1$

• $\lambda_{m+1}, ..., \lambda_d \sim 1$ • $\lambda_1, ..., \lambda_{b_1} \rightarrow \delta_1$ · $\lambda_{a_h}, ..., \lambda_{b_h} \rightarrow \delta_h$ • $\lambda_{a_{h+1}}, ..., \lambda_{b_{h+1}} \rightarrow \delta_{h+1}$ · $\lambda_{a_r}, ..., \lambda_m \rightarrow \delta_r$

- $\overline{lim} \ \delta_{i+1}/\delta_i < 1$
- $\lambda_{m+1} / \lambda_m \rightarrow 0$

- As $n \rightarrow \infty$, $d \rightarrow \infty$, or $d \& n \rightarrow \infty$
 - Subspace consistency: $\theta \rightarrow 0$

 $\dot{a}_{j,} a_{h} \leq j \leq b_{h}$

Subspace=span{ $u_{a_b}, ..., u_{b_b}$ }

- As $n \rightarrow \infty$, $d \rightarrow \infty$, or $d \& n \rightarrow \infty$
 - Subspace consistency: $\theta \rightarrow 0$
 - Eigenvalue consistency: $\hat{\lambda}_j / \lambda_j \rightarrow 1$

 $a_{j,} a_{h} \leq j \leq b_{h}$

Subspace=span $\{u_{a_{b}}, ..., u_{b_{b}}\}$

• If h=0, all \hat{u}_j are strongly inconsistent

- If h=0, all \hat{u}_j are strongly inconsistent
- If h=r, all \hat{u}_j are subspace consistent

- If h=0, all \hat{u}_i are strongly inconsistent
- If h=r, all \hat{u}_j are subspace consistent
- If $a_h = b_h$, subspace consistency becomes consistency (Example 2)

- If h=0, all \hat{u}_i are strongly inconsistent
- If h=r, all \hat{u}_j are subspace consistent
- If $a_h = b_h$, subspace consistency becomes consistency (Example 2)
- For fixed n and $d \rightarrow \infty$, condition $\lim_{i \to \infty} \delta_{i+1} / \delta_i < 1$ should be strengthened to $\lim_{i \to \infty} \delta_{i+1} / \delta_i = 0$

UNC, Stat & OR

Boundary case for single spike model Assumption: as $n \rightarrow \infty$

•
$$\lambda_1 >> \lambda_2 = \ldots = \lambda_d = 1$$

UNC, Stat & OR

Boundary case for single spike model Assumption: as $n \rightarrow \infty$

•
$$\lambda_1 >> \lambda_2 = \ldots = \lambda_d = 1$$

•
$$d/(n\lambda_1) \rightarrow c$$

Boundary case for single spike model Assumption: as $n \rightarrow \infty$ • $\lambda_1 \gg \lambda_2 = ... = \lambda_d = 1$ • $d/(n\lambda_1) \rightarrow c$ Result

•
$$\hat{\lambda}_1 / \lambda_1 \xrightarrow{a.s.} 1 + c$$
, and $n\hat{\lambda}_j / d \xrightarrow{a.s.} 1$, $j > 1$,

Boundary case for single spike model Assumption: as $n \rightarrow \infty$ • $\lambda_1 \gg \lambda_2 = ... = \lambda_d = 1$ • $d/(n\lambda_1) \rightarrow c$ Result

•
$$\hat{\lambda}_1 / \lambda_1 \xrightarrow{\mathbf{a.s.}} 1 + c$$
, and $\hat{n\lambda}_j / d \xrightarrow{\mathbf{a.s.}} 1$, $j > 1$,

•
$$| < \hat{u}_1, u_1 > | \xrightarrow{a.s.} 1/(1+c)$$

NWC, Stat & OR Boundary case for single spike model Assumption: as $n \rightarrow \infty$ • $\lambda_1 \gg \lambda_2 = ... = \lambda_d = 1$ • $d/(n\lambda_1) \rightarrow c$ Result

•
$$\hat{\lambda}_1 / \lambda_1 \xrightarrow{a.s.} 1 + c$$
, and $n\hat{\lambda}_j / d \xrightarrow{a.s.} 1$, $j > 1$,

•
$$| < \hat{u}_1, u_1 > | \xrightarrow{a.s.} 1/(1+c)$$

• \hat{u}_j , j>1, are strongly inconsistent with convergence rate $(n/d)^{1/2}$

- Motivation & Background
- PCA Asymptotics
- Spike Covariance Models
- Theoretical Results of PCA
- Sparse PCA
- Summary
- Analysis of Tree Data

Single-Component Spike Model

Recall Example 1:

- $\lambda_1 \sim d^{\alpha}$, $\lambda_2 = \ldots = \lambda_d = 1$
- Spike index: α

Johnstone and Lu (2009)

- PCA strongly inconsistent if and only if $d/n \rightarrow \infty$
- But sparse PCA is consistent

Jung and Marron (2009)

- HDLSS: n fixed and $d \rightarrow \infty$
- PCA consistent when $\alpha > 1$
- PCA strongly inconsistent when $\alpha < 1$
- Performance of PCA under the sparsity assumption???

•
$$u_1 \sim (1, ..., 1, 0, ..., 0)$$

- $[d^{\beta}]$: the integer part of d^{β}
- $0 \le \beta \le 1$: sparsity index

Sparse PCA in HDLSS Settings

Sparse PCA in HDLSS Settings

Sparse PCA in HDLSS

- Conventional PCA
- Consistent when $\alpha > 1, 0 \le \beta \le 1$
- Strongly inconsistent when $\alpha < 1, 0 \le \beta \le 1$
- Sparse PCA
- Consistent when $0 \le \beta < \alpha \le 1$ and $\alpha > 1$, $0 \le \beta \le 1$

Sparse PCA in HDLSS Settings

- Conventional PCA
- Consistent when $\alpha > 1, 0 \le \beta \le 1$
- Strongly inconsistent when $\alpha < 1, 0 \le \beta \le 1$
- Sparse PCA
- Consistent when $0 \le \beta < \alpha \le 1$ and $\alpha > 1$, $0 \le \beta \le 1$
- Strongly inconsistent when $0 \le \alpha < \beta \le 1$

Sparse PCA in HDLSS Settings

UNC, Stat & OR

- Conventional PCA
- Consistent when $\alpha > 1$, $0 \le \beta \le 1$
- Strongly inconsistent when $\alpha < 1, 0 \le \beta \le 1$

Sparse PCA

- Consistent when $0 \le \beta < \alpha \le 1$ and $\alpha > 1$, $0 \le \beta \le 1$
- Strongly inconsistent when $0 \le \alpha < \beta \le 1$
- Marginal inconsistent when $0 \le \alpha = \beta \le 1$

Simulation Studies

• n=25, d=10,000

- $\alpha = 0.2, 0.4, 0.6, 0.8; \beta = 0, 0.1, 0.3, 0.5, 0.7$
- $\lambda_1 = d^{\alpha}$, $\lambda_2 = \ldots = \lambda_d = 1$
 - $u_1 \sim (1, ..., 1, 0, ..., 0)$
- $2 \le i \le [d^{\beta}],$ $u_i \sim (1, ..., 1, -i+1, 0, ..., 0)$
- $i \geq [d^{\beta}],$ $u_i \sim (0, ..., 0, 1, 0, ..., 0)$
- Data matrix

$$X = U_1 d^{\alpha/2} Z_1^T + \sum_{i=2}^d U_i Z_i^T$$
, with $Z_i \sim N(0, I_n)$

- Motivation & Background
- PCA Asymptotics
- Spike Covariance Models
- Theoretical Results of PCA
- Sparse PCA
- Summary
- Analysis of Tree Data

• Build a general framework to study PCA asymptotics Shen et al. (2011) (under review)

- Introduce sparse PCA asymtptotics in HDLSS Shen et al. (2011) (resumbitted)
- Build a general framework to study sparse PCA asymptotics

- Motivation & Background
- PCA Asymptotics
- Spike Covariance Models
- Theoretical Results of PCA
- Sparse PCA
- Summary
- Analysis of Tree Data

Population of Blood Vessel Trees

- n=98
- Statistical goals:
 - 1. Population variation
 - 2. Age difference
 - 3. Gender difference
 - 4. Build model

Population of Blood Vessel Trees

- n=98
- Statistical goals:
 - 1. Population Variation
 - 2. Age difference
 - 3. Gender difference
 - 4. Build model

- Embed 3-d tree in 2-d
- More descendants to the left

Individual Back Tree

UNC, Stat & OR

Descendant Correspondence with Branch Length

Marron's Back Tree

UNC, Stat & OR

Descendant Correspondence with Branch Length

UNC, Stat & OR

Example 1, Assume that we have three following trees

UNC, Stat & OR

Now, we show how to transform the first tree as a curve.

UNC, Stat & OR

Now, we show how to transform the first tree as a curve.

UNC, Stat & OR

Now, we show how to transform the first tree as a curve.

UNC, Stat & OR

Now, we show how to transform the first tree as a curve.

UNC, Stat & OR

Now, we show how to transform the first tree as a curve.

UNC, Stat & OR

Now, we show how to transform the first tree as a curve.

UNC, Stat & OR

Now, we show how to transform the first tree as a curve.

Now, we show how to transform the first tree as a curve.

Now, we show how to transform the first tree as a curve.

Now, we show how to transform the first tree as a curve.

UNC, Stat & OR

Now, we show how to transform the first tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the second tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

UNC, Stat & OR

Now, we show how to transform the third tree as a curve.

The Dyck Path:

- The curve connecting the coordinate points (x, y)
- X-value: the number of steps that the ant passed
- Y-value: the corresponding branch height

Dyck Path Curves (Back Tree)

Properties:

- Flat curve segments correspond to missing branches
- Rainbow color corresponds to age ranging from magenta (for young) to red (for old)
- The left part is taller than the right part the descendant correspondence
- The range of x-value is twice of the branch number every branch is passed twice Dyck Path

PCA of the Dyck Path Curves (Back Tree)

Tree interpretation of the PC direction

Summary :

- Main variation: banches in the right part of the binary trees
- Reflects the result from the PCA of the Dyck path curves

Thank you !