Due: Thursday, February 5, 2007
4.129

C9: The workforce in a town has:

$$
(20 \%, 50 \%, 30 \%)
$$

workers with
(no HS, HS-no C, C)
education. Past experience indicates that

$$
(10 \%, 30 \%, \quad 90 \%)
$$

of workers with
(no HS, HS-no C, C)
education can perform a given task. Find the probability that a randomly chosen worker:
a. Can perform the task (0.44)
b. Is College educated if (s)he can perform the task (0.61)

$$
4.30(\mathrm{P}(\mathrm{~A})=0.125, \mathrm{P}(\mathrm{~B})=0.751, \mathrm{P}(\mathrm{~A} \& \mathrm{~B})=0.094)
$$

$4.36(0.328,0.659), \quad 4.38(0.0082,0.0055,0.0027), \quad 4.39$

C10 Suppose events A, B, C all have probability 0.4 , A \& B are independent, and A \& C are mutually exclusive.
a. Find $\mathrm{P}\{\mathrm{A}$ or B$\} \quad(0.64)$
b. Find $\mathrm{P}\{\mathrm{A}$ or C$\} \quad$ (0.8)
c. Find $\mathrm{P}\{\mathrm{A}$ and B \}
d. Find $\mathrm{P}\{\mathrm{A}$ and C$\}$
4.49, $\quad 4.50$ a, c (0.441) 4.51 b,c

C 11: For a random variable Y, with distribut'n:

Find:
a. $\mathrm{P}\{\mathrm{Y}=5\} \quad(1 / 5)$
b. $\mathrm{P}\{\mathrm{Y}=3\} \quad(0)$
c. $\mathrm{P}\{\mathrm{Y} \leq 0\} \quad(3 / 5)$
d. $\mathrm{P}\{-1 \leq \mathrm{Y} \leq 1\} \quad(1 / 2)$
e. $\mathrm{P}\{\mathrm{Y} \geq 1 \mid \mathrm{Y} \geq-1\} \quad(4 / 7)$
f. $P Y=5 \mid Y \leq 0\} \quad(0)$
4.55, 5.11, 5.12 (a. no, not count, b. yes, c. approx.)

