STOR 155, Section 1, Final Examination
 Thursday, April 30, 2009

Name: \qquad Solution \qquad
Pledge: I have neither given nor received aid on this examination.

Signature:

\qquad
Instructions: Do not do any actual numerical calculations. Answers in a form that you would type into an Excel field, such as " $=28^{*} \operatorname{SQRT}(82)^{\wedge} 2 "$, with a working answer, are expected.

1. A company makes 20% of its cars at factory A, and the rest at factory B. Factory A produces 1% lemons, and Factory B produces 2% lemons. A car is chosen at random. What is the probability that:
a. It came from Factory B?

$$
\begin{equation*}
+\mathrm{P}\{\mathrm{~B}\}=1-\mathrm{P}\{\text { not } \mathrm{B}\}=1-\mathrm{P}\{\mathrm{~A}\}=1-0.2=0.8 \tag{5}
\end{equation*}
$$

b. It is a lemon, if it came from Factory B?
[5]

$$
\mathrm{P}\{\mathrm{~L} \mid \mathrm{B}\}=0.02
$$

c. It is a lemon, from Factory B?
[5]

$$
P\{L \& B\}=P\{L \mid B\} P\{B\}=0.02 * 0.8=0.016
$$

d. It is a lemon?
[5]

$$
\begin{aligned}
\mathrm{P}\{\mathrm{~L}\} & =\mathrm{P}\{(\mathrm{~L} \& \mathrm{~A}) \text { or }(\mathrm{L} \& \mathrm{~B})\}=\mathrm{P}\{\mathrm{~L} \& \mathrm{~A}\}+\mathrm{P}\{\mathrm{~L} \& \mathrm{~B}\}-\mathrm{P}\{(\mathrm{~L} \& \mathrm{~A}) \&(\mathrm{~L} \& \mathrm{~B})\} \\
& =\mathrm{P}\{\mathrm{~L} \mid \mathrm{A}\} \mathrm{P}\{\mathrm{~A}\}+\mathrm{P}\{\mathrm{~L} \& \mathrm{~B}\}-0 \\
& =(0.01 * 0.2)+(0.02 * 0.8)=0.002+0.016=0.018
\end{aligned}
$$

e. It came from Factory B, if it is a lemon?

$$
\begin{align*}
\mathrm{P}\{\mathrm{~B} \mid \mathrm{L}\} & =\mathrm{P}\{\mathrm{~L} \& \mathrm{~B}\} / \mathrm{P}\{\mathrm{~L}\} \tag{5}\\
& =(0.02 * 0.8) /((0.01 * 0.2)+(0.02 * 0.8))=0.016 / 0.018
\end{align*}
$$

2. A survey of 2000 student loan borrowers found that 200 had loans totaling more than $\$ 40,000$.
a. Give a 99% best guess Confidence Interval for the proportion of all loans totaling more than $\$ 40,000$.
[5]
```
X ~ Binom(2000,p), where p = proportion > 40k
phat = X / n = 200 / 2000 = 0.1
margin of error is NORMINV(0.995,0,SQRT(0.1 * 0.9 / 2000))
Left CI = 0.1 - NORMINV(0.995,0,SQRT(0.1 * 0.9 / 2000))
Right CI = 0.1 + NORMINV(0.995,0,SQRT(0.1 * 0.9 / 2000))
    (or m CONFIDENCE(0.01,SQRT(0.1 * 0.9),2000))
```

b. Give an Excel expression for the exact p-value for concluding that the proportion of all loans more than $\$ 40,000$, is at least 5%.
[5]

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{p}<0.05 \quad \mathrm{H}_{1}: \mathrm{p} \geq 0.05 \\
& \mathrm{p}-\mathrm{val}=\mathrm{P}\{\mathrm{X} \geq 200 \mid \mathrm{p}=0.05\}=1-\mathrm{P}\{\mathrm{X} \leq 199\} \\
& =1-\operatorname{BINOMDIST}(199,2000,0.05, \text { true })
\end{aligned}
$$

c. Use the Normal approximation to give an alternate answer to (b).
[5]

$$
\begin{aligned}
& \text { p-val }=\mathrm{P}\{\mathrm{X} \geq 200 \mid \mathrm{p}=0.05\}=1-\mathrm{P}\{\mathrm{X} \leq 200\} \\
& =1-\operatorname{NORMDIST}\left(200,2000 * 0.05, \operatorname{SQRT}\left(2000 * 0.05^{*}(1-0.05)\right) \text {,true }\right) \\
& =1-\operatorname{NORMDIST}(200,100, \operatorname{SQRT}(50) \text {,true })
\end{aligned}
$$

d. Why is the approximation used in (c) appropriate?
[5]

$$
\begin{aligned}
& \mathrm{n} * \mathrm{p}=2000 * 0.5=1000>10 \\
& \mathrm{n} *(1-\mathrm{p})=2000 *(1-0.5)=1000>10
\end{aligned}
$$

e. What is the 98% conservative margin of error in estimating the proportion of all loans over $\$ 40,000$?
[5]

$$
\begin{aligned}
& \text { NORMINV(0.99,0,SQRT(0.5 * } 0.5 / 2000)) \\
& =\operatorname{CONFIDENCE}(0.02, \operatorname{SQRT}(0.5 * 0.5), 2000)
\end{aligned}
$$

3. Scores on tests for a class were:

	A	B	C	D	E
1	1st Exam	153	144	162	127
2	2nd Exam	145	140	143	130
3	Difference	8	4	19	-3

a. Assuming each column represents one student, give a formula for the p -value to show that scores on the $1^{\text {st }}$ exam are significantly higher than those on the $2^{\text {nd }}$ exam.
[5]

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1} \leq \mu_{2} \quad \mathrm{H}_{1}: \mu_{1}>\mu_{2} \\
& \text { p-val }=\mathrm{P}\left\{\mathrm{X}_{1} \text { bar }-\mathrm{X}_{2} \text { bar } \geq \text { calculated value } \mid \mu_{1}=\mu_{2}\right\} \\
& =\operatorname{TTEST} 1: \mathrm{B} 1: \mathrm{E} 1, \mathrm{~B} 2: \mathrm{E} 2,1,1)
\end{aligned}
$$

b. Again assuming each column represents one student, give an 80% Confidence Interval for the difference between the mean scores.
[5]

$$
\begin{aligned}
& \text { Dbar } \pm \operatorname{TINV}(0.2, \mathrm{n}-1) * \operatorname{sd}(\mathrm{Dbar}) \\
& \operatorname{AVERAGE}(\mathrm{B} 3: \mathrm{E} 3) \pm \operatorname{TINV}(0.2,3) * \operatorname{STDEV}(\mathrm{~B} 3: \mathrm{E} 3) / \operatorname{SQRT}(4)
\end{aligned}
$$

c. Assuming the exam scores come from two different classes, give a formula for the pvalue to assess whether exam scores are significantly different between the two exams.
[5]

$$
\begin{aligned}
& \mathrm{H} 0: \mu 1=\mu 2 \quad \mathrm{H} 1: \mu 1 \neq \mu 2 \\
& \text { p-val = P }\{\mid \mathrm{X} 1 \text { bar }-\mathrm{X} 2 \text { bar } \mid \geq \text { calculated value } \mid \mu 1=\mu 2\} \\
& =\mathrm{TTEST}(\mathrm{~B} 1: \mathrm{E} 1, \mathrm{~B} 2: \mathrm{E} 2,2,3)
\end{aligned}
$$

d. Write the equation of the least squares regression line, of the $2^{\text {nd }}$ score as a function of the $1^{\text {st }}$ score, in terms of Excel commands
[5]

$$
\mathrm{Y}=\mathrm{SLOPE}(\mathrm{~B} 2: \mathrm{E} 2, \mathrm{~B} 1: \mathrm{E} 1)+\mathrm{INTERCEPT}(\mathrm{~B} 2: \mathrm{E} 2, \mathrm{~B} 1: \mathrm{E} 1)
$$

e. Write an Excel command to calculate the correlation between exam scores. Will the answer be positive, 0 or negative?

CORREL(B2:E2,B1:E1), positive
4. For a random variable with distribution:

Find:

y	-1	0	1	3
$\mathrm{f}(\mathrm{y})$	0.5	0.2	0.2	0.1

a. $\mathrm{P}\{-1<\mathrm{Y} \leq 2\}$
[5]

$$
=f(0)+f(1)=0.2+0.2=0.4
$$

b. $\mathrm{P}\{\mathrm{Y}=1 \mid \mathrm{Y}>0\}$
[5]

$$
\begin{gathered}
=\mathrm{P}\{(\mathrm{Y}=1) \&(\mathrm{Y}>0)\} / \mathrm{P}\{\mathrm{Y}>0\}=\mathrm{P}\{\mathrm{Y}=1\} / \mathrm{P}\{\mathrm{Y}>0\} \\
=\mathrm{f}(1) /(\mathrm{f}(1)+\mathrm{f}(3))=0.2 /(0.2+0.1)=2 / 3
\end{gathered}
$$

c. $\mathrm{P}\{\mathrm{Y}=1 \mid \mathrm{Y}<0\}$
[5]
0 , can't happen at same time
d. The expected value of Y
[5]

$$
\begin{aligned}
\mathrm{EX}= & \operatorname{sum}(X * \text { prob of } \mathrm{X})=(-1) * \mathrm{f}(-1)+0 * \mathrm{f}(0)+1 * \mathrm{f}(1)+3 * \mathrm{f}(3) \\
& =(-1) * 0.5+0 * 0.2+1 * 0.2+3 * 0.1=-0.5+0.2+0.3
\end{aligned}
$$

e. The standard deviation of Y
[5]

$$
\begin{aligned}
& \operatorname{SD}(\mathrm{x})=\operatorname{SQRT}\left(\operatorname{sum}\left((\mathrm{X}-\mathrm{EX})^{\wedge} 2 * \operatorname{prob} \text { of } \mathrm{X}\right)\right) \\
& \quad \operatorname{SQRT}\left((-1)^{\wedge} 2 * 0.5+0^{\wedge} 2 * 0.2+1 \wedge 2 * 0.2+3 \wedge 2 * 0.1\right)
\end{aligned}
$$

5. A TV ad claims that at most 30% of people prefer Brand X. Suppose that 6 out of 10 randomly selected people prefer Brand X.
a. Give an exact p-value to decide whether or not we should dispute the claim.
[5]

$$
\begin{aligned}
\mathrm{H}_{0}: \mathrm{p} & \leq 0.3 \quad \mathrm{H}_{1}: \mathrm{p}>0.3, \quad \text { let } \mathrm{X}=\# \text { prefer } \sim \operatorname{Binom}(10, \mathrm{p}) \\
\mathrm{p}-\mathrm{val} & =\mathrm{P}\{\mathrm{X} \geq 6 \mid \mathrm{p}=0.3\}=1-\mathrm{P}\{\mathrm{X} \leq 5\} \\
& =1-\operatorname{BINOMDIST}(5,10,0.3, \text { true })
\end{aligned}
$$

b. If the p-value in part a turns out to be 0.03 , give a "yes-no" conclusion.
[5]
Have strong evidence claim is wrong
c. If the p -value in part a turns out to be 0.03 , give a gray level conclusion.
[5]
Moderately strong evidence. Significant, but not overwhelming.
d. Give a 98% conservative confidence interval for the proportion of people that prefer Brand X.

$$
\begin{equation*}
0.6 \pm \operatorname{CONFIDENCE}(0.02, \operatorname{SQRT}(0.5 *(1-0.5)), 10) \tag{5}
\end{equation*}
$$

e. How large a sample (in the best guess sense) is needed so that with probability 90%, the estimated proportion of people that prefer Brand X is within 0.01 of the actual number?

$$
\begin{align*}
&(\operatorname{NORMINV}(0.95,0,1) / m)^{\wedge} 2 * p *(1-\mathrm{p}) \tag{5}\\
&=(\operatorname{NORMINV}(0.95,0,1) / 0.01)^{\wedge} 2 * 0.6 *(1-0.6) \\
& \text { OR: } \quad=(\operatorname{NORMINV}(0.95,0,1) / 0.01)^{\wedge} 2 * 0.3 *(1-0.3)
\end{align*}
$$

6. A set of 4 Normal Quantile plots (in scrambled order, watch the labels) are:

i. Which most likely is from a data set of IQ scores with histogram [3] b
ii. Which most likely is from a data set of 21 car mileages of 2-seater cars?
a
iii. Which most likely is from a data set of tuition charges with histogram

d
iv. Which most likely is from a data set of 80 phone call lengths with histogram ${ }^{\cdots}$?
c
v. Which most likely is from a Normally distributed data set?
[4]
b
vi. Which most likely is from a Normal distribution, with a single outlier?
[4]
a
vii. Which most likely is from a distribution with multiple clusters?
[4]
d
7. Length of horse pregnancies vary according to a roughly Normal distribution, with mean 340 , and standard deviation 5.
a. Use the 68-95-99.7 rule to indicate the range which contains 95% of the data.
[5]

$$
=\text { mean } \pm 2 \mathrm{sd}=340 \pm 2 * 5=340 \pm 10=330-360
$$

b. Use the 68-95-99.7 rule to indicate which $\%$ of pregnancies last at least 335 days.
[5]

```
\geq \mp@code { m e a n - 1 ~ s d }
But 67% are within mean }\pm1\textrm{sd
So 32% are outside mean }\pm1\mathrm{ sd
So 16% are less than mean - 1 sd
So }84%\mathrm{ are greater than mean - 1 sd
```

c. Give an Excel command to answer part (a).
[5]

```
For X ~ Norm(340,5)
0.95= P{-C<X - 340<C }
So 0.975 = P {X - 340<C }
So C = NORMINV(0.975,0,5), and range is: 340 - C to 340 + C
OR: Lower End: NORMINV(0.025,340,5)
    Upper End: NORMINV(0.975,340,5)
```

d. Give an Excel command to answer part (b).

$$
\begin{align*}
& \mathrm{P}\{\mathrm{X} \geq 335\}=1-\mathrm{P}\{\mathrm{X}<335\} \tag{5}\\
& =\operatorname{NORMDIST}(335,340,5, \text { true })
\end{align*}
$$

e. How large a sample should be used to be 98% sure of estimating the true mean within 0.1 ?
[5]

$$
\begin{aligned}
&\left.\mathrm{n}=(\operatorname{NORMINV}(0.99,0,1) * \sigma / m)^{\wedge} 2\right)^{\wedge} 2 \\
&=(\operatorname{NORMINV}(0.99,0,1) * 5 / 0.1)^{\wedge} 2
\end{aligned}
$$

8. Gas mileages for a vehicle, after a random sample of fill-ups are:

	A	B	C	D	E	F	
1	41.5	50.7	36.8	44.2		45	37.4

a. Find the sample mean and standard deviation.
[5]
AVERAGE(A1:F1)
STDEV(A1:F1)
b. Find the 60% margin of error in estimation of the population mean.
[5]

$$
=\operatorname{TINV}(0.4,5) * \operatorname{STDEV}(\mathrm{~A} 1: F 1) / \operatorname{SQRT}(6)
$$

c. Give a 60% Confidence Interval for the population mean.
[5]

$$
=\operatorname{AVERAGE}(\mathrm{A} 1: \mathrm{F} 1) \pm \operatorname{TINV}(0.4,5) * \operatorname{STDEV}(\mathrm{~A} 1: \mathrm{F} 1) / \operatorname{SQRT}(6)
$$

d. Find the p -value to test whether the population mean is less than 40 .
[5]

$$
\begin{aligned}
& \mathrm{H}: \mu \geq 40 \quad \mathrm{H}: \mu<40 \\
& \text { p-val }=\mathrm{P}\{\text { Xbar }<\text { AVERAGE } \mid \mu=40\} \\
& =\text { TDIST(ABS(AVERAGE(A1:F1) }-40) /(\operatorname{STDEV}(\mathrm{A} 1: F 1) / \operatorname{SQRT}(6)), 5,1)
\end{aligned}
$$

e. Briefly state (5 words or less) the needed assumptions in parts (c) and (d).

Individuals normally distributed

