Statistics 31, Section 3, Midterm II, Solution
Tuesday, November 14, 2000

Name: \qquad
Pledge: I have neither given nor received aid on this examination.

Signature: \qquad
Instructions: Do not do any actual numerical calculations. Answers in a form that you would type into an Excel field, such as " $=28^{*} \operatorname{SQRT}(82)^{\wedge} 2^{\prime \prime}$, with a working answer, are expected). [points per part]

1. A company makes 50% of its cars at Factory A, 30% at Factory B and the rest at Factory C. Factory A produces 10% lemons, Factory B produces 15% lemons and Factory C produces 5% lemons. A car is chosen at random. What is the probability that:
a. It is a lemon?
[10]
$\mathrm{P}\{\mathrm{A}\}=0.50, \quad \mathrm{P}\{\mathrm{B}\}=0.30, \quad \mathrm{P}\{\mathrm{C}\}=0.20$
$\mathrm{P}\{\mathrm{L} \mid \mathrm{A}\}=0.10, \quad \mathrm{P}\{\mathrm{L} \mid \mathrm{B}\}=0.15, \quad \mathrm{P}\{\mathrm{L} \mid \mathrm{C}\}=0.05$
$\mathrm{P}\{\mathrm{L}\}=\mathrm{P}\{(\mathrm{L}$ and A$)$ or $(\mathrm{L}$ and B$)$ or $(\mathrm{L}$ and C$)\}=$
$=P\{\mathrm{~L}$ and A$\}+\mathrm{P}\{\mathrm{L}$ and B$\}+\mathrm{P}\{\mathrm{L}$ and C$\}=$
$=P\{L \mid A\} P\{A\}+P\{L \mid B\} P\{B P\}+P\{L \mid C\} P\{C\}=$ $=0.10 * 0.50+0.15 * 0.30+0.05 * 0.20$
b. It came from Factory B if it is a lemon?
[10]
$P\{B \mid L\}=P\{B$ and $L\} / P\{L\}=\ldots$
Or Bayes Rule:
$P\{B \mid L\}=P\{L \mid B\} P\{B\} /(P\{L \mid A\} P\{A\}+P\{L \mid B\} P\{B\}+P\{L \mid C\} P\{C\})$
$=(0.15 * 0.30) /(0.10 * 0.50+0.15 * 0.30+0.05 * 0.20)$
2. The weights of a random sample of 25 runners averaged 60 kg . Suppose that the standard deviation of the population is known to be 10 kg .
a. What is $\sigma_{\bar{X}}$, the standard deviation of the sample average \bar{X} ?
[5]
sigma $/$ sqrt(n) $=10 /$ sqrt(25)
b. Find the 99% margin of error for estimating the population mean μ using \bar{X}. [5]
=confidence $(0.01,10,25)$
c. Give a 90% confidence interval for μ.
left end: =60-confidence(0.1,10,25)
right end: $=60+$ confidence $(0.1,10,25)$
d. Exactly how would the confidence interval in (c) change if the sample average were based on a random sample of 100 runners?
same center, but length would decrease by factor of sqrt(4) $=2$
e. How large a sample would be required to estimate μ within $\pm 0.1 \mathrm{~kg}$ with 95% confidence?
[5]
$=(10 * \text { NORMINV }(0.975,0,1) / 0.1)^{\wedge} 2$
3. A household is called prosperous if its income exceeds $\$ 75,000$, and called educated if the householder completed college. 20% of all households are prosperous, 30% are educated, and 19% are prosperous and educated. If a household is chosen at random:
a. What is the probability that it either is educated, or else is prosperous?
$\mathrm{P}\{$ Ed. or Pros. $\}=\mathrm{P}\{$ Ed. $\}+\mathrm{P}\{$ Pros. $\}-\mathrm{P}\{$ Ed. and Pros. $\}=$

$$
=0.30+0.20-0.19
$$

b. What is the probability that it is educated given that it is prosperous?
[5]
$\begin{aligned}\text { P\{Ed.|Pros. }\} & =\mathrm{P}\{\text { Ed. and Pros. }\} / \mathrm{P}\{\text { Pros. }\}= \\ & =0.19 / 0.20\end{aligned}$
c. Is the event that it is educated independent of the event that it is prosperous? Why or why not?
[5]
No, $\mathrm{P}\{$ Ed.|Pros. $\}$ is not equal to $\mathrm{P}\{$ Ed. $\}$
4. A box label claims that on average boxes contain 40 oz . A random sample of 12 boxes shows an average of 39 oz ., with $s=2.2$. To see if we should dispute the claim, consider the hypotheses:

$$
H_{+}: \quad \mu>40 \quad H_{0}: \quad \mu=40 \quad H_{-}: \quad \mu<40
$$

a. Find the p-value to assess the strength of the evidence in favor of H_{+}.
[10]
p-val $=\mathrm{P}\{$ what was seen or more conclusive $\mid \mathrm{H} 0\}=$
$=\mathrm{P}\{$ Xbar $>39 \mid \mathrm{mu}=40\}=$
= 1 - NORMDIST(39,40,2.2/SQRT(12),TRUE)
b. If the p-value to test H_{-}: were equal to 0.0613 , interpret the results from both the "yes-no" and the "gray level" viewpoints.
[5]
yes - no: no strong evidence at level 0.05
gray level: evidence is somewhat strong in the direction of the label being wrong.
5. According to government data, 15% of employed men have never been married.
a. If 12 employed men are selected at random, what is the probability that at least 10 have never been married?
[5]
let $\mathrm{X}=\#$ is sample never been married. $\mathrm{X} \sim \operatorname{Bi}(12,0.15)$
$\mathrm{P}\{\mathrm{X}>=10\}=1-\mathrm{P}\{\mathrm{X}<10\}=1-\mathrm{P}\{\mathrm{X}<=9\}$ $=1-\operatorname{BINOMDIST}(9,12,0.15, T R U E)$
b. If 12 employed men are selected at random, what is the probability that less than 4 have been married?

Use X as above, $\mathrm{P}\{$ less than 4 have been $\}=\mathrm{P}\{$ more than 8 never been $\}=\mathrm{P}\{\mathrm{X}>8\}=$

$$
1-\mathrm{P}\{\mathrm{X}<=8\}=1 \text { - BINOMDIST(8,12,0.15,TRUE) }
$$

or let $\mathrm{X}=$ \# have been married, $\quad \mathrm{X} \sim \operatorname{Bi}(12,0.85)$
$\mathrm{P}\{\mathrm{X}<4\}=\mathrm{P}\{\mathrm{X}<=3\}=\operatorname{BINOMDIST}(3,12,0.85, T R U E)$
c. 12 employed men are selected at random, what is the mean number that have never been married?
[5]
mean $=\mathrm{np}=12 * 0.15$
d. Let X denote number the number who have never been married, in a random sample of 12 employed men. What is the standard deviation of X ?
s.d. $=\operatorname{sqrt}(n \mathrm{p}(1-\mathrm{p}))=\operatorname{SQRT}(12 * 0.15 *(1-0.15))$
e. If 1200 employed men are selected at random, what is the probability that at least 100 have never been married?
[5]
Note: BINOMDIST gives an error message, so must use normal approx:
X ~N(np,sqrt(np(1-p))
$\mathrm{P}\{\mathrm{X}>=100)=1-\mathrm{P}\{\mathrm{X}<=100\}$
$=1$ - NORMDIST(100,12*0.15,SQRT(12*0.15*(1-0.15)),TRUE)

