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“Principal” things in statistics

4211 items at researchindex.com, 1381 at Current Index to
Statistics, including:

• Principal components

– linear

– categorical

– nonlinear

– functional

• Principal curves and surfaces

• Principal Hessian directions
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Generalization of PC

Elaborate on the main aspects of principal components:

1. Maximum variance of the PC

PC1 = arg max
a1:‖a1‖=1

Var(X′a1) (1)

PC2 = arg max
a2:‖a2‖=1,a2⊥a1

Var(X′a2), etc. (2)

2. Minimum variance of the residuals

PC1 = arg min
a:‖a‖=1

E distance(at+ b,X), etc. (3)

3. Multivariate normal: self-consistency w.r.t. projection
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Nonlinear PCA I

Gifi (1990): the book is interesting per se as an approach aiming at
better understanding the structure of your data by taking different
views of it. The main accent is made on categorical data.

In Gifi’s notation, the non-linear PCA can be motivated as the
generalization of (3):∑

j

SSQ(x− φj(hj))→ min, (4)

where x are scores (x′x = 1 for normalization) and hj are the
entries of the data matrix.

All nonlinear transformations allowed ⇒ min = 0 ?
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Nonlinear PCA II

To get nontrivial solutions, we need to impose some restrictions.
Smoothness is the general condition I would think of, but Gifi
proposes some other things.

1. Monotonicity

2. Basis expansion: e.g. polynomials of low order

3. Categorization (Gifi’s favorite): discretize into a small number
of categories, and...

we are back to the convenient setting:∑
j

SSQ(X−GjYj)→ min (5)
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Principal curves

The basic reference is Hastie and Stuetzle (1989): definitions,
algorithm, applications, discussion.

Principal curve is defined informally as a smooth curve that passes
through the middle of the data and is self-consistent under the
projections to it.

Linear Smooth

Selected dependent
variable

Linear
regression

Non-parametric
regression

All variables treated
symmetrically

PCA Principal curves
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Projections

If the curve is parametrized with the parameter λ, then the
projection index of a data point is the arg of the point on the curve
to which the data point is projected:

λf (x) = sup
λ

{
λ : ‖x− f(λ)‖ = inf

µ
‖x− f(µ)‖

}
, (6)

i.e. the value of λ for which f(λ) is closest to x.

With this projection index, self-consistent / principal curves are
the curves such that

E(X|λf (X) = λ) = f(λ) (7)
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Algorithm

Hastie and Stuetzle (1989):

1. Start from the first principal component:

f (0) = x̄ + aλ, λ(0)(x) = λf (0)(x). (8)

2. Set

f (j)(·) = E(X|λf (j−1)(X) = ·) (9)

Done by scatterplot smoother: perform local fitting for each
dimension.
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Algorithm (continued)

3. Define

λ(j)(x) = λf (j)(x) (10)

and transform to unit speed paramterization.

4. Evaluate

∆(j) = E
[
‖X− f(λ(j)(X))‖2

]
(11)

5. Stop if ∆(j) is small enough, otherwise j ← j + 1 and go to
step 2.
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Does it all make sense?

Are principal curves really so nice objects to work with?

1. Uniqueness?

2. Bias in the parts of high curvature.

3. Generalizations to 2D, 3D, . . . : possible, but cumbersome.

4. Algorithmic issues: choice of the bandwidth? convergence?
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Alternatives?

Tibshirani (1992):

1. generate a variable S according to some distribution gS(s);

2. generate Y ∈ IRp from the conditional distribution gY|s.

Then a principal curve is a triple < gS , gY|s, f > satisfying

I. gY(y) =
∫
gY|sgS(s)ds;

II. Y1, . . . , Yp conditionally independent given s;

III. f : Γ→ IRp, Γ is a closed interval in IR, and EY|s = f(s).

This definition does not suffer from bias, but it only coincides with HS if

the support of the conditional distribution gY|s is orthogonal to the

curve f(·) at s. The algorithm is a version of the EM-algorithm for a

finite mixture of normal distributions with a support on at most n points

which are essentially the projections of the data.
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My own experience

• Coarser implementation (only projections of the data points)
⇒ convergence in the sense of Step 5 never achieved: SS did
not decrease monotonically. It makes sense to trace
convergence by some graphical means.

• Some strange figures appeared on the way... T. Hastie
commented that he had some of them, too.

• Tricks to avoid the previous problem — chop pieces where no
points project to; increase bandwidth.

• Starting point was crucial for convergence, or at least for the
speed of convergence.

• Performed reasonably well with high dimensional example:
dealt with non-normalities, non-linearities, many dimensions.
The data were rather simple, though.
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Functional data used

Simulation model:

xik = 1 + t− (
1

2
+

3

2
βk exp

[
−(9− 6αk)t2

]
− 2γkIt>0 + δk + εik, (12)

t = (i− 21)/20, k = 1, . . . , 84,

where i and t correspond to the measurement points / dimensions, and k

enumerates observations / curves, δk ∼ N(0, 0.032), εik ∼ N(0, 0.022) are

errors independent of each other and of anything else. The parameters

αk, βk, γk are distributed independently inside a tube that goes along the

edges of the unit cube.

30 points: αk ∼ U [0, 1], βk and γk ∼ U [0, 0.1]

27 points: αk ∼ U [0.9, 1], βk ∼ U [0, 1], γk ∼ U [0, 0.1]

27 points: αk and βk ∼ U [0.9, 1], γk ∼ U [0, 1]
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