Additional materials for “Principal curves”
presentation
Stas Kolenikov

This handout present the graphs that are (to be) reproduced during the presentation along with additional
comments.

The first example shown is that of circular data, which is the example both Hastie and Stuetzle (1989)
and Tibshirani (1992) were using for their demonstrations. Fig. 1 shows the example of raw data (circle
+ 2D Gaussian noise), and Fig. 2 and 3 shows how iteration of the algorithm proceeded.

Another example of simulated data is the parabola data: the points approximately lie on a parabola,
and the first principal component roughly connects the ends of the curve. Raw data are shown at Fig. 4,
and the two examples of application of unmodified algorithm are shown on the next two pictures. As we
see, the algorithm failed to converge to what we would expect to be the principal curve. The proposed
remedies are: identify and drop out the intervals to which no points are projected (Fig. 7); change the
starting point (random start — Fig. 8 and 9; starting with parametrization given by one of the variables —
10); simply apply more smoothing (Fig. 11).

Finally, the application that we are most interested in is that of functional data. The raw data
simulated for this example are shown at Fig. 12. I tried to incorporate several nice features of the data
that should be difficult for the principal components: nonlinearity, bimodality at the center of the graph,
skewness at the right end.

The first few principal components of the (centered) data explain 81.15%, 18.45%, 0.15%, and then
no greater than 0.02%; see Fig. 13. They seem to capture the main features of the data, but note that the
first component at Fig.reffdapcl swings too far away and above the data, which we would hardly want.
Also, it is quite likely that the first two components are not independent, as they both demonstrate a lot
of action in the middle — the second component is shown on Fig. 15. Other components do not seem
to contribute much, and the difference from the mean is probably noise or sampling variation (Fig. 16
and 17). Lack of independence is evidenced by Fig. 18 for the first two components; for othes, Fig. 19
suggests that the problem is not too awful.

The iterations of the principal curve algorithm are shown on Fig. 20 — 23. The resulting principal
curve captures 97.86% of variance. Alternative options of the algorithm produce quite similar results
(Fig. 24 — 28). The quality of approximation is thus very high, as evidenced by the movie to be shown
in class. Also, the quantiles of the distribution are reproduced closely enough — see Fig. 29.

Conclusion: principal curve might be a sensible thing to try along with all other method we are
touching.
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Figure 1: Raw circular data
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Raw circular data; seed=61725
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Figure 2: Iterations of principal curve algorithm.

leration 0 eration 1: S5=44.75045 teration 2: $5=25.52508

eration 3: $5=12.97064 teration &: $5=8.73653 teration 7: $5=10,95683

teration 9: $5=6 89297 teration 12: $5=6.37809 teration 15 $$=5,99363

Figure 3: Iterations of principal curve algorithm — another random sample.

eration 0 teration 1: $5=43.24766

Heration 3: SS=18.04579 teration 4: SS=17.86308 teration 5: SS=12.68827

teration 6: SS=7.76644. teration 10: SS=7.39921 teration 15: SS=7.63826
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Figure 4: Raw parabola data
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x1
Raw parabola data; seed=1007

Figure 5: Iterations for parabola data: difficult case?

teration 0 eraton 1: $5=2186019

Heration 2: $5=12.11227

eraion 3: 55082163 Heraton 755808273

teration 12: $5=0.77745

eraion 16: S5=10,19569 eraton 24; S5=11.00413

Default options: PC start

Heration 30: $8=10.73829



Figure 6: Iterations for parabola data: difficult case again!

eration 0 teration 1: SS=10.89731

teration 3: S5=5 99039 teration 7: SS=7.75519 eration 12: S5=7.62157

Heration 16 $5=4.47670 teration 24: S5=4.38221 eration 30; $5=4.95875

Figure 7: Iterations for parabola data: the algorithm tracks the intervals with zero density of the data
points.

Heraion 0 Heraton 1: 55=24.2250 ersion 2 5551433085

eraion 3 551192749 Heraton 7: 55-6.64311 eraton 12: 55=11.91645

eraion 16: SS-8.56870 eraton 24 S5=451261

Chopping zeroes



Figure 8: Iterations for parabola data: points are randomly connected at start.
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Iteration 2: $5=7.15015 Iteration 3: S5=4.80960

Random start

Figure 9: Tterations for parabola data: another random start.

Heraton 5: 55=7.26041

eraton 15: $5=4.86923 eration 24: $5=5 19475

Random start

eration 12 $5=5,00840



Figure 10: Iterations for parabola data: starting from one of the
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Figure 11: Iterations for parabola data
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Iteration 1: SS=5.78407
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Iteration 3: $5=4.35735

: larger bandwidth

teration 0

eration 1: $5<14.25085.

Heration 2: $5=10.69945

Heraton 7: $5<12.06178.

teration 12: 551381608

eration 16: S5=12.02533

teraton 24: S5=6.70981

Wider smoothing window

Heration 30: $5=6.44796



Figure 12: Raw functional data.

Raw functional data
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Figure 13: Principal components of the centered data.
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Figure 14: Variation in PC 1: major shape differences.

o Envelope of the data + Mean curve
Mean +/- scaled PC1

PC1 vs. data

Figure 15: Variation in PC 2: change in the valley.

° Envelope of the data + Mean curve
Mean +/- scaled PC2

PC2 vs. data
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Figure 16: Variation in PC 3: some tilting?

o Envelope of the data + Mean curve
Mean +/- scaled PC3

PC3 vs. data

Figure 17: Variation in PC 4: noise?

° Envelope of the data + Mean curve
Mean +/- scaled PC4

PC4 vs. data
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Figure 18: The first two components are not independent!
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Figure 19: The draftsman plot for the first components.
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The first few components
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Figure 20: Several projections of the PC 1: starting point.

Iteration O

Figure 21: The first iteration.
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Figure 22: The second iteration.

Iteration 2: SS=18.28034

Figure 23: The last iteration (starting from the PC).
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Figure 24: Random starting point: the first iteration.
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Figure 25: Random starting point: the second iteration.
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Figure 26: Random starting point: the third iteration.

Iteration 3: SS=75.55688

Figure 27: Random starting point: somewhere in the middle.

16



Figure 28: Random starting point: last iteration.

Iteration 15: SS=37.14543

Figure 29: Principal curves got quantile approximately right
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Goodness of fit
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