From Last Meeting

Studied Fisher Linear Discrimination

- Mathematics
- "Point Cloud" view
- Likelihood view
- Toy examples
- Extensions (e.g. Principal Discriminant Analysis)

Polynomial Embedding

Aizerman, Braverman and Rozoner (1964) Automation and Remote Control, **15**, 821-837.

Motivating idea: extend "scope" of linear discrimination, by adding "nonlinear components" to data

(better use of name "nonlinear discrimination"????)

E.g. In 1d, "linear separation" splits the domain

 $\{x : x \in \mathfrak{R}\}$

into only 2 parts

Show PolyEmbed/Poly1Embed1d.mpg

But in the "quadratic embedded domain"

$$\{(x, x^2): x \in \mathfrak{R}\} \subset \mathfrak{R}^2$$

linear separation can give 3 parts

Show PolyEmbed/Poly1Embed2d.mpg

- original data space lies in 1d manifold
- very sparse region of \Re^2
- curvature of manifold gives better linear separation
- can have any 2 break points (2 points \Rightarrow line)

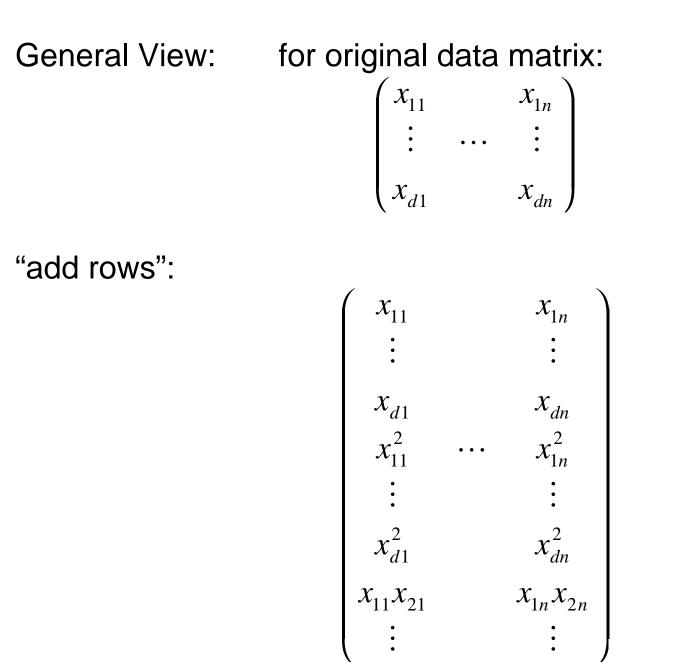
Stronger effects for higher order polynomial embedding:

E.g. for cubic,
$$\{(x, x^2, x^3): x \in \Re\} \subset \Re^3$$

linear separation can give 4 parts (or fewer)

Show PolyEmbed/Poly1Embed3d.mpg

- original space lies in 1d manifold, even sparser in \Re^3
- higher d curvature gives improved linear separation
- can have any 3 break points (3 points \Rightarrow plane)?
- relatively few "interesting separating planes"



Fisher Linear Discrimination: Choose Class 1 for \underline{x}^0 when:

$$\underline{x}^{0^{t}} \widehat{\Sigma}^{w^{-1}} \left(\underline{\overline{X}}^{(1)} - \underline{\overline{X}}^{(2)} \right) \leq \frac{1}{2} \left(\underline{\overline{X}}^{(1)} + \underline{\overline{X}}^{(2)} \right) \widehat{\Sigma}^{w^{-1}} \left(\underline{\overline{X}}^{(1)} - \underline{\overline{X}}^{(2)} \right)$$

in embedded space.

- image of class boundaries in original space is *nonlinear*
- allows much more *complicated* class regions
- can also do Gaussian Likelihood Ratio (or others)

Polynomial Embedding Toy Examples

E.g. 1: Parallel Clouds

Show PolyEmbed\PEod1Raw.ps

- PC1 always bad (finds "embedded greatest var." only)

show PolyEmbed\PEod1PC1combine.pdf

- FLD stays good

show PolyEmbed\PEod1FLDcombine.pdf

- GLR OK discrimination at data, but \exists overfitting problems

show PolyEmbed\PEod1GLRcombine.pdf

E.g. 2: Two Clouds

Show PolyEmbed\PEtclRaw.ps

- FLD good, generally improves with higher degree

show PolyEmbed\PEtclFLDcombine.pdf

- GLR mostly good, some overfitting

show PolyEmbed\PEtclGLRcombine.pdf

-
$$x_1, x_2, x_1^2, x_2^2, x_1x_2$$
 similar in shape to x_1, x_2 ??

E.g. 3: Split X

Show PolyEmbed\PEexd3Raw.ps

- FLD rapidly improves with higher degree

show PolyEmbed\Pexd3FLDcombine.pdf

- GLR always good, but never "ellipse around blues"?

show PolyEmbed\Pexd3GLRcombine.pdf

- Should apply ICA first?

Show HDLSS\HDLSSxd3ICA.ps

E.g. 4: Split X, parallel to Axes

Show PolyEmbed\Pexd4Raw.ps

- FLD fine with more embedding

show PolyEmbed\Pexd4FLDcombine.pdf

- GLR OK for all, no overfitting.

show PolyEmbed\Pedx4LGLRcombine.pdf

- never found "ellipse" (maybe "hyperbola" is right?)
- ICA helped FLD (better for lower degree).

E.g. 5: Donut

Show PolyEmbed\PEdonRaw.ps

- FLD: poor for low degree, then good, no overfit

Show PolyEmbed\ PEdonFLDcombine.pdf

- GLR: best with no embed, "square shape" for overfitting?

Show PolyEmbed\ PEdonGLRcombine.pdf

E.g. 6: Target

Show PolyEmbed\PEtarRaw.ps

- Similar lessons

Show PolyEmbed\PEtarFLDcombine.pdf, PolyEmbed\PEtarGLRcombine.pdf

- Hoped for better performance from cubic...

Drawback to polynomial embedding:

- too many extra terms create spurious structure
- i.e. have "overfitting"
- High Dimension Low Sample Size problems worse

Kernel Machines

Idea: replace polynomials by other "nonlinear functions"

e.g. 1: "sigmoid functions" from neural nets

e.g. 2: "radial basis functions" – Gaussian kernels

Related to "kernel density estimation" (smoothed histogram)

Radial basis functions: at some "grid points" $\underline{g}_1, \dots, \underline{g}_k$,

For a "bandwidth" (i.e. standard deviation) σ ,

Consider (*d* dim'al) functions: $\varphi_{\sigma}(\underline{x} - \underline{g}_{1}), ..., \varphi_{\sigma}(\underline{x} - \underline{g}_{k})$

Replace data matrix with:

$$\begin{pmatrix} \varphi_{\sigma}(\underline{X}_{1} - \underline{g}_{1}) & \varphi_{\sigma}(\underline{X}_{n} - \underline{g}_{1}) \\ \vdots & \cdots & \vdots \\ \varphi_{\sigma}(\underline{X}_{1} - \underline{g}_{k}) & \varphi_{\sigma}(\underline{X}_{n} - \underline{g}_{k}) \end{pmatrix}$$

For discrimination: work in radial basis function domain,

With new data vector \underline{X}_0 represented by:

$$\begin{pmatrix} \varphi_{\sigma} \left(\underline{X}_{0} - \underline{g}_{1} \right) \\ \vdots \\ \varphi_{\sigma} \left(\underline{X}_{0} - \underline{g}_{1} \right) \end{pmatrix}$$

Toy Examples:

E.g. 1: Parallel Clouds – good at data, poor outside

Show PolyEmbed\PEod1FLDe7.ps

E.g. 2: Two Clouds – Similar result

Show PolyEmbed\PEtclFLDe7.ps

E.g. 3: Split X – OK at data, strange outside

Show PolyEmbed\Pexd3FLDe7.ps

E.g. 4: Split X, parallel to Axes – similar ideas

Show PolyEmbed\Pexd4FLDe7.ps

E.g. 5: Donut – mostly good (slight mistake for one kernel) Show PolyEmbed\PedonFLDe7.ps

E.g. 6: Target – much better than other examples

Show PolyEmbed\PetarFLDe7.ps

Main lesson: generally good in regions with data, unpredictable results where data are sparse

E.g. 7: Checkerboard

Show PolyEmbed\PechbRaw.ps

- Kernel embedding is excellent

Show PolyEmbed\PechbFLDe7.ps

- Other polynomials lack flexibility

Show PolyEmbed\PEchbFLDcombine.pdf and PolyEmbed\PEchbGLRcombine.pdf

- Lower degree is worse

Note: Gaussian Likelihood Ratio had frequent numerical failure

Important point for kernel machines:

High Dimension Low Sample Size problems get worse

This is motivation for "Support Vector Machines"

 \exists generalizations of this idea to other types of analysis,

and some clever computational ideas.

E.g. "Kernel based, nonlinear Principal Components Analysis"

Schölkopf, Smola and Müller (1998) "Nonlinear component analysis as a kernel eigenvalue problem", *Neural Computation*, **10**, 1299-1319. **Support Vector Machines**

Classical References:

Vapnik (1982) Estimation of dependences based on empirical data, Springer (Russian version, 1979)

Boser, Guyon & Vapnik (1992) in *Fifth Annual Workshop on Computational Learning Theory*, ACM.

Vapnik (1995) The nature of statistical learning theory, Springer.

Recommended tutorial:

Burges (1998) A tutorial on support vector machines for pattern recognition, *Data Mining and Knowledge Discovery*, **2**, 955-974, see also web site:

http://citeseer.nj.nec.com/burges98tutorial.html

Motivation: High Dimension Low Sample Size discrimination

(e.g. from doing a nonlinear embedding)

∃ a tendency towards major *over-fitting* problems

Toy Example:

In 1st dimension: Class 1: N(2,0.8) Class 2: N(-2,0.8)(n = 20 of each, and threw in 4 "outliers")

In dimensions 2,..., d: independent N(0,1)

Show Svm\SVMeg3p1d2m1v1.mpg

Toy Example: for linear discrimination:

Top: Proj'n onto (2-d) subspace generated by 1st unit vector (--) and Discrimination direction vector (----) (shows angle)

For "reproducible (over new data sets) discrimination":

Want these "near each other", i.e. small angle

Bottom: 1-d projections, and smoothed histograms

Lessons from Fisher Linear Discrimination Toy Example:

- Great angle for d = 1, but substantial overlap
- OK angle for d = 2,...,10, still significant overlap
- Angle gets very bad for d = 11, ..., 18, but overlap declines
- No overlap for $d \ge 23$ (perfect discrimination!?!?)
- Completely nonreproducible (with new data)
- Thus useless for real discrimination

Main Goal of Support Vector Machines:

Achieve a trade off between:

Discrimination quality for data at hand

VS.

Reproducibility with new data

Approaches:

- 1. Regularization (bound on "generaliz'n", via "complexity")
- 2. Quadratic Programming (general'n of Linear Prog.)