
From Last Meeting

Studied Fisher Linear Discrimination

- Mathematics

- “Point Cloud” view

- Likelihood view

- Toy examples

- Extensions (e.g. Principal Discriminant Analysis)

Polynomial Embedding

Aizerman, Braverman and Rozoner (1964) Automation and
Remote Control, 15, 821-837.

Motivating idea: extend “scope” of linear discrimination,

by adding “nonlinear components” to data

(better use of name “nonlinear discrimination”????)

E.g. In 1d, “linear separation” splits the domain

{ }ℜ∈xx :

into only 2 parts
Show PolyEmbed/Poly1Embed1d.mpg

Polynomial Embedding (cont.)

But in the “quadratic embedded domain”

(){ } 22 :, ℜ⊂ℜ∈xxx

linear separation can give 3 parts
Show PolyEmbed/Poly1Embed2d.mpg

- original data space lies in 1d manifold

- very sparse region of 2ℜ

- curvature of manifold gives better linear separation

- can have any 2 break points (2 points ⇒ line)

Polynomial Embedding (cont.)

Stronger effects for higher order polynomial embedding:

E.g. for cubic, (){ } 332 :,, ℜ⊂ℜ∈xxxx

linear separation can give 4 parts (or fewer)
Show PolyEmbed/Poly1Embed3d.mpg

- original space lies in 1d manifold, even sparser in 3ℜ

- higher d curvature gives improved linear separation

- can have any 3 break points (3 points ⇒ plane)?

- relatively few “interesting separating planes”

Polynomial Embedding (cont.)

General View: for original data matrix:

















dnd

n

xx

xx

1

111

!"!

“add rows”:































!!

!!

"

!!

nn

dnd

n

dnd

n

xxxx

xx

xx

xx

xx

212111

22
1

2
1

2
11

1

111

Polynomial Embedding (cont.)

Fisher Linear Discrimination: Choose Class 1 for 0x when:

() () ())2()1(1)2()1()2()1(10 ˆ
2

1ˆ XXXXXXx wwt
−Σ+≤−Σ

−−

in embedded space.

- image of class boundaries in original space is nonlinear

- allows much more complicated class regions

- can also do Gaussian Likelihood Ratio (or others)

Polynomial Embedding Toy Examples

E.g. 1: Parallel Clouds
Show PolyEmbed\PEod1Raw.ps

- PC1 always bad (finds “embedded greatest var.” only)
show PolyEmbed\PEod1PC1combine.pdf

- FLD stays good
show PolyEmbed\PEod1FLDcombine.pdf

- GLR OK discrimination at data, but ∃ overfitting problems
show PolyEmbed\PEod1GLRcombine.pdf

Polynomial Embedding Toy Examples (cont.)

E.g. 2: Two Clouds
Show PolyEmbed\PEtclRaw.ps

- FLD good, generally improves with higher degree
show PolyEmbed\PEtclFLDcombine.pdf

- GLR mostly good, some overfitting
show PolyEmbed\PEtclGLRcombine.pdf

- 21
2
2

2
121 ,,,, xxxxxx similar in shape to 21, xx ???

Polynomial Embedding Toy Examples (cont.)

E.g. 3: Split X
Show PolyEmbed\PEexd3Raw.ps

- FLD rapidly improves with higher degree
show PolyEmbed\Pexd3FLDcombine.pdf

- GLR always good, but never “ellipse around blues”?
show PolyEmbed\Pexd3GLRcombine.pdf

- Should apply ICA first?
Show HDLSS\HDLSSxd3ICA.ps

Polynomial Embedding Toy Examples (cont.)

E.g. 4: Split X, parallel to Axes
Show PolyEmbed\Pexd4Raw.ps

- FLD fine with more embedding
show PolyEmbed\Pexd4FLDcombine.pdf

- GLR OK for all, no overfitting.
show PolyEmbed\Pedx4LGLRcombine.pdf

- never found “ellipse” (maybe “hyperbola” is right?)

- ICA helped FLD (better for lower degree).

Polynomial Embedding Toy Examples (cont.)

E.g. 5: Donut
Show PolyEmbed\PEdonRaw.ps

- FLD: poor for low degree, then good, no overfit
Show PolyEmbed\ PEdonFLDcombine.pdf

- GLR: best with no embed, “square shape” for overfitting?
Show PolyEmbed\ PEdonGLRcombine.pdf

Polynomial Embedding Toy Examples (cont.)

E.g. 6: Target
Show PolyEmbed\PEtarRaw.ps

- Similar lessons
Show PolyEmbed\PEtarFLDcombine.pdf, PolyEmbed\PEtarGLRcombine.pdf

- Hoped for better performance from cubic…

Polynomial Embedding (cont.)

Drawback to polynomial embedding:

- too many extra terms create spurious structure

- i.e. have “overfitting”

- High Dimension Low Sample Size problems worse

Kernel Machines

Idea: replace polynomials by other “nonlinear functions”

e.g. 1: “sigmoid functions” from neural nets

e.g. 2: “radial basis functions” – Gaussian kernels

Related to “kernel density estimation” (smoothed histogram)
Show SiZer\EGkdeCombined.pdf

Kernel Machines (cont.)

Radial basis functions: at some “grid points”
k

gg ,...,
1

,

For a “bandwidth” (i.e. standard deviation) σ ,

Consider (d dim’al) functions: () ()
k

gxgx −− σσ ϕϕ ,...,
1

Replace data matrix with:

() ()

() ()















−−

−−

knk

n

gXgX

gXgX

σσ

σσ

ϕϕ

ϕϕ

1

111

!"!

Kernel Machines (cont.)

For discrimination: work in radial basis function domain,

With new data vector 0X represented by:

()

()















−

−

10

10

gX

gX

σ

σ

ϕ

ϕ
!

Kernel Machines (cont.)

Toy Examples:

E.g. 1: Parallel Clouds – good at data, poor outside
Show PolyEmbed\PEod1FLDe7.ps

E.g. 2: Two Clouds – Similar result
Show PolyEmbed\PEtclFLDe7.ps

E.g. 3: Split X – OK at data, strange outside
Show PolyEmbed\Pexd3FLDe7.ps

Kernel Machines (cont.)

E.g. 4: Split X, parallel to Axes – similar ideas
Show PolyEmbed\Pexd4FLDe7.ps

E.g. 5: Donut – mostly good (slight mistake for one kernel)
Show PolyEmbed\PedonFLDe7.ps

E.g. 6: Target – much better than other examples
Show PolyEmbed\PetarFLDe7.ps

Main lesson: generally good in regions with data,
unpredictable results where data are sparse

Kernel Machines (cont.)

E.g. 7: Checkerboard
Show PolyEmbed\PechbRaw.ps

- Kernel embedding is excellent
Show PolyEmbed\PechbFLDe7.ps

- Other polynomials lack flexibility
Show PolyEmbed\PEchbFLDcombine.pdf and PolyEmbed\PEchbGLRcombine.pdf

- Lower degree is worse

Kernel Machines (cont.)

Note: Gaussian Likelihood Ratio had frequent numerical failure

Important point for kernel machines:

High Dimension Low Sample Size problems get worse

This is motivation for “Support Vector Machines”

Kernel Machines (cont.)

∃ generalizations of this idea to other types of analysis,

and some clever computational ideas.

E.g. “Kernel based, nonlinear Principal Components Analysis”

Schölkopf, Smola and Müller (1998) “Nonlinear component
analysis as a kernel eigenvalue problem”, Neural
Computation, 10, 1299-1319.

Support Vector Machines

Classical References:

Vapnik (1982) Estimation of dependences based on empirical
data, Springer (Russian version, 1979)

Boser, Guyon & Vapnik (1992) in Fifth Annual Workshop on
Computational Learning Theory, ACM.

Vapnik (1995) The nature of statistical learning theory, Springer.

Recommended tutorial:

Burges (1998) A tutorial on support vector machines for pattern
recognition, Data Mining and Knowledge Discovery, 2, 955-
974, see also web site:

http://citeseer.nj.nec.com/burges98tutorial.html

Support Vector Machines (cont.)

Motivation: High Dimension Low Sample Size discrimination

(e.g. from doing a nonlinear embedding)

∃ a tendency towards major over-fitting problems

Toy Example:

In 1st dimension: Class 1:)8.0,2(N Class 2: ()8.0,2−N
(20=n of each, and threw in 4 “outliers”)

In dimensions d,...,2 : independent)1,0(N
Show Svm\SVMeg3p1d2m1v1.mpg

Support Vector Machines (cont.)

Toy Example: for linear discrimination:

Top: Proj’n onto (2-d) subspace generated by 1st unit vector (- -)
and Discrimination direction vector (----) (shows angle)

For “reproducible (over new data sets) discrimination”:

Want these “near each other”, i.e. small angle

Bottom: 1-d projections, and smoothed histograms

Support Vector Machines (cont.)

Lessons from Fisher Linear Discrimination Toy Example:

- Great angle for 1=d , but substantial overlap

- OK angle for 10,...,2=d , still significant overlap

- Angle gets very bad for 18,...,11=d , but overlap declines

- No overlap for 23≥d (perfect discrimination!?!?)

- Completely nonreproducible (with new data)

- Thus useless for real discrimination

Support Vector Machines (cont.)

Main Goal of Support Vector Machines:

Achieve a trade off between:

Discrimination quality for data at hand

vs.

Reproducibility with new data

Approaches:

1. Regularization (bound on “generaliz’n”, via “complexity”)

2. Quadratic Programming (general’n of Linear Prog.)

