From Last Meeting

Studied Fisher Linear Discrimination

Mathematics

- “Point Cloud” view
- Likelihood view

-  Toy examples

- Extensions (e.g. Principal Discriminant Analysis)



Polynomial Embedding
Aizerman, Braverman and Rozoner (1964) Automation and
Remote Control, 15, 821-837.
Motivating idea: extend “scope” of linear discrimination,
by adding “nonlinear components” to data

(better use of name “nonlinear discrimination”????)

E.g. In1ld, “linear separation” splits the domain
{x:x0O0O}

Into only 2 parts

Show PolyEmbed/PolylEmbedld.mpg



Polynomial Embedding (cont.)

But in the “guadratic embedded domain”
(x,x?):x00}0 02

linear separation can give 3 parts

Show PolyEmbed/PolylEmbed2d.mpg

- original data space lies in 1d manifold
- very sparse region of 0?
- curvature of manifold gives better linear separation

- can have any 2 break points (2 points I line)



Polynomial Embedding (cont.)

Stronger effects for higher order polynomial embedding:

E.g. for cubic, {(x,x?,x*):x00};00°

linear separation can give 4 parts (or fewer)

Show PolyEmbed/PolylEmbed3d.mpg

- original space lies in 1d manifold, even sparser in O°
- higher d curvature gives improved linear separation
- can have any 3 break points (3 points I plane)?

- relatively few “interesting separating planes”



Polynomial Embedding (cont.)

General View: for original data matrix:
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Polynomial Embedding (cont.)

Fisher Linear Discrimination: Choose Class 1 for x’ when:

XOtiW_l (X(l) _ Y(z))S (X(l) +X(2))iw_l(X(1) _X(Z))

—_— _—

N |-

In embedded space.

- Image of class boundaries in original space is nonlinear
- allows much more complicated class regions

- can also do Gaussian Likelihood Ratio (or others)



Polynomial Embedding Toy Examples

E.g. 1. Parallel Clouds

Show PolyEmbed\PEod1Raw.ps

- PC1 always bad (finds “embedded greatest var.” only)

show PolyEmbed\PEod1PC1combine.pdf

- FLD stays good

show PolyEmbed\PEod1FLDcombine.pdf

- GLR OK discrimination at data, but [1overfitting problems

show PolyEmbed\PEod1GLRcombine.pdf



Polynomial Embedding Toy Examples (cont.)

E.g. 2. Two Clouds

Show PolyEmbed\PEtcIRaw.ps

- FLD good, generally improves with higher degree

show PolyEmbed\PEtcIFLDcombine.pdf

- GLR mostly good, some overfitting

show PolyEmbed\PEtcIGLRcombine.pdf

- X, X, X7, X2, %X, Similarin shape to x,,x,???



Polynomial Embedding Toy Examples (cont.)

E.g. 3. Split X

Show PolyEmbed\PEexd3Raw.ps

- FLD rapidly improves with higher degree

show PolyEmbed\Pexd3FLDcombine.pdf

- GLR always good, but never “ellipse around blues”?

show PolyEmbed\Pexd3GLRcombine.pdf

- Should apply ICA first?

Show HDLSS\HDLSSxd3ICA.ps



Polynomial Embedding Toy Examples (cont.)

E.g. 4. Split X, parallel to Axes

Show PolyEmbed\Pexd4Raw.ps

- FLD fine with more embedding

show PolyEmbed\Pexd4FLDcombine.pdf

-  GLR OK for all, no overfitting.

show PolyEmbed\Pedx4LGLRcombine.pdf

- never found “ellipse” (maybe “hyperbola” is right?)

- ICA helped FLD (better for lower degree).



Polynomial Embedding Toy Examples (cont.)

E.g. 5: Donut

Show PolyEmbed\PEdonRaw.ps

- FLD: poor for low degree, then good, no overfit

Show PolyEmbed\ PEdonFLDcombine.pdf

-  GLR: best with no embed, “square shape” for overfitting?

Show PolyEmbed\ PEdonGLRcombine.pdf



Polynomial Embedding Toy Examples (cont.)

E.g. 6: Target

Show PolyEmbed\PEtarRaw.ps

- Similar lessons

Show PolyEmbed\PEtarFLDcombine.pdf, PolyEmbed\PEtarGLRcombine.pdf

- Hoped for better performance from cubic...



Polynomial Embedding (cont.)

Drawback to polynomial embedding:

- 100 many extra terms create SpUI’iOUS structure

- l.e. have “overfitting”

- problems worse



Kernel Machines

ldea: replace polynomials by other “nonlinear functions”

e.g. 1. “sigmoid functions” from neural nets

e.g. 2. ‘“radial basis functions” — Gaussian kernels

Related to “kernel density estimation” (smoothed histogram)

Show SiZzer\EGkdeCombined.pdf



Kernel Machines (cont.)

Radial basis functions: at some “grid points” 9,0,

—_ —_

For a “bandwidth” (i.e. standard deviation) g,

Consider (d dim’al) functions: ¢J(X‘91)’---,¢U(X—gk)

— —_—

g (Ll

B, (Xi-9,) 9. (X, -g)F
Replace data matrix with: [J :
%0 (Ll _gk) b, (An _gk)[D



Kernel Machines (cont.)

For discrimination: work in radial basis function domain,

With new data vector X, represented by: [] : []



Kernel Machines (cont.)

Toy Examples:

E.g. 1. Parallel Clouds — good at data, poor outside

Show PolyEmbed\PEod1FLDe7.ps

E.g. 2. Two Clouds — Similar result

Show PolyEmbed\PEtcIFLDe7.ps

E.g. 3: Split X — OK at data, strange outside

Show PolyEmbed\Pexd3FLDe7.ps



Kernel Machines (cont.)

E.g. 4. Split X, parallel to Axes — similar ideas

Show PolyEmbed\Pexd4FLDe7.ps

E.g. 5: Donut — mostly good (slight mistake for one kernel)

Show PolyEmbed\PedonFLDe7.ps

E.g. 6: Target — much better than other examples

Show PolyEmbed\PetarFLDe7.ps

Main lesson: generally good in regions with data,
unpredictable results where data are sparse



Kernel Machines (cont.)

E.g. 7. Checkerboard

Show PolyEmbed\PechbRaw.ps

- Kernel embedding is excellent

Show PolyEmbed\PechbFLDe7.ps

- Other polynomials lack flexibility

Show PolyEmbed\PEchbFLDcombine.pdf and PolyEmbed\PEchbGLRcombine.pdf

- Lower degree is worse






Kernel Machines (cont.)

Note: Gaussian Likelihood Ratio had frequent numerical failure

Important point for kernel machines:

problems get worse

This Is motivation for “Support Vector Machines”



Kernel Machines (cont.)

[1 generalizations of this idea to other types of analysis,

and some clever computational ideas.

E.g. “Kernel based, nonlinear Principal Components Analysis”

Scholkopf, Smola and Muller (1998) “Nonlinear component
analysis as a kernel eigenvalue problem”, Neural
Computation, 10, 1299-1319.



Support Vector Machines
Classical References:

Vapnik (1982) Estimation of dependences based on empirical
data, Springer (Russian version, 1979)

Boser, Guyon & Vapnik (1992) in Fifth Annual Workshop on
Computational Learning Theory, ACM.

Vapnik (1995) The nature of statistical learning theory, Springer.

Recommended tutorial:

Burges (1998) A tutorial on support vector machines for pattern
recognition, Data Mining and Knowledge Discovery, 2, 955-
974, see also web site:

http://citeseer.nj.nec.com/burges98tutorial.ntml



Support Vector Machines (cont.)

Motivation: discrimination

(e.g. from doing a nonlinear embedding)

[1 atendency towards major over-fitting problems

Toy Example:

In 1% dimension: N (2,0.8) N(-2,0.8)
(n =20 of each, and threw in 4 “outliers™)

In dimensions 2,...,d: independent N(0,1)

Show Svm\SVMeg3pld2m1lvl.mpg



Support Vector Machines (cont.)

Toy Example: for linear discrimination:

Top: Proj'n onto (2-d) subspace generated by 1° unit vector (- -)
and Discrimination direction vector (----) (shows angle)

For “reproducible (over new data sets) discrimination”:

Want these “near each other”, i.e. small angle

Bottom: 1-d projections, and smoothed histograms



Support Vector Machines (cont.)

Lessons from Fisher Linear Discrimination Toy Example:
- Great angle for d =1, but substantial overlap
-  OK angle for d =2,...,10, still significant overlap
- Angle gets very bad for d =11,...,18, but overlap declines
- No overlap for d =223 (perfect discrimination!?!?)
- Completely nonreproducible (with new data)

- Thus useless for real discrimination



Support Vector Machines (cont.)
Main Goal of Support Vector Machines:
Achieve a trade off between:
Discrimination quality for data at hand
VS.

Reproducibility with new data

Approaches:
1. Regqularization (bound on “generaliz’n”, via “complexity”)

2. Quadratic Programming (general’n of Linear Prog.)



