From Last Meeting

Studied Fisher Linear Discrimination

- Mathematics
- "Point Cloud" view
- Likelihood view
- Toy examples
- Extensions (e.g. Principal Discriminant Analysis)

Polynomial Embedding

Aizerman, Braverman and Rozoner (1964) Automation and Remote Control, 15, 821-837.

Motivating idea: extend "scope" of linear discrimination, by adding "nonlinear components" to data
(better use of name "nonlinear discrimination"????)
E.g. In 1d, "linear separation" splits the domain

$$
\{x: x \in \mathfrak{R}\}
$$

into only 2 parts

Polynomial Embedding (cont.)

But in the "quadratic embedded domain"

$$
\left\{\left(x, x^{2}\right): x \in \mathfrak{R}\right\} \subset \mathfrak{R}^{2}
$$

linear separation can give 3 parts
Show PolyEmbed/Poly1Embed2d.mpg

- original data space lies in 1d manifold
- very sparse region of \mathfrak{R}^{2}
- curvature of manifold gives better linear separation
- can have any 2 break points (2 points \Rightarrow line)

Polynomial Embedding (cont.)

Stronger effects for higher order polynomial embedding:
E.g. for cubic, $\quad\left\{\left(x, x^{2}, x^{3}\right): x \in \mathfrak{R}\right\} \subset \mathfrak{R}^{3}$
linear separation can give 4 parts (or fewer)
Show PolyEmbed/Poly1Embed3d.mpg

- original space lies in $1 d$ manifold, even sparser in \mathfrak{R}^{3}
- higher d curvature gives improved linear separation
- can have any 3 break points (3 points \Rightarrow plane)?
- relatively few "interesting separating planes"

Polynomial Embedding (cont.)

General View: for original data matrix:

$$
\left(\begin{array}{ccc}
x_{11} & & x_{1 n} \\
\vdots & \ldots & \vdots \\
x_{d 1} & & x_{d n}
\end{array}\right)
$$

"add rows":

$$
\left(\begin{array}{ccc}
x_{11} & & x_{1 n} \\
\vdots & & \vdots \\
x_{d 1} & & x_{d n} \\
x_{11}^{2} & \ldots & x_{1 n}^{2} \\
\vdots & & \vdots \\
x_{d 1}^{2} & & x_{d n}^{2} \\
x_{11} x_{21} & & x_{1 n} x_{2 n} \\
\vdots & & \vdots
\end{array}\right)
$$

Polynomial Embedding (cont.)

Fisher Linear Discrimination: Choose Class 1 for \underline{x}^{0} when:

$$
\underline{x}^{0} \hat{\Sigma}^{w^{-1}}\left(\underline{\bar{X}}^{(1)}-\underline{\bar{X}}^{(2)}\right) \leq \frac{1}{2}\left(\underline{\bar{X}}^{(1)}+\underline{\bar{X}}^{(2)}\right) \hat{\Sigma}^{w^{-1}}\left(\underline{\bar{X}}^{(1)}-\underline{\bar{X}}^{(2)}\right)
$$

in embedded space.

- image of class boundaries in original space is nonlinear
- allows much more complicated class regions
- can also do Gaussian Likelihood Ratio (or others)

Polynomial Embedding Toy Examples

E.g. 1: Parallel Clouds

Show PolyEmbedIPEod1Raw.ps

- PC1 always bad (finds "embedded greatest var." only)
show PolyEmbed\PEod1PC1combine.pdf
- FLD stays good
show PolyEmbed\PEod1FLDcombine.pdf
- GLR OK discrimination at data, but \exists overfitting problems

Polynomial Embedding Toy Examples (cont.)

E.g. 2: Two Clouds

Show PolyEmbed\PEtcIRaw.ps

- FLD good, generally improves with higher degree show PolyEmbed\PEtcIFLDcombine.pdf
- GLR mostly good, some overfitting
show PolyEmbed\PEtcIGLRcombine.pdf
- $\quad x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}$ similar in shape to $x_{1}, x_{2} ? ? ?$

Polynomial Embedding Toy Examples (cont.)

E.g. 3: Split X

Show PolyEmbed\PEexd3Raw.ps

- FLD rapidly improves with higher degree
show PolyEmbed\Pexd3FLDcombine.pdf
- GLR always good, but never "ellipse around blues"?
show PolyEmbed\Pexd3GLRcombine.pdf
- Should apply ICA first?

Show HDLSS\HDLSSxd3ICA.ps

Polynomial Embedding Toy Examples (cont.)

E.g. 4: Split X, parallel to Axes

Show PolyEmbed\Pexd4Raw.ps

- FLD fine with more embedding
show PolyEmbed\Pexd4FLDcombine.pdf
- GLR OK for all, no overfitting.
show PolyEmbed\Pedx4LGLRcombine.pdf
- never found "ellipse" (maybe "hyperbola" is right?)
- ICA helped FLD (better for lower degree).

Polynomial Embedding Toy Examples (cont.)

E.g. 5: Donut

Show PolyEmbed\PEdonRaw.ps

- FLD: poor for low degree, then good, no overfit

Show PolyEmbedl PEdonFLDcombine.pdf

- GLR: best with no embed, "square shape" for overfitting?

Show PolyEmbed\ PEdonGLRcombine.pdf

Polynomial Embedding Toy Examples (cont.)

E.g. 6: Target

Show PolyEmbed\PEtarRaw.ps

- Similar lessons

Show PolyEmbed\PEtarFLDcombine.pdf, PolyEmbed\PEtarGLRcombine.pdf

- Hoped for better performance from cubic...

Polynomial Embedding (cont.)

Drawback to polynomial embedding:

- too many extra terms create spurious structure
- i.e. have "overfitting"
- High Dimension Low Sample Size problems worse

Kernel Machines

Idea: replace polynomials by other "nonlinear functions"
e.g. 1: "sigmoid functions" from neural nets
e.g. 2: "radial basis functions" - Gaussian kernels

Related to "kernel density estimation" (smoothed histogram)
Show SiZerlEGkdeCombined.pdf

Kernel Machines (cont.)

Radial basis functions: at some "grid points"

$$
\underline{g}_{1}, \ldots, \underline{g}_{k},
$$

For a "bandwidth" (i.e. standard deviation) σ,

Consider (d dim'al) functions: $\varphi_{\sigma}\left(\underline{x}-\underline{g}_{1}\right), \ldots, \varphi_{\sigma}\left(\underline{x}-\underline{g}_{k}\right)$

Replace data matrix with: $\left(\begin{array}{ccc}\varphi_{\sigma}\left(\underline{X}_{1}-\underline{g}_{1}\right) & & \varphi_{\sigma}\left(\underline{X}_{n}-\underline{g}_{1}\right) \\ \vdots & \ldots & \vdots \\ \varphi_{\sigma}\left(\underline{X}_{1}-\underline{g}_{k}\right) & & \varphi_{\sigma}\left(\underline{X}_{n}-\underline{g}_{k}\right)\end{array}\right)$

Kernel Machines (cont.)

For discrimination: work in radial basis function domain,

With new data vector \underline{X}_{0} represented by: $\left(\begin{array}{c}\varphi_{\sigma}\left(\underline{X}_{0}-\underline{g}_{1}\right) \\ \vdots \\ \varphi_{\sigma}\left(\underline{X}_{0}-\underline{g}_{1}\right)\end{array}\right)$

Kernel Machines (cont.)

Toy Examples:
E.g. 1: Parallel Clouds - good at data, poor outside

Show PolyEmbed\PEod1FLDe7.ps
E.g. 2: Two Clouds - Similar result

Show PolyEmbed\PEtcIFLDe7.ps
E.g. 3: Split X - OK at data, strange outside

Show PolyEmbed\Pexd3FLDe7.ps

Kernel Machines (cont.)

E.g. 4: Split X, parallel to Axes - similar ideas

Show PolyEmbed\Pexd4FLDe7.ps
E.g. 5: Donut - mostly good (slight mistake for one kernel)

Show PolyEmbed 1 PedonFLDe7.ps
E.g. 6: Target - much better than other examples

Show PolyEmbed|PetarFLDe7.ps

Main lesson: generally good in regions with data, unpredictable results where data are sparse

Kernel Machines (cont.)

E.g. 7: Checkerboard

Show PolyEmbed\PechbRaw.ps

- Kernel embedding is excellent

Show PolyEmbed\PechbFLDe7.ps

- Other polynomials lack flexibility

Show PolyEmbed\PEchbFLDcombine.pdf and PolyEmbed\PEchbGLRcombine.pdf

- Lower degree is worse

Kernel Machines (cont.)

Note: Gaussian Likelihood Ratio had frequent numerical failure

Important point for kernel machines:
High Dimension Low Sample Size problems get worse

This is motivation for "Support Vector Machines"

Kernel Machines (cont.)

\exists generalizations of this idea to other types of analysis, and some clever computational ideas.
E.g. "Kernel based, nonlinear Principal Components Analysis"

Schölkopf, Smola and Müller (1998) "Nonlinear component analysis as a kernel eigenvalue problem", Neural Computation, 10, 1299-1319.

Support Vector Machines

Classical References:
Vapnik (1982) Estimation of dependences based on empirical data, Springer (Russian version, 1979)

Boser, Guyon \& Vapnik (1992) in Fifth Annual Workshop on Computational Learning Theory, ACM.

Vapnik (1995) The nature of statistical learning theory, Springer.

Recommended tutorial:
Burges (1998) A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2, 955974, see also web site:
http://citeseer.nj.nec.com/burges98tutorial.html

Support Vector Machines (cont.)

Motivation: High Dimension Low Sample Size discrimination
(e.g. from doing a nonlinear embedding)
\exists a tendency towards major over-fitting problems

Toy Example:
In $1^{\text {st }}$ dimension: Class 1: $N(2,0.8)$ Class 2: $N(-2,0.8)$

$$
\text { (} n=20 \text { of each, and threw in } 4 \text { "outliers") }
$$

In dimensions $2, \ldots, d$: independent $N(0,1)$
Show Svm\SVMeg3p1d2m1v1.mpg

Support Vector Machines (cont.)

Toy Example: for linear discrimination:

Top: Proj'n onto (2-d) subspace generated by $1^{\text {st }}$ unit vector (- -) and Discrimination direction vector (----) (shows angle)

For "reproducible (over new data sets) discrimination":
Want these "near each other", i.e. small angle

Bottom: 1-d projections, and smoothed histograms

Support Vector Machines (cont.)

Lessons from Fisher Linear Discrimination Toy Example:

- Great angle for $d=1$, but substantial overlap
- OK angle for $d=2, \ldots, 10$, still significant overlap
- Angle gets very bad for $d=11, \ldots, 18$, but overlap declines
- No overlap for $d \geq 23$ (perfect discrimination!?!?)
- Completely nonreproducible (with new data)
- Thus useless for real discrimination

Support Vector Machines (cont.)

Main Goal of Support Vector Machines:
Achieve a trade off between:

Discrimination quality for data at hand

VS.

Reproducibility with new data

Approaches:

1. Regularization (bound on "generaliz'n", via "complexity")
2. Quadratic Programming (general'n of Linear Prog.)
