From Last Meeting

Studied Approximation of Corpora Callosa
- by Fourier (raw and centered)

- by PCA



Fisher Linear Discrimination

Recall Toy Problem:

Show HDLSS/HDLSSod1Raw.ps

Want to find “separating direction vector”

Recall PCA didn’'t work

Show HDLSS/HDLSSo0d1PCA.ps

Also “difference between means” doesn’t work:

Show HDLSS/HDLSSod1Mdif.ps



Fisher Linear Discrimination

A view of Fisher Linear Discrimination:

Adjust to “make covariance structure right”

Show HDLSS/HDLSSo0d1FLD.ps

Mathematical Notation (vectors with dimension d):

Class 1: X, x¥ Class 2:  X{?,. XY
Class Centerpoints: XY == Z X W x® = 1 X;?

1 1=1 nz 1=1



Fisher Linear Discrimination (cont.)

Covariances: S0 =XWX®' for j=12 (outer products)

Based on “normalized, centered data matrices”:

. 1 . . . -
(j) — (1) _ () () _ (D)
XD = (X -xD L x P -xD)

J

note: Use “MLE” version of normalization, for simpler notation

Terminology (useful later): =Y are “within class covariances”



Fisher Linear Discrimination (cont.)

Major assumption: Class covariances are same (or “similar”)

Good estimate of “common within class covariance”?

Show HDLSS/HDLSSo0d1FLD.ps

Pooled (weighted average) class covariance:
< (1 < (2
Sw _ n2® +n,2® _ 7%
nl t n2

for the “full data matrix”:

~ 1 ~ ~
2= L (00 %)



Fisher Linear Discrimination (cont.)

Note: 3" is similarto £ from before
- l.e. “covariance matrix ignoring class labels”

- Important difference iIs “class by class centering”

Again show HDLSS/HDLSSo0d1FLD.ps



Fisher Linear Discrimination (cont.)

Simple way to find “correct covariance adjustment”.

Individ’ly transform subpop’ns so “spherical” about their means

Show HDLSS\HDLSSodlegFLD.ps

y ) = (iw)_”zxi”)

then:
“best separating hyperplane”

IS

“perpendicular bisector of line between means”



Fisher Linear Discrimination (cont.)

So in transformed space, the separating hyperlane has:

Transformed normal vector:
A -1/2 — A -1/2 — A -1/2 [ — —
Moo :( W) X _( w) X @ :(Zw) (L(l) —L(z))

Transformed intercept:

u o= %(iw)_llz G +%(iw)—1/2 X = (iw)_llz %Aa) - X H

Equation:
t’ : <X, DTFLD> = <HTFLD » DreLp >}

Again show HDLSS\HDLSSodlegFLD.ps



Fisher Linear Discrimination (cont.)

Thus discrimination rule iIs:

Given a new data vector X°, Choose Class 1 when:
cwYLl2,0
<( ) X 1DTFLD> = <HTFLD1DTFLD>

l.e. (transforming back to original space)

)t 2 ) b )

where:
_[aw)L/2 ) —(2))
Nep —( ) Nrpp = (X - X

W /2 (1) (2)
H FLD ( TFLD %—’ + X H



Fisher Linear Discrimination (cont.)

Thus (in original space) have separating hyperplane with:

Normal vector: nq,

Intercept: U o

Again show HDLSS\HDLSSod1egFLD.ps



FLD Likelihood View

Assume: Class distributions are multivariate N (H“),ZW)

(strong distributional assumption + common cov.)

At a location x°, the likelihood ratio,

for choosing between Class 1 and Class 2, is:

LRYC 1 127 )= 9, b - ) 0 =)

—_

where ¢_, is the Gaussian density with covariance 2"



FLD Likelihood View (cont.)

Simplifying, using the form of the Gaussian density:

R
d..(X)= iz €
) (2m)"* 2"

Gives (critically using the common covariance):

[
g

LR(XO’H(l),H(Z),ZW)

——
_ —_—

~2log LR(XO’H(l),“(z)’ZW):

—_—

:(L(O H(l)) S ( 0 g(”)—(xo “(2)) S (L(o _'u(z))

—_—



FLD Likelihood View (cont.)

But:
(L(O 'u(J))ZW (L(O —.U(j)):L(OtZW x° =2 tsw 1“(,) +,u(”ZW 1H(J)

_ —_— —_

S0:
-2log LR(;(O T ZW):

_ —ZXOtZW_l(H(l) _H(z))+ 1§ +H(2))ZW-1(H(1) 'H(Z))

Thus LR(x’,u®,u®,5£")21 when

_— —

~2log LR(x, u®, u®,5v)<0

—_—

Xotzw_l(g(l) _H(Z))Z% e +H(2))Zw-1(g(1) _H(z))

l.e.



FLD Likelihood View (cont.)

Replacing u®, p® and =" by maximum likelihood estimates:

X(l), X(Z) and iw

gives the likelihood ratio discrimination rule:

Choose Class 1, when

N

NG (X(l) _X(z))S (X(l) +X(2))2W_l (X(l) _X(Z))

N[

same as above



FLD Generalization |

Gaussian Likelihood Ratio Discrimination

(a. k. a. “nonlinear discriminant analysis”)

Idea; Assume class distributions are N ,u“),Z(”)

Different covariances!

Likelihood Ratio rule is straightforward calculation

(thus can easily do discrimination)



FLD Generalization | (cont.)

But no longer have “separating hyperplane” representation
(instead “regions determined by quadratics”)

(fairly complicated case-wise calculations)

Graphical display: for each point, color as:
If assigned to Class 1
If assigned to Class 2

(“Intensity” Is “strength of assignment”)

show PolyEmbed\PEod1FLDel.ps



FLD Generalization | (cont.)

Toy Examples:

1. Standard Tilted Point clouds:

also show PolyEmbed\PEod1GLRel.ps

-  Both FLD and LR work well.

2. Donut:

Show PolyEmbed\PEdonFLDel.ps & PEdonGLRel.ps

- FLD poor (no separating plane can work)

- LR much better



FLD Generalization | (cont.)

3. Split X:

Show PolyEmbed\PExd3FLDel.ps & PExd3GLRel.ps

neither works well

although [ good separating surfaces

they are not “from Gaussian likelihoods”

so this is not “general quadratic discrimination”



FLD Generalization Il

Different prior probabilities

Main idea: Give different weights to 2 classes

l.e. assume not a priori equally likely

Development is “straightforward”
- modifed likelihood

- change intercept in FLD

Might explore with toy examples, but time is short



FLD Generalization Il

Principal Discriminant Analysis

Idea: FLD-like approach to more than two classes

Assumption: Class covariance matrices are the same (similar)

(but not Gaussian, as for FLD)

Main idea: quantify “location of classes” by their means



FLD Generalization Il (cont.)

Simple way to find “interesting directions” among the means:

PCA on set of means

l.e. Eigen-analysis of “between class covariance matrix”
> =MM'

where

0= e

Aside: can show: overall /nZ=+/nz? + k="



FLD Generalization Il (cont.)

But PCA only works like “mean difference”,

Expect can improve by “taking covariance into account”.

Again show HDLSS\HDLSSodlegFLD.ps

Blind application of above ideas suggests eigen-analysis of:

zw_lzB



FLD Generalization Il (cont.)

There are:
- sSmarter ways to compute (“ generalized eigenvalue”)

- other representations (this solves optimization prob’s)

Special case: 2 classes, reduces to standard FLD

Good reference for more: Section 3.8 of:

Duda, R. O., Hart, P. E. and Stork, D. G. (2001) Pattern
Classification, Wiley.



