From Last Meeting

Studied Approximation of Corpora Callosa

- by Fourier (raw and centered)
- by PCA

Fisher Linear Discrimination

Recall Toy Problem:

Show HDLSS/HDLSSod1Raw.ps

Want to find "separating direction vector"
Recall PCA didn't work
Show HDLSS/HDLSSod1PCA.ps

Also "difference between means" doesn't work:
Show HDLSS/HDLSSod1Mdif.ps

Fisher Linear Discrimination

A view of Fisher Linear Discrimination:
Adjust to "make covariance structure right"
Show HDLSS/HDLSSod1FLD.ps

Mathematical Notation (vectors with dimension d):

Class 1: $\underline{X}_{1}^{(1)}, \ldots, \underline{X}_{n_{1}}^{(1)} \quad$ Class 2: $\underline{X}_{1}^{(2)}, \ldots, \underline{X}_{n_{2}}^{(2)}$
Class Centerpoints: $\quad \underline{X}^{(1)}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \underline{X}_{i}^{(1)} \quad$ and $\quad \underline{\bar{X}}^{(2)}=\frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \underline{X}_{i}^{(2)}$

Fisher Linear Discrimination (cont.)

Covariances: $\hat{\Sigma}^{(j)}=\tilde{X}^{(j)} \tilde{X}^{(j)^{t}}$, for $j=1,2 \quad$ (outer products)
Based on "normalized, centered data matrices":

$$
\tilde{X}^{(j)}=\frac{1}{\sqrt{n_{j}}}\left(\underline{X}_{1}^{(j)}-\underline{\bar{X}}^{(j)}, \ldots, \underline{X}_{n_{j}}^{(j)}-\underline{\bar{X}}^{(j)}\right)
$$

note: Use "MLE" version of normalization, for simpler notation

Terminology (useful later): $\quad \hat{\Sigma}^{(j)}$ are "within class covariances"

Fisher Linear Discrimination (cont.)

Major assumption: Class covariances are same (or "similar")

Good estimate of "common within class covariance"?
Show HDLSS/HDLSSod1FLD.ps

Pooled (weighted average) within class covariance:

$$
\hat{\Sigma}^{w}=\frac{n_{1} \hat{\Sigma}^{(1)}+n_{2} \hat{\Sigma}^{(2)}}{n_{1}+n_{2}}=\tilde{X} \widetilde{X}^{t}
$$

for the "full data matrix":

$$
\tilde{X}=\frac{1}{\sqrt{n}}\left(\sqrt{n_{1}} \tilde{X}^{(1)} \sqrt{n_{2}} \tilde{X}^{(2)}\right)
$$

Fisher Linear Discrimination (cont.)

Note: $\hat{\Sigma}^{w}$ is similar to $\hat{\Sigma}$ from before

- i.e. "covariance matrix ignoring class labels"
- important difference is "class by class centering"

Fisher Linear Discrimination (cont.)

Simple way to find "correct covariance adjustment":
Individ'ly transform subpop'ns so "spherical" about their means
Show HDLSSIHDLSSod1egFLD.ps

$$
\underline{Y}_{i}^{(j)}=\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{X}_{i}^{(j)}
$$

then:
"best separating hyperplane"

Fisher Linear Discrimination (cont.)

So in transformed space, the separating hyperlane has:
Transformed normal vector:

$$
\underline{n}_{T F L D}=\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{\bar{X}}^{(1)}-\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{\bar{X}}^{(2)}=\left(\hat{\Sigma}^{w}\right)^{-1 / 2}\left(\underline{\bar{X}}^{(1)}-\underline{\bar{X}}^{(2)}\right)
$$

Transformed intercept:

$$
\underline{\mu}_{T F L D}=\frac{1}{2}\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{\bar{X}}^{(1)}+\frac{1}{2}\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{\bar{X}}^{(2)}=\left(\hat{\Sigma}^{w}\right)^{-1 / 2}\left(\frac{1}{2} \underline{\bar{X}}^{(1)}+\frac{1}{2} \underline{\bar{X}}^{(2)}\right)
$$

Equation:

$$
\left\{\underline{y}:\left\langle\underline{y}, \underline{n}_{T F L D}\right\rangle=\left\langle\underline{\mu}_{T F L D}, \underline{n}_{T F L D}\right\rangle\right\}
$$

Fisher Linear Discrimination (cont.)

Thus discrimination rule is:

Given a new data vector \underline{X}^{0}, Choose Class 1 when:

$$
\left\langle\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{X}^{0}, \underline{n}_{T F L D}\right\rangle \geq\left\langle\underline{\mu}_{T F L D}, \underline{n}_{T F L D}\right\rangle
$$

i.e. (transforming back to original space)

$$
\begin{gathered}
\left\langle\underline{X}^{0},\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{n}_{T F L D}\right\rangle \geq\left\langle\left(\hat{\Sigma}^{w}\right)^{1 / 2} \underline{\mu}_{T F L D},\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{n}_{T F L D}\right\rangle \\
\left\langle\underline{X}^{0}, \underline{n}_{F L D}\right\rangle \geq\left\langle\underline{\mu}_{F L D}, \underline{n}_{F L D}\right\rangle
\end{gathered}
$$

where:

$$
\begin{gathered}
\underline{n}_{F L D}=\left(\hat{\Sigma}^{w}\right)^{-1 / 2} \underline{n}_{T F L D}=\left(\hat{\Sigma}^{w}\right)^{-1}\left(\underline{\bar{X}}^{(1)}-\underline{\bar{X}}^{(2)}\right) \\
\underline{\mu}_{F L D}=\left(\hat{\Sigma}^{w}\right)^{1 / 2} \underline{\mu}_{T F L D}=\left(\frac{1}{2} \underline{\bar{X}}^{(1)}+\frac{1}{2} \underline{\bar{X}}^{(2)}\right)
\end{gathered}
$$

Fisher Linear Discrimination (cont.)

Thus (in original space) have separating hyperplane with:

Normal vector: $\underline{n}_{F L D}$

Intercept: $\underline{\mu}_{F L D}$
Again show HDLSSUHDLSSod1egFLD.ps

FLD Likelihood View

Assume: Class distributions are multivariate $\quad N\left(\underline{\mu}^{(j)}, \Sigma^{w}\right)$
(strong distributional assumption + common cov.)

At a location \underline{x}^{0}, the likelihood ratio,
for choosing between Class 1 and Class 2, is:

$$
L R\left(\underline{x}^{0}, \underline{\mu}^{(1)}, \underline{\mu}^{(2)}, \Sigma^{w}\right)=\varphi_{\Sigma^{\prime \prime}}\left(\underline{x}^{0}-\underline{\mu}^{(1)}\right) / \varphi_{\Sigma^{m}}\left(\underline{x}^{0}-\underline{\mu}^{(2)}\right)
$$

where $\varphi_{\Sigma^{m}}$ is the Gaussian density with covariance Σ^{w}

FLD Likelihood View (cont.)

Simplifying, using the form of the Gaussian density:

$$
\varphi_{\Sigma^{w}}(\underline{x})=\frac{1}{(2 \pi)^{d / 2}\left|\Sigma^{w}\right|} e^{-\left(\underline{x}^{\prime} \Sigma^{w^{-1}} \underline{x}\right) / 2}
$$

Gives (critically using the common covariance):

$$
\begin{aligned}
& L R\left(\underline{x}^{0}, \underline{\mu}^{(1)}, \underline{\mu}^{(2)}, \Sigma^{w}\right)=e^{-\left[\left(\underline{x}^{0}-\underline{\mu}^{(1)}\right) \Sigma^{w-1}\left(x^{0}-\underline{\mu}^{(1)}\right)-\left(\underline{x}^{0}-\underline{\mu}^{(2)}\right) \Sigma^{w-1}\left(x^{0}-\underline{\mu}^{(2)}\right)\right] / 2} \\
& -2 \log L R\left(\underline{x}^{0}, \underline{\mu}^{(1)}, \underline{\mu}^{(2)}, \Sigma^{w}\right)= \\
& =\left(\underline{x}^{0}-\underline{\mu}^{(1)}\right)^{\prime} \Sigma^{w^{-1}}\left(\underline{x}^{0}-\underline{\mu}^{(1)}\right)-\left(\underline{x}^{0}-\underline{\mu}^{(2)}\right)^{\prime} \Sigma^{w^{-1}}\left(\underline{x}^{0}-\underline{\mu}^{(2)}\right)
\end{aligned}
$$

FLD Likelihood View (cont.)

But:

$$
\left(\underline{x}^{0}-\underline{\mu}^{(j)}\right)^{t} \Sigma^{w^{-1}}\left(\underline{x}^{0}-\underline{\mu}^{(j)}\right)=\underline{x}^{0 t} \Sigma^{w^{-1}} \underline{x}^{0}-2 \underline{x}^{0^{t}} \Sigma^{w^{-1}} \underline{\mu}^{(j)}+\underline{\mu}^{(j)} \Sigma^{w^{-1}} \underline{\mu}^{(j)}
$$

so:

$$
\begin{gathered}
-2 \log L R\left(\underline{x}^{0}, \underline{\mu}^{(1)}, \underline{\mu}^{(2)}, \Sigma^{w}\right)= \\
=-2 \underline{x}^{0^{t}} \Sigma^{w^{-1}}\left(\underline{\mu}^{(1)}-\underline{\mu}^{(2)}\right)+\left(\underline{\mu}^{(1)}+\underline{\mu}^{(2)}\right) \Sigma^{w^{-1}}\left(\underline{\mu}^{(1)}-\underline{\mu}^{(2)}\right)
\end{gathered}
$$

Thus $\operatorname{LR}\left(\underline{x}^{0}, \underline{\mu}^{(1)}, \underline{\mu}^{(2)}, \Sigma^{w}\right) \geq 1 \quad$ when

$$
-2 \log L R\left(\underline{x}^{0}, \underline{\mu}^{(1)}, \underline{\mu}^{(2)}, \Sigma^{w}\right) \leq 0
$$

i.e.

$$
\underline{x}^{0^{t}} \Sigma^{w^{-1}}\left(\underline{\mu}^{(1)}-\underline{\mu}^{(2)}\right) \geq \frac{1}{2}\left(\underline{\mu}^{(1)}+\underline{\mu}^{(2)}\right) \Sigma^{w^{-1}}\left(\underline{\mu}^{(1)}-\underline{\mu}^{(2)}\right)
$$

FLD Likelihood View (cont.)

Replacing $\underline{\mu}^{(1)}, \underline{\mu}^{(2)}$ and Σ^{w} by maximum likelihood estimates:

$$
\underline{\bar{X}}^{(1)}, \underline{\bar{X}}^{(2)} \text { and } \hat{\Sigma}^{w}
$$

gives the likelihood ratio discrimination rule:
Choose Class 1, when

$$
\underline{x}^{0^{t}} \hat{\Sigma}^{w^{-1}}\left(\underline{\bar{X}}^{(1)}-\underline{\bar{X}}^{(2)}\right) \leq \frac{1}{2}\left(\overline{\bar{X}}^{(1)}+\underline{\bar{X}}^{(2)}\right) \hat{\Sigma}^{w^{-1}}\left(\overline{\bar{X}}^{(1)}-\underline{\bar{X}}^{(2)}\right)
$$

same as above

FLD Generalization I

Gaussian Likelihood Ratio Discrimination
(a. k. a. "nonlinear discriminant analysis")

Idea: Assume class distributions are $N\left(\underline{\mu}^{(j)}, \Sigma^{(j)}\right)$

Different covariances!

Likelihood Ratio rule is straightforward calculation
(thus can easily do discrimination)

FLD Generalization I (cont.)

But no longer have "separating hyperplane" representation (instead "regions determined by quadratics")

(fairly complicated case-wise calculations)

Graphical display: for each point, color as:
Yellow if assigned to Class 1
Cyan if assigned to Class 2
("intensity" is "strength of assignment")

FLD Generalization I (cont.)

Toy Examples:

1. Standard Tilted Point clouds:
also show PolyEmbed\PEod1GLRe1.ps

- Both FLD and LR work well.

2. Donut:

Show PolyEmbed 1 PEdonFLDe1.ps \& PEdonGLRe1.ps

- FLD poor (no separating plane can work)
- LR much better

FLD Generalization I (cont.)

3. Split X :

Show PolyEmbed\PExd3FLDe1.ps \& PExd3GLRe1.ps

- neither works well
- although \exists good separating surfaces
- they are not "from Gaussian likelihoods"
- so this is not "general quadratic discrimination"

FLD Generalization II

Different prior probabilities

Main idea: Give different weights to 2 classes
I.e. assume not a priori equally likely

Development is "straightforward"

- modifed likelihood
- change intercept in FLD

Might explore with toy examples, but time is short

FLD Generalization III

Principal Discriminant Analysis

Idea: FLD-like approach to more than two classes

Assumption: Class covariance matrices are the same (similar)
(but not Gaussian, as for FLD)

Main idea: quantify "location of classes" by their means

$$
\underline{\mu}^{(1)}, \underline{\mu}^{(2)}, \ldots, \underline{\mu}^{(k)}
$$

FLD Generalization III (cont.)

Simple way to find "interesting directions" among the means:

PCA on set of means

i.e. Eigen-analysis of "between class covariance matrix"

$$
\Sigma^{B}=M M^{t}
$$

where

$$
\left.M=\frac{1}{\sqrt{k}} \underline{\mu}^{(1)}-\underline{\mu} \quad \cdots \quad \underline{\mu}^{(k)}-\underline{\mu}\right)
$$

Aside: can show: overall $\sqrt{n} \Sigma=\sqrt{n} \Sigma^{B}+\sqrt{k} \Sigma^{w}$

FLD Generalization III (cont.)

But PCA only works like "mean difference",
Expect can improve by "taking covariance into account".
Again show HDLSSIHDLSSod1egFLD.ps

Blind application of above ideas suggests eigen-analysis of:

$$
\Sigma^{w^{-1}} \Sigma^{B}
$$

FLD Generalization III (cont.)

There are:

- smarter ways to compute (" generalized eigenvalue")
- other representations (this solves optimization prob's)

Special case: 2 classes, reduces to standard FLD

Good reference for more: Section 3.8 of:
Duda, R. O., Hart, P. E. and Stork, D. G. (2001) Pattern Classification, Wiley.

