
From Last Meeting

Studied Approximation of Corpora Callosa

- by Fourier (raw and centered)

- by PCA



Fisher Linear Discrimination

Recall Toy Problem:
Show HDLSS/HDLSSod1Raw.ps

Want to find “separating direction vector”

Recall PCA didn’t work
Show HDLSS/HDLSSod1PCA.ps

Also “difference between means” doesn’t work:
Show HDLSS/HDLSSod1Mdif.ps



Fisher Linear Discrimination

A view of Fisher Linear Discrimination:

Adjust to “make covariance structure right”
Show HDLSS/HDLSSod1FLD.ps

Mathematical Notation (vectors with dimension d ):
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Fisher Linear Discrimination (cont.)

Covariances:   
tjjj XX )()()( ~~ˆ =Σ ,   for  2,1=j     (outer products)

Based on “normalized, centered data matrices”:
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note:  Use “MLE” version of normalization, for simpler notation

Terminology (useful later):    )(ˆ jΣ    are “within class covariances”



Fisher Linear Discrimination (cont.)

Major assumption:  Class covariances are same (or “similar”)

Good estimate of “common within class covariance”?
Show HDLSS/HDLSSod1FLD.ps

Pooled (weighted average) within class covariance:
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Fisher Linear Discrimination (cont.)

Note:  wΣ̂   is similar to  Σ̂  from before

- i.e.  “covariance matrix ignoring class labels”

- important difference is “class by class centering”
Again show HDLSS/HDLSSod1FLD.ps



Fisher Linear Discrimination (cont.)

Simple way to find “correct covariance adjustment”:

Individ’ly transform subpop’ns so “spherical” about their means
Show HDLSS\HDLSSod1egFLD.ps
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then:
“best separating hyperplane”

is

“perpendicular bisector of line between means”



Fisher Linear Discrimination (cont.)

So in transformed space, the separating hyperlane has:

Transformed normal vector:
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Again show HDLSS\HDLSSod1egFLD.ps



Fisher Linear Discrimination (cont.)

Thus discrimination rule is:

Given a new data vector  0X ,    Choose Class 1 when:
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Fisher Linear Discrimination (cont.)

Thus (in original space) have separating hyperplane with:

Normal vector:    FLDn

Intercept:    
FLD

µ
Again show HDLSS\HDLSSod1egFLD.ps



FLD Likelihood View

Assume:  Class distributions are multivariate    ( )wjN Σ,)(µ

(strong distributional assumption + common cov.)

At a location  0x ,  the likelihood ratio,

for choosing between Class 1 and Class 2, is:
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where  wΣ
ϕ   is the Gaussian density with covariance  wΣ



FLD Likelihood View (cont.)

Simplifying, using the form of the Gaussian density:
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Gives (critically using the common covariance):
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FLD Likelihood View (cont.)

But:
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FLD Likelihood View (cont.)

Replacing  )1(µ ,  )2(µ   and  wΣ   by maximum likelihood estimates:

)1(X ,  )2(X   and  wΣ̂

gives the likelihood ratio discrimination rule:

Choose Class 1, when

( ) ( ) ( ))2()1(1)2()1()2()1(10 ˆ
2

1ˆ XXXXXXx wwt
−Σ+≤−Σ

−−

same as above



FLD Generalization I

Gaussian Likelihood Ratio Discrimination

(a. k. a. “nonlinear discriminant analysis”)

Idea:  Assume class distributions are    ( ))()( , jjN Σµ

Different covariances!

Likelihood Ratio rule is straightforward calculation

(thus can easily do discrimination)



FLD Generalization I  (cont.)

But no longer have “separating hyperplane” representation

(instead “regions determined by quadratics”)

(fairly complicated case-wise calculations)

Graphical display:  for each point, color as:

Yellow if assigned to Class 1

Cyan if assigned to Class 2

(“intensity” is “strength of assignment”)
show PolyEmbed\PEod1FLDe1.ps



FLD Generalization I  (cont.)

Toy Examples:

1. Standard Tilted Point clouds:
also show PolyEmbed\PEod1GLRe1.ps

- Both FLD and LR work well.

2. Donut:
Show PolyEmbed\PEdonFLDe1.ps & PEdonGLRe1.ps

- FLD poor (no separating plane can work)

- LR much better



FLD Generalization I  (cont.)

3. Split X:
Show PolyEmbed\PExd3FLDe1.ps & PExd3GLRe1.ps

- neither works well

- although ∃  good separating surfaces

- they are not “from Gaussian likelihoods”

- so this is not “general quadratic discrimination”



FLD Generalization II

Different prior probabilities

Main idea:  Give different weights to 2 classes

I.e. assume not a priori equally likely

Development is “straightforward”

- modifed likelihood

- change intercept in FLD

Might explore with toy examples, but time is short



FLD Generalization III

Principal Discriminant Analysis

Idea: FLD-like approach to more than two classes

Assumption:    Class covariance matrices are the same (similar)

(but not Gaussian, as for FLD)

Main idea:     quantify “location of classes” by their means

( )1µ ,  ( )2µ , … , ( )kµ



FLD Generalization III (cont.)

Simple way to find “interesting directions” among the means:

PCA on set of means

i.e.    Eigen-analysis of “between class covariance matrix”
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Aside:   can show:    overall  wB knn Σ+Σ=Σ



FLD Generalization III (cont.)

But PCA only works like “mean difference”,

Expect can improve by “taking covariance into account”.
Again show HDLSS\HDLSSod1egFLD.ps

Blind application of above ideas suggests eigen-analysis of:
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FLD Generalization III (cont.)

There are:

- smarter ways to compute (“ generalized eigenvalue”)

- other representations (this solves optimization prob’s)

Special case: 2 classes,    reduces to standard FLD

Good reference for more:    Section 3.8 of:

Duda, R. O., Hart, P. E. and Stork, D. G. (2001) Pattern
Classification, Wiley.


