
From Last Meeting

Finished ICA

Analysis of Mass Flux data:

- Insights from “clustering”

- Explored “rotation of PCA directions”



Goodness of Approximation

I.e.  how many basis elements to use?

E.g.  Corpora Callosa data

Recall “shape representations” are based on
80=d  dimensional “feature vectors”

Show CCFrawAlls3.mpg

How big does  d   need to be?

A personal working assumption:

“shape is complicated,  so need  d   large”



Major sticking point

For medical image shapes, usually have “few data points”,
dn <

Personal approach:

- that complicates matters

- but “shape” is “complex” and requires complex rep’n

- hence need to develop new statistical methods:

High Dimension Low Sample Size



Classical Approach

- Statistical Multivariate Analysis is based on
“standardizing”

- Multiply by 2/1ˆ −Σ     (for covariance matrix)

- Requires  dn >     (else matrix inverse doesn’t exist)

- For  dn ≤ ,    do “dimension reduction”

- For example, keep only the “1st few Principal
Components”



Questions:

Is dimension reduction (e.g. PCA based) “good enough”?

Or is it important to develop HDLSS methods?

Aside:   how well do ANOVA sums of squares “capture shape”?

Study in context of   corpus collosum data



Fourier Approximation Background:

Represent:
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where the  jc   are the “Fourier Coefficients”

and where the  jBE   are “basis element” shapes



Fourier Approximation Background (Cont.):

Problem: jBE  have “parametric representation”,

so hard to view individually

Solution:  Interesting web site:

http://www.cs.unc.edu/~seanho/miggg/fourdem.html
show CorpColl\BdryFourDemo\fourdem.html

Some examples of generated shapes:
Show CorpColl\CCFbasis.ps



Approximation 1:  Raw Fourier Coefficients

View “goodness of approximation” of
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for  dk ,...,2,1,0=
show CCFappFourAlls3C4.mpg

- 0=k    single point:  the “zero function”

- 1=k    just a line

- 3,2=k    still a line (due to “shape normalization”)



Approximation 1:  Raw Fourier Coefficients  (cont.)

- 4=k     ellipse

- 4>k     more complicated shapes

- larger k     get convergence towards full shape

- dk == 80     blue completely covers white



Approximation 1:  Raw Fourier Coefficients  (cont.)

ANOVA style Sums of Squares:
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Measures “goodness of fit”, on scale of “energy”

Energy decomposition:   2
jc   is “power in signal in direction  jBE ”

Show upper left of CCFappFourAlls3.ps



Approximation 1:  Raw Fourier Coefficients  (cont.)

Useful scales:

- log scales
Show bottom row of CCFappFourAlls3.ps

- relative scale:    ∑
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Show center of CCFappFourAlls3.ps

- cumulative relative scale:    
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Show right of CCFappFourAlls3.ps



Approximation 1:  Raw Fourier Coefficients  (cont.)

What does “cumulative relative signal power” really measure?
Again show CCFappFourAlls3C4.mpg

- 2=k     line alone is 93%

- 6=k     nearly elliptical is 95%???

- 12=k     99%,   but still “misses lots of shape”

- 25=k     99.9%,   still don’t have all of this “shape”?

Have looked at some others:  similar lessons



Approximation 2:  Centered Fourier Coefficients

Main idea:  subtract out the mean first

- standard in ANOVA (often huge part of Sums of Squares)

- results in much different interpretation (of relative SS)

When is “90% of SS explained”?

- Case 29:    31 terms:   all of shape
show CCFappCFourAlls3C3.mpg

- Case 2:    11 terms:   missed a lot of shape
show CCFappCFourAlls3C1.mpg



Approximation 2:  Centered Fourier Coefficients (Cont.)

Paradox of cumulatives (“data compression” plots):

- Case 2 has “great compression” (high curve), yet needs
~50 terms (99.8% explained) for “good shape rep’n”

- Case 29 has “poor compression” (low curve), yet needs
only ~32 terms (92.53% explained) for “good shape rep’n”

Personal conclusion:

“shape” manifestations of Sum of Square Analysis is “slippery”



Approximation 3:  Principal Component Analysis

Recall Ideas:

- Find “directions of greatest variability”

- Will “maximize signal compression”

- Works in an “average sense”, not individually

- Use 1st  k   for “dimensionality reduction”



Approximation 3:  Principal Component Analysis (cont.)

Overlay of cumulatives:
Show CCFappPCAAlls3.ps

- cumulative eigenvalues (“average”) shown in yellow

- much better signal compression than centered Fourier
flip back to CCFappCFourAlls3.ps

- colored cases are extremes of signal compression:

- Case 2 is “great”,  Case 13 and Case 29 are “poor”

- Case 35 is “closest to average”



Approximation 3:  Principal Component Analysis (cont.)

How well does “90%” capture “shape”?

- Case 2:  poor  (happens at 1=k )
Show CCFappPCAAlls3C1.mpg

- Case 13 and Case 29 good (happens at 16=k  and
17=k )

Show CCFappPCAAlls3C2.mpg and CCFappPCAAlls3C3.mpg

- Case 35 not quite  (happens at 6=k )
Show CCFappPCAAlls3C4.mpg

- k   is more useful than “% variability”?



Approximation 3:  Principal Component Analysis (cont.)

How many terms are needed to capture shape?

- Case 2:   17=k ?
Show CCFappPCAAlls3C1.mpg

- Case 13   15=k ?
Show CCFappPCAAlls3C2.mpg

- Case 29   16=k ?
Show CCFappPCAAlls3C3.mpg

- Case 35   15=k ?
Show CCFappPCAAlls3C4.mpg



Personal conclusions

- “Sums of Squares” are very crude surrogate for “shape”

- Not enough to “just work with 1st k  PCs”

- Not enough to “just work with PCs with top 95% of signal”

- Careful about “average fit” (as in PCA), vs. “individuals”

- 15 – 20 PCs “captures shape for Corpus Callosum data”

- Expect more needed for higher dim’nal objects
Show GreggTracton.html

Still worth developing HDLSS


