From Last Meeting

Finished ICA

Analysis of Mass Flux data:


-
Insights from “clustering”

-
Explored “rotation of PCA directions”

For next time:  A problem with this analysis is that % SS is strongly affected by “big vs. small denominators”

Should also add another view:

Measure goodness of fit (on non-relative type of scale) by “Residual Sum of Squares (from the mean)”

E.g. This is on same scale as “pixel error”.

Should add this measure to all indiv. case approx. plots

Could also add to summary plots?  (maybe delete first col.?)

Goodness of Approximation

I.e.  how many basis elements to use?

E.g.  Corpora Callosa data

Recall “shape representations” are based on
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 dimensional “feature vectors”


Show CCFrawAlls3.mpg

How big does  
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  need to be?

A personal working assumption:

“shape is complicated,  so need  
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  large”

Major sticking point

For medical image shapes, usually have “few data points”,   
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Personal approach:

· that complicates matters

· but “shape” is “complex” and requires complex rep’n

· hence need to develop new statistical methods:

High Dimension Low Sample Size
Classical Approach

· Statistical Multivariate Analysis is based on “standardizing”

· Multiply by 
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    (for covariance matrix)

· Requires  
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    (else matrix inverse doesn’t exist)

· For  
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,    do “dimension reduction”

· For example, keep only the “1st few Principal Components”

Questions:

Is dimension reduction (e.g. PCA based) “good enough”? 

Or is it important to develop HDLSS methods?

Aside:   how well do ANOVA sums of squares “capture shape”?

Study in context of   corpus collosum data

Fourier Approximation Background:

Represent:
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where the  
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c

  are the “Fourier Coefficients”

and where the  
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  are “basis element” shapes

Fourier Approximation Background (Cont.):

Problem: 
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 have “parametric representation”,

so hard to view individually

Solution:  Interesting web site:

http://www.cs.unc.edu/~seanho/miggg/fourdem.html

show CorpColl\BdryFourDemo\fourdem.html

Some examples of generated shapes:

Show CorpColl\CCFbasis.ps

Approximation 1:  Raw Fourier Coefficients

View “goodness of approximation” of
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for  
[image: image13.wmf]d

k

,...,

2

,

1

,

0

=


show CCFappFourAlls3C4.mpg


-
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   single point:  the “zero function”


-
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   just a line


-
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   still a line (due to “shape normalization”)

Approximation 1:  Raw Fourier Coefficients  (cont.)


-
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    ellipse


-

[image: image18.wmf]4

>

k

    more complicated shapes


-
larger 
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    get convergence towards full shape


-
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    blue completely covers white 

Approximation 1:  Raw Fourier Coefficients  (cont.)

ANOVA style Sums of Squares:
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Measures “goodness of fit”, on scale of “energy”

Energy decomposition:   
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  is “power in signal in direction  
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Show upper left of CCFappFourAlls3.ps

Approximation 1:  Raw Fourier Coefficients  (cont.)

Useful scales:

· log scales

Show bottom row of CCFappFourAlls3.ps

· relative scale:    
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Show center of CCFappFourAlls3.ps

· cumulative relative scale:    
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Show right of CCFappFourAlls3.ps

Approximation 1:  Raw Fourier Coefficients  (cont.)

What does “cumulative relative signal power” really measure?

Again show CCFappFourAlls3C4.mpg


-
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    line alone is 93%


-
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    nearly elliptical is 95%???


-
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    99%,   but still “misses lots of shape”


-
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    99.9%,   still don’t have all of this “shape”?

Have looked at some others:  similar lessons

Approximation 2:  Centered Fourier Coefficients

Next time:  add some math’s to show clearly what is happening (e.g. mean subtracted from coeff’s, but result has mean added back in).

Main idea:  subtract out the mean first

· standard in ANOVA (often huge part of Sums of Squares)

· results in much different interpretation (of relative SS)

When is “90% of SS explained”?


-
Case 29:    31 terms:   all of shape

show CCFappCFourAlls3C3.mpg


-
Case 2:    11 terms:   missed a lot of shape

show CCFappCFourAlls3C1.mpg

Approximation 2:  Centered Fourier Coefficients (Cont.)

Paradox of cumulatives (“data compression” plots):

· Case 2 has “great compression” (high curve), yet needs ~50 terms (99.8% explained) for “good shape rep’n”

· Case 29 has “poor compression” (low curve), yet needs only ~32 terms (92.53% explained) for “good shape rep’n”

Personal conclusion:

“shape” manifestations of Sum of Square Analysis is “slippery”

Approximation 3:  Principal Component Analysis

Recall Ideas:

· Find “directions of greatest variability”

· Will “maximize signal compression”

· Works in an “average sense”, not individually

· Use 1st  
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  for “dimensionality reduction”

Approximation 3:  Principal Component Analysis (cont.)

Overlay of cumulatives:

Show CCFappPCAAlls3.ps

· cumulative eigenvalues (“average”) shown in yellow

· much better signal compression than centered Fourier

flip back to CCFappCFourAlls3.ps 

· colored cases are extremes of signal compression:

· Case 2 is “great”,  Case 13 and Case 29 are “poor”

· Case 35 is “closest to average”

Approximation 3:  Principal Component Analysis (cont.)

How well does “90%” capture “shape”?

· Case 2:  poor  (happens at 
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Show CCFappPCAAlls3C1.mpg

· Case 13 and Case 29 good (happens at 
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 and 
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Show CCFappPCAAlls3C2.mpg and CCFappPCAAlls3C3.mpg

· Case 35 not quite  (happens at 
[image: image34.wmf]6

=

k

)

Show CCFappPCAAlls3C4.mpg

· 
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  is more useful than “% variability”?

Approximation 3:  Principal Component Analysis (cont.)

How many terms are needed to capture shape?

· Case 2:   
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Show CCFappPCAAlls3C1.mpg

· Case 13   
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?

Show CCFappPCAAlls3C2.mpg

· Case 29   
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Show CCFappPCAAlls3C3.mpg

· Case 35   
[image: image39.wmf]15

=

k

?

Show CCFappPCAAlls3C4.mpg

Personal conclusions

· “Sums of Squares” are very crude surrogate for “shape”

· Not enough to “just work with 1st 
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 PCs”

· Not enough to “just work with PCs with top 95% of signal”

· Careful about “average fit” (as in PCA), vs. “individuals”

· 15 – 20 PCs “captures shape for Corpus Callosum data”

· Expect more needed for higher dim’nal objects

Show GreggTracton.html

Still worth developing HDLSS
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