From Last Meetings

Studying Covariance vs. Correlation PCA:

From Toy examples:

- It can make a big difference
- Not clear which is "better"
- Issues understood via:
"how point cloud relates to coordinate axes"

Explore Rescalings (cont.)

E.g. 5: Corpus Callosum Data:

Show CorpColl\CCFrawAlls3.mpg

Recall direct PCA showed interesting population structure:
Show CorpColllCCFpcaSCs3PC1.mpg, CorpColllCCFpcaSCs3PC2.mpg, and CorpColllCCFpcaSCs3PC3.mpg

Expect difference with "correlation PCA"? Parallel coordinates:
Show CorpColllCCFParCorAlls3.ps

- Coordinate wise variances very different
- So expect large difference

Explore Rescalings (cont.)

Correlation PCA:

Show CorpColllCCFpcaSCs3PC1Corr.mpg, CorpColllCCFpcaSCs3PC2Corr.mpg, CorpColllCCFpcaSCs3PC3Corr.mpg,

- found only "pixel effect directions"
- since these "have been magnified" (see Par. Coord's)
- similar effect to Fisher Linear Disc.

Show CorpColl\CCFfldSCs3mag.mpg

- Correlation PCA clearly inferior here

Explore Rescalings (cont.)

Summary:

- no apparent "general solution"
- depends on context
- sometimes "unit free" aspect is dominant, use Corr. (or other adjustments)
- other times Corr. PCA gives "useless distortion"

Independent Component Analysis

Idea: Find "directions that maximize independence"

Motivating Context: Signal Processing
In particular: "Blind Source Separation"

References:
Hyvärinen and Oja (1999) Independent Component Analysis: A
Tutorial, http://www.cis.hut.fi/projects/ica
Lee, T. W. (1998) book

ICA, motivating example

"Cocktail party problem":

- hear several simultaneous conversations
- would like to "separate them"

Model for "conversations": time series:

$$
s_{1}(t) \text { and } s_{2}(t)
$$

ICA, motivating example (cont.)

Mixed version of signals:

$$
x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t)
$$

And also a second mixture (e.g. from a different location):

$$
x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
$$

ICA, motivating example (cont.)

Goal: Recover "signal" $\underline{s}(t)=\binom{s_{1}(t)}{s_{2}(t)}$ from "data" $\underline{x}(t)=\binom{x_{1}(t)}{x_{1}(t)}$ for unknown "mixture matrix" $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$, where

$$
\underline{x}=A \underline{s}, \quad \text { for all } t
$$

Goal is to find "separating weights", W, so that

$$
\underline{s}=W \underline{x}, \quad \text { for all } t
$$

Problem: $W=A^{-1} \quad$ would be fine, but A is unknown

ICA, motivating example (cont.)

"Solutions" for Cocktail Party example:

Approach 1: PCA:
Show ICAeg1p1d1PCAdecomp.ps
"Direction of Greatest Variability" doesn't solve this problem

Approach 2: ICA:
Show ICAeg1p1d1ICAdecomp.ps
"Independent Component" directions do

ICA, motivating example (cont.)

Relation to FDA: recall "data matrix"

$$
X=\left(\begin{array}{lll}
\underline{X}_{1} & \cdots & \underline{X}_{n}
\end{array}\right)=\left(\begin{array}{ccc}
X_{11} & & X_{1 n} \\
\vdots & \cdots & \vdots \\
X_{d 1} & & X_{d n}
\end{array}\right)
$$

Signal Processing: focus on rows (d time series, for $t=1, \ldots, n$)

Functional Data Analysis: focus on columns (n data vectors)

Note: same 2 viewpoints as "dual problems" in PCA

ICA, motivating example (cont.)

Scatterplot View: plot

- signals $\quad\left\{\left(s_{1}(t), s_{2}(t)\right): t=1, \ldots, n\right\}$

Show ICAeg1p1d1Ori.ps and ICAeg1p1d1OriSP.ps

- data $\left\{\left(x_{1}(t), x_{2}(t)\right): t=1, \ldots, n\right\}$

Show ICAeg1p1d1Mix.ps and ICAeg1p1d1MixSP.ps

- affine trans. $\underline{x}=A \underline{s}$ "stretches indep. signals into dep."
- "inversion" is key to ICA (even when A is unknown)

ICA, motivating example (cont.)

Why not PCA?

- finds "direction of greatest variability"
show ICAeg1p1d1MixPCA.ps
- which is wrong direction for "signal separation"

ICA, Algorithm

ICA Step 1:

- "sphere the data"
- i.e. find linear transf'n to make mean $=\underline{0}, \operatorname{cov}=I$
- i.e. work with $Z=\hat{\Sigma}^{-1 / 2}(X-\hat{\mu})$
- requires X of full rank (at least $n \geq d$, i.e. no HDLSS) (is this critical????)
- search for "indep." beyond linear and quadratic structure

ICA, Algorithm (cont.)

ICA Step 2:

- Find dir'ns that make (sph'd) data as "indep. as possible"
- Worst case: Gaussian - sph'd data is independent

Interesting "converse application" of C.L.T.:

- For S_{1} and S_{2} independent (\& non-Gaussian)
- $\quad X_{1}=u S_{1}+(1-u) S_{2}$ is "more Gaussian" for $u \approx \frac{1}{2}$
- so independence comes from "least Gaussian directions"

ICA, Algorithm (cont.)

Criteria for non-Gaussianity / independence:

- kurtosis $\left(E X^{4}-3\left(E Y^{2}\right)^{2}, 4^{\text {th }}\right.$ order cumulant)
- negative entropy
- mutual information
- nonparametric maximum likelihood
- "infomax" in neural networks
- \exists interesting connections between these

ICA, Algorithm (cont.)

Matlab Algorithm (optimizing any of above): "FastICA"

- numerical gradient search method
- can find directions "iteratively"
- or by "simultaneous optimization"
- appears fast, with good defaults

ICA, Algorithm (cont.)

Notational summary:

1. First sphere data: $Z=\hat{\Sigma}^{-1 / 2}(X-\mu)$
2. Apply ICA: find W_{S} to make rows of $S_{S}=W_{S} Z$ "indep't"
3. Can transform back to "original data scale": $S=\hat{\Sigma}^{1 / 2} S_{S}$

ICA, Algorithm (cont.)

Identifiability problem 1: Generally can't order rows of $S_{S}(\& S)$
Since for a "permutation matrix" P
(pre-multiplication by P "swaps rows") (post-multiplication by P "swaps columns")
for each column, $\underline{z}=A_{S} \underline{s}_{S}=A_{S} P P \underline{s}_{S}$ i.e. $P \underline{s}_{S}=P W_{S} \underline{\underline{z}}$
So $P S_{S}$ and $P W_{S}$ are also solutions (i.e. $P S_{S}=P W_{S} Z$)

FastICA: appears to order in terms of "how non-Gaussian"

ICA, Algorithm (cont.)

Identifiability problem 2: Can't find scale of elements of \underline{s}
Since for a (full rank) diagonal matrix D

> (pre-multiplication by D is scalar mult'n of rows) (post-multiplication by D is scalar mult'n of columns)
for each col'n, $\quad \underline{z}=A_{S} \underline{s}_{S}=A_{S} D^{-1} D \underline{s}_{S} \quad$ i.e. $D \underline{s}_{S}=D W_{S} \underline{z}$
So $D S_{S}$ and $D W_{S}$ are also solutions

ICA, Algorithm (cont.)

Signal Processing Scale identification: (Hyvärinen and Oja)
Choose scale to give each signal $s_{i}(t)$ "unit total energy":

$$
\sum_{t} s_{i}(t)^{2}
$$

(preserves energy along rows of data matrix)

Explains "same scales" in Cocktail Party Example

