From Last Meetings

Developed Mathematics behind PCA:

- Review of Linear Algebra and Multivariate Probability
- Analyzed PCA, using Eigenvalue decomp. of $\hat{\Sigma}$
- Explored "Dual PCA problem",for faster computation
- Only treated " \tilde{X} full rank" case

Summary of PCA dual problem

Recall "data matrix" notation: $\left.\quad \tilde{X}=\frac{1}{\sqrt{n-1}} \underline{\left(X_{1}-\underline{\bar{X}}\right.} \cdots \quad \underline{X_{n}}-\underline{\bar{X}}\right)_{d \times n}$

Recall: $\hat{\Sigma}_{d \times d}=\tilde{X} \tilde{X}^{t}$ has the eigenvalue decomp. $\hat{\Sigma}=B D B^{t}$

The "dual eigen problem" replaces columns by rows in \tilde{X} :
Let $\Sigma_{n \times n}^{*}=\tilde{X}^{t} \tilde{X}$, and find B^{*}, D^{*}, so that $\Sigma^{*}=B^{*} D^{*} B^{* t}$
(now only $n<d$ dimensional)

Summary of PCA dual problem (cont.)

Now suppose know sol'n to dual problem, i.e. know B^{*} and D^{*}

How do we find B and D ?

Solution 1: Assume $D^{*}=\left(\begin{array}{lll}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right)$ is of full rank,
i.e. $\lambda_{1} \geq \cdots \geq \lambda_{n}>0$, i.e. \tilde{X} and $\hat{\Sigma}$ are of full rank

Summary of PCA dual problem (cont.)

Then, $\quad D_{d \times d}=\left(\begin{array}{cc}D^{*}{ }_{n \times n} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cccccc}\lambda_{1} & 0 & & \cdots & & 0 \\ 0 & \ddots & & & & \\ & & \lambda_{n} & \ddots & & \vdots \\ \vdots & & \ddots & 0 & & \\ & & & & \ddots & 0 \\ 0 & & \cdots & & 0 & 0\end{array}\right)$

And first n cols of B are given by $\breve{B}_{d \times n}=\tilde{X} B^{*}\left(D^{*}\right)^{-1 / 2}$,

PCA Dual Problem (cont.)

Solution 2: For $D^{*}=\left(\begin{array}{lll}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right)$ not of full rank,

Similar, but now work with $n^{\prime} \leq \operatorname{rank}\left(D^{*}\right)=\operatorname{rank}(\tilde{X})$

And find only " ${ }^{\text {st }} n$ ' eigencomponents"

PCA dual problem (cont.)

Still have:

- First n^{\prime} eigenvectors are $\lambda_{1}, \ldots, \lambda_{n^{\prime}}$
- First n^{\prime} cols of B are $\breve{B}_{d \times n^{\prime}}=\tilde{X} \widehat{B}(\widehat{D})^{-1 / 2}$
where:

$$
\begin{aligned}
& \widehat{B}_{n \times n^{\prime}}=\text { first } n^{\prime} \text { cols of } B^{*} \\
& \widehat{D}_{n^{\prime} \times n^{\prime}}=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n^{\prime}}
\end{array}\right)
\end{aligned}
$$

PCA dual problem (cont.)

Then can fill in other eigenvectors:

- Gram-Schmidt orthogonalization?
- More efficient method?

Or, maybe only care about those where $\lambda_{j}>0$
(i.e. directions where we have data?)

PCA Time Trials

What is the gain in speed? Time trial comparisons

For $d=10,20,50,100, \ldots, 500$, and for $n=10,20,50,100, \ldots, 500$,

Timed versions of PCA (using Matlab's function eigs)

Trial 1: Direct PCA, all d eigenvectors (recall $\Sigma_{d \times d}$).
show PCAtimest1p4.ps

PCA Time Trials (cont.)

Top Row: Views of times (in seconds)
Problem: Smaller times "compressed into 0"
Bottom Row: Different scale: $\log _{10}$ times vs. $\log _{10} d \& n$
$1^{\text {st }}$ column: overall surface
$2^{\text {nd }}$ column: slice in n direction
$3^{\text {rd }}$ column: slice in d direction

PCA Time Trials (cont.)

Trial 1: Direct PCA, all d eigenvectors (recall $\Sigma_{d \times d}$)

- nearly no dependence on n
- since need to compute all d
- grows like $O\left(d^{3}\right) ? \quad$ (for larger $d ?$)
- since need to solve $d \times d$ system for each of d e.v.s
- limited relevance if only need $1^{\text {st }} n$

PCA Time Trials (cont.)

View 2: Compute for only non-zero eigenvalues
(generally $n-1$ since mean is subtracted for PCA)
a. Direct PCA

Show PCAtimest1p1.ps

- for each d, increases in n, until level d is passed
- since are computing more eigenvectors
- for each $n, 1^{\text {st }}$ inc's rapidly in d, slowly after d is passed
- since for $n>d$ only harder expense is covariance calc.

PCA Time Trials (cont.)

b. Dual PCA

Show PCAtimest1p2.ps

- Times are transpose of (a).
- Since "swap rows and columns" means " $d \leftrightarrow n$ "

[^0]
PCA Time Trials (cont.)

c. Chosen PCA (to min size of computed eigen-analysis)

Show PCAtimest1p3.ps

- Times are essentially mins of (a) and (b)

Flip back and forth between last 3

- Symmetric in d and n
- Worst case is $d=n$ (direct and dual equally hard)
- As expected from theory

PCA Time Trials (cont.)

How useful is this?

- For $n \approx d$, no benefit
- For $n(d)=100, \& d(n)=500$, factor of ~ 20
- For $n(d)=50, \& d(n)=100$, factor of ~ 10
- For n or $d<=200$, time <= 10 sec's, so not major deal?

PCA Time Trials (cont.)

View 3: Compute only first 8 eigenvalues and vectors
Show PCAtimest1p5.ps, PCAtimest1p6.ps, PCAtimest1p7.ps

- similar lessons
- overall times <= 30 secs
- for n or $d<=200$, times $<=5$ (at worst) 10 sec's
- trivial except for simulation

Explore Rescalings

Background: PCA finds "direction of greatest variability",
by eigenanalysis of covariance matrix: $\hat{\Sigma}_{d \times d}=\tilde{X} \tilde{X}^{t}$

$$
\text { where } \left.\quad \tilde{X}=\frac{1}{\sqrt{n-1}} \underline{\left(X_{1}-\underline{\bar{X}}\right.} \cdots \quad \underline{X}_{n}-\underline{\bar{X}}\right)_{d \times n}
$$

When does this make sense?

Classical Multivariate Analysis: Not when "units are different" (e.g. X_{1} in m, X_{2} in sec, X_{3} in \$)

Explore Rescalings (cont.)

An FDA example: "M-reps" (some "angles" and some lengths)
Show GreggTracton.html

Classical solution; transform to "unit free" scale
i.e. replace covariance matrix with "correlation matrix"

$$
\bar{\Sigma}=\left(\begin{array}{cccc}
1 & \rho\left(X_{1}, X_{2}\right) & \cdots & \rho\left(X_{1}, X_{n}\right) \\
\rho\left(X_{2}, X_{1}\right) & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \rho\left(X_{n-1}, X_{n}\right) \\
\rho\left(X_{n}, X_{1}\right) & \cdots & \rho\left(X_{n}, X_{n-1}\right) & 1
\end{array}\right)
$$

where $\quad \rho\left(X_{i}, X_{j}\right)=\frac{\operatorname{cov}\left(X_{i}, X_{j}\right)}{\operatorname{var}\left(X_{i}\right) \cdot \operatorname{var}\left(X_{j}\right)}$

Explore Rescalings (cont.)

Correlation matrix:
Use same form for either "theoretical" or "empirical" versions

Matrix version:

$$
\bar{\Sigma}=D \Sigma D,
$$

where

$$
D=\left(\begin{array}{ccc}
\frac{1}{s d\left(X_{1}\right)} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{s d\left(X_{n}\right)}
\end{array}\right)
$$

Explore Rescalings (cont.)

Standardized data version: $\bar{\Sigma}_{d \times d}=\tilde{Z} \widetilde{Z}^{t}$

$$
\text { where } \quad \tilde{Z}=\frac{1}{\sqrt{n-1}}\left(\frac{X_{1}-\overline{\bar{X}}}{s d\left(X_{1}\right)} \cdots \frac{X_{n}-\overline{\bar{X}}}{s d\left(X_{1}\right)}\right)_{d \times n}
$$

Shows "unit free" aspect of this transformation

Possible drawback: gives a "distortion of point cloud of data",

So "direction of greatest variability" is different (better? worse?)

Explore Rescalings (cont.)

E.g. 1: Familiar family of parabolas

Show CurvDat|ParabsCurvDat.ps and CurvDat|ParabsCurvDatCorr.ps

- very similar
- reason: cov. matrix \approx corr. matrix
- I.e. coordinate-wise variances approx. same

Explore Rescalings (cont.)

E. g. 2: 3 "independent bumps", in coordinate axis directions

Show CurvDat\Bumps3CurvDat.ps and CurvDat\Bumps3CurvDatCorr.ps

- Covariance PC 1: Finds first bump
- Covariance PC 2 \& 3: Finds remaining bumps
- Corr. PC: Power of bumps spread beyond $1^{\text {st }} 4$!
- This can make a big difference!
- Which is "right"????
- Power plot: big difference in eigenvalues (symbols - raw scale, lines - standardized scale)

Explore Rescalings (cont.)

E.g. 3: 2 correlated bumps, $3^{\text {rd }}$ independent:

Show CurvDat|Bumps2CurvDat.ps and CurvDat|Bumps2CurvDatCorr.ps

- similar lessons

E.g. 4: 3 correlated bumps

Show CurvDat|Bumps1CurvDat.ps and CurvDat|Bumps1CurvDatCorr.ps

- now Corr. PCA not quite so bad?
- Just luck?

Explore Rescalings (cont.)

E.g. 5: Corpus Callosum Data:

Show CorpColl\CCFrawAlls3.mpg

Recall direct PCA showed interesting population structure:
Show CorpColllCCFpcaSCs3PC1.mpg, CorpColllCCFpcaSCs3PC2.mpg, and CorpColllCCFpcaSCs3PC3.mpg

Expect difference with "correlation PCA"? Parallel coordinates:
Show CorpColllCCFParCorAlls3.ps

- Coordinate wise variances very different
- So expect large difference

Explore Rescalings (cont.)

Correlation PCA:

Show CorpColllCCFpcaSCs3PC1Corr.mpg, CorpColllCCFpcaSCs3PC2Corr.mpg, CorpColllCCFpcaSCs3PC3Corr.mpg,

- found only "pixel effect directions"
- since these "have been magnified" (see Par. Coord's)
- similar effect to Fisher Linear Disc.

Show CorpColl\CCFfldSCs3mag.mpg

- Correlation PCA clearly inferior here

Explore Rescalings (cont.)

Summary:

- no apparent "general solution"
- depends on context
- sometimes "unit free" aspect is dominant, use Corr.
- other times Corr. PCA gives "useless distortion"

Future plans:

1. Do ICA?
2. Goodness of approximation???
3. Maths for Fisher linear discrimination
4. Polynomial embeddings and SVM discrimination
5. Validation for discrimination (various ways)
6. Internet traffic data?

[^0]: Flip back and forth

