Course Overview

Finished heuristic look at:

1. Understanding population structure - PCA

- Toy examples
- Cornea data - robustness

2. Discrimination (Classification)

- Fisher Linear Discrimination
- Corpus Callosum Data - Orthogonal subspace projection

Now take careful look at mathematics - numerics

Linear Algebra Review

Vector Space:

- set of "vectors", \underline{x},
- and "scalars" (coefficients), a
- "closed" under "linear combination" ($\sum_{i} a_{i} x_{i}$ in space)
- e.g. $\mathfrak{R}^{d}=\left\{\underline{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{d}\end{array}\right): x_{1}, \ldots, x_{d} \in \mathfrak{R}^{d}\right\}$,"d dim Euclid'n space"

Linear Algebra Review, (cont.)

Subspace:

- subset that is again a vector space
- i.e. closed under linear combination
- e.g. lines through the origin
- e.g. planes through the origin
- e.g. subspace "generated by" a set of vectors (all linear combos of them = containing hyperplane)

Linear Algebra Review, (cont.)

Basis of subspace: set of vectors that:

- "span", i.e. everything is a linear combo of them
- are "linearly independent", i.e. linear combo is unique
- e.g. \mathfrak{R}^{d} "unit vector basis" $\left\{\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right) \cdots\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right)\right\}$
- e.g. $\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{d}\end{array}\right)=x_{1}\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)+x_{2}\left(\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right)+\cdots+x_{d}\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right)$

Linear Algebra Review, (cont.)

Basis Matrix, of subspace of \Re^{d}
Given a basis, $\underline{v_{1}}, \ldots, \underline{v_{n}}$, create "matrix of columns":

$$
B=\left(\begin{array}{lll}
\underline{v_{1}} & \cdots & \underline{v_{n}}
\end{array}\right)=\left(\begin{array}{ccc}
v_{11} & & v_{n 1} \\
\vdots & \cdots & \vdots \\
v_{1 d} & & v_{n d}
\end{array}\right)_{d \times n}
$$

Then "linear combo" is a matrix multiplication:

$$
\sum_{i=1}^{n} a_{i} \underline{v_{i}}=B \underline{a} \quad \text { where } \quad \underline{a}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

Often useful to check sizes: $\quad d \times 1=(d \times n) \leftrightarrow(n \times 1)$

Linear Algebra Review, (cont.)

Dimension of subspace (a notion of "size"):

- number of elements in a basis (unique)
- $\quad \operatorname{dim}\left(\mathfrak{R}^{d}\right)=d \quad$ (use basis above)
- e.g. dim of a line is 1
- e.g. dim of a plane is 2
- dimension is "degrees of freedom"

Linear Algebra Review, (cont.)

Norm of a vector:

- in $\mathfrak{R}^{d}, \quad\|\underline{x}\|=\left(\sum_{j=1}^{d} x_{j}^{2}\right)^{1 / 2}=\left(\underline{x}^{t} \underline{x}\right)^{1 / 2}$
- Idea: "length" of the vector
- But recall strange properties for high d, e.g. "length of diagonal of unit cube" $=\sqrt{d}$
- "length normalized vector": $\frac{\underline{x}}{\|\underline{x}\|}$
(has length one, this is on surface of unit sphere)
- get "distance" as: $d(\underline{x}, \underline{y})=\|\underline{x}-\underline{y}\|=\sqrt{(\underline{x}-\underline{y})^{\prime}(\underline{x}-\underline{y})}$

Linear Algebra Review, (cont.)

Inner (dot, scalar) product:

- for vectors \underline{x} and $\underline{y},\langle\underline{x}, \underline{y}\rangle=\sum_{j=1}^{d} x_{j} y_{j}=\underline{x}^{t} \underline{y}$
- related to norm, via $\|\underline{x}\|=\sqrt{\langle\underline{x}, \underline{x}\rangle}=\sqrt{\underline{x}^{t} \underline{x}}$
- measures "angle between \underline{x} and \underline{y} " as:

$$
\operatorname{angle}(\underline{x}, \underline{y})=\cos ^{-1}\left(\frac{\langle\underline{x}, \underline{y}\rangle}{\|\underline{x} \mid \cdot\| \underline{y} \|}\right)=\cos ^{-1}\left(\frac{\underline{x}^{t} \underline{y}}{\sqrt[{\sqrt{\underline{x}}^{t} \underline{x} \cdot \underline{y}^{t} \underline{y}}]{ }}\right)
$$

- key to "orthogonality", i.e. "perpendicularity":

$$
\underline{x} \perp \underline{y} \text { if and only if }\langle\underline{x}, \underline{y}\rangle=0
$$

Linear Algebra Review, (cont.)

Orthonormal basis $\underline{v_{1}, \ldots, v_{n}}$:

- All ortho to each other, i.e. $\left\langle\underline{v_{i}}, v_{i^{\prime}}\right\rangle=0$, for $i \neq i^{\prime}$
- All have length 1, i.e. $\left\langle\underline{v_{i}}, \underline{v_{i}}\right\rangle=1$, for $i=1, \ldots, n$
- "Spectral Representation": $\underline{x}=\sum_{i=1}^{n} a_{i} \underline{v_{i}}$ where $a_{i}=\left\langle\underline{x}, \underline{v_{i}}\right\rangle$
check: $\left\langle\underline{x}, \underline{v_{i}}\right\rangle=\left\langle\sum_{i^{\prime}=1}^{n} a_{i^{\prime}}, v_{i-}, \underline{v_{i}}\right\rangle=\sum_{i^{\prime}=1}^{n} a_{i^{\prime}}\left\langle\underline{v_{i}}, \underline{v_{i}}\right\rangle=a_{i}$
- Matrix notation: $\underline{x}=B \underline{a}$ where $\underline{a}^{t}=\underline{x}^{t} B$ i.e. $\underline{a}=B^{t} \underline{x}$
- $\quad a$ is called "transform (e.g. Fourier, wavelet) of \underline{x} "

Linear Algebra Review, (cont.)

Parseval identity, for \underline{x} in subsp. gen'd by o. n . basis $\underline{v_{1}}, \ldots, \underline{\nu}_{n}$:
$-\|\underline{x}\|^{2}=\sum_{i=1}^{n}\left\langle\underline{x}, \underline{v_{i}}\right\rangle^{2}=\sum_{i=1}^{n} a_{i}^{2}=\|\underline{a}\|^{2}$

- Pythagorean theorem
- "Decomposition of Energy"
- ANOVA - sums of squares
- Transform, \underline{a}, has same length as \underline{x}, i.e. "rotation in $\Re^{d "}$

Linear Algebra Review, (cont.)

Projection of a vector \underline{x} onto a subspace V :

- Idea: member of V that is closest to \underline{x} (i.e. "approx'n")
- Find $P_{V} \underline{x} \in V$ that solves: $\min _{v \in V}\|\underline{x}-\underline{v}\| \quad$ ("least squares")
- For inner product (Hilbert) space: exists and is unique
- General solution in \mathfrak{R}^{d} : for basis matrix B_{V}

$$
P_{V} \underline{x}=B_{V}\left(B_{V}^{t} B_{V}\right)^{-1} B_{V}^{t} \underline{x}
$$

- So "proj'n operator" is "matrix mult'n": $P_{V}=B_{V}\left(B_{V}^{t} B_{V}\right)^{-1} B_{V}^{t}$
(thus projection is another linear operation) (note same operation underlies "least squares")

Linear Algebra Review, (cont.)

Projection using orthonormal basis $\underline{v}_{1}, \ldots, v_{n}$:

- Basis matrix is "orthonormal": $\quad B_{V}^{t} B_{V}=I_{n \times n}$

$$
\left(\begin{array}{c}
\underline{v_{1}^{t}} \\
\vdots \\
\underline{v_{n}^{t}}
\end{array}\right)\left(\begin{array}{lll}
\underline{v_{1}} & \cdots & \underline{v_{n}}
\end{array}\right)=\left(\begin{array}{ccc}
\left\langle\underline{v_{1}}, \underline{v_{1}}\right\rangle & \cdots & \left\langle\underline{v_{1}}, \underline{v_{n}}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\underline{v_{n}}, \underline{v_{1}}\right\rangle & \cdots & \left\langle\underline{v_{n}}, \underline{v_{n}}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right)
$$

- So $P_{V} \underline{x}=B_{V}\left(B_{V}^{t} \underline{x}\right)=\operatorname{Recon}($ Coeffs of \underline{x} "in V dir'n")
- For "orthogonal complement", V^{\perp},

$$
\underline{x}=P_{V} \underline{x}+P_{V^{\perp}} \underline{x} \quad \text { and } \quad\|\underline{x}\|^{2}=\left\|P_{V} \underline{x}\right\|^{2}+\left\|P_{V^{\perp}} \underline{x}\right\|^{2}
$$

- Parseval inequality: $|\underline{x}|^{2} \leq\left|P_{v} x\right|^{2}=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle^{2}=\sum_{i=1}^{n} a_{i}^{2}=|a|^{2}$

Linear Algebra Review, (cont.)

Eigenvalue Decomposition:
For a (symmetric) square matrix $\quad X_{d \times d}$
Find a diagonal matrix $\quad D=\left(\begin{array}{ccc}\lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{d}\end{array}\right)$
And an orthonormal matrix $\quad B_{d \times d} \quad$ (i.e. $B^{t} \cdot B=B \cdot B^{t}=I_{d \times d}$)

So that: $\quad X \cdot B=B \cdot D, \quad$ i.e. $\quad X=B \cdot D \cdot B^{t}$

Linear Algebra Review, (cont.)

Intuition behind Eigenvalue Decomposition:

For X a "linear transformation" (via matrix multiplication)

- $\quad X \cdot \underline{v}=\left(B \cdot D \cdot B^{t}\right) \cdot \underline{v}=B \cdot\left(D \cdot\left(B^{t} \cdot \underline{v}\right)\right)$
- First "rotate"
- Second "rescale coordinate axes (by $\lambda \mathrm{s}$)
- Third "invert rotation"

For X a basis matrix of \Re^{d}, B gives "rotation to make parallel to coordinate axes"

Linear Algebra Review, (cont.)

Computation of Eigenvalue Decomposition:

- Details too complex to spend time here
- A "primitive" of good software packages
- Eigenvalues $\lambda_{1}, \ldots, \lambda_{d}$ are unique
- Columns of $B=\left(\begin{array}{lll}v_{1} & \cdots & v_{d}\end{array}\right)$ are called "eigenvectors"
- Eigenvectors are " λ-stretched" by X :

$$
X \cdot \underline{v_{i}}=\lambda_{i} \cdot \underline{v_{i}}
$$

Linear Algebra Review, (cont.)

Eigenvalue Decomposition solves matrix problems:

- Inversion: $\quad X^{-1}=B \cdot\left(\begin{array}{ccc}\lambda_{1}^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{d}^{-1}\end{array}\right) \cdot B^{t}$
- Square Root: $X^{1 / 2}=B \cdot\left(\begin{array}{ccc}\lambda_{1}^{1 / 2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{d}^{1 / 2}\end{array}\right) \cdot B^{t}$
- $\operatorname{rank}(X)=\#\left\{\lambda_{i}: \lambda_{i} \neq 0\right\}$
- X is positive (semi) definite \Leftrightarrow all $\lambda_{i}>(\geq) 0$

Multivariate Probability Review

Given a "random vector", $\quad \underline{X}=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right)$,
A "center" of the dist'n is the mean vector, $\quad \underline{\mu}=E \underline{X}=\left(\begin{array}{c}E X_{1} \\ \vdots \\ E X_{n}\end{array}\right)$

A "measure of spread" is the covariance matrix:

$$
\Sigma=\operatorname{cov}(X)=\left(\begin{array}{ccc}
\operatorname{var}\left(X_{1}\right) & \cdots & \operatorname{cov}\left(X_{1}, X_{n}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{cov}\left(X_{n}, X_{1}\right) & \cdots & \operatorname{var}\left(X_{n}\right)
\end{array}\right)
$$

Multivariate Probability Review, (cont.)

Covariance matrix:

- Nonegative Definite (since all variances are ≥ 0)
- Provides "elliptical summary of distribution"
- Calculated via "outer product":

$$
\begin{aligned}
& \Sigma=\operatorname{cov}(X)=E\left(\begin{array}{ccc}
\left(X_{1}-\mu_{1}\right)\left(X_{1}-\mu_{1}\right) & \cdots & \left(X_{1}-\mu_{1}\right)\left(X_{n}-\mu_{n}\right) \\
\vdots & \ddots & \vdots \\
\left(X_{n}-\mu_{n}\right)\left(X_{1}-\mu_{1}\right) & \cdots & \left(X_{n}-\mu_{n}\right)\left(X_{n}-\mu_{n}\right)
\end{array}\right)= \\
& \Sigma=E(\underline{X}-\underline{\mu})(\underline{X}-\underline{\mu})^{t}
\end{aligned}
$$

Multivariate Probability Review, (cont.)

Empirical versions:
Given a "random sample" $\underline{X}_{1}, \ldots, \underline{X_{n}}$,
Estimate the "theoretical mean" $\underline{\mu}$, with the "sample mean":

$$
\underline{\mu}=\underline{\bar{X}}=\left(\begin{array}{c}
\bar{X}_{1} \\
\vdots \\
\bar{X}_{d}
\end{array}\right)=\frac{1}{n} \sum_{i=1}^{n} \underline{X_{i}}
$$

