Course Overview

Finished heuristic look at:

- 1. Understanding population structure PCA
 - Toy examples
 - Cornea data robustness
- 2. Discrimination (Classification)
 - Fisher Linear Discrimination
 - Corpus Callosum Data Orthogonal subspace projection

Now take careful look at mathematics - numerics

Linear Algebra Review

Vector Space:

- set of "vectors", \underline{x} ,
- and "scalars" (coefficients), a
- "closed" under "linear combination" ($\sum_{i} a_i \underline{x}_i$ in space)

- e.g.
$$\Re^d = \left\{ \underline{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} : x_1, \dots, x_d \in \Re^d \right\}$$
, " d dim Euclid'n space"

Subspace:

- subset that is again a vector space
- i.e. closed under linear combination
- e.g. lines through the origin
- e.g. planes through the origin
- e.g. subspace "generated by" a set of vectors
 (all linear combos of them = containing hyperplane)

Basis of subspace: set of vectors that:

- "span", i.e. everything is a linear combo of them
- are "linearly independent", i.e. linear combo is unique

Basis Matrix, of subspace of \Re^d

Given a basis, $\underline{v_1}, ..., \underline{v_n}$, create "matrix of columns":

$$B = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} = \begin{pmatrix} v_{11} & v_{n1} \\ \vdots & \cdots & \vdots \\ v_{1d} & v_{nd} \end{pmatrix}_{d \times n}$$

Then "linear combo" is a matrix multiplication:

$$\sum_{i=1}^{n} a_i \underline{v_i} = B\underline{a} \quad \text{where} \quad \underline{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

Often useful to check sizes: $d \times 1 = (d \times n) \leftrightarrow (n \times 1)$

Dimension of subspace (a notion of "size"):

- number of elements in a basis (unique)
- $\dim(\mathfrak{R}^d) = d$ (use basis above)
- e.g. dim of a line is 1
- e.g. dim of a plane is 2
- dimension is "degrees of freedom"

Norm of a vector:

- in
$$\Re^d$$
, $\|\underline{x}\| = \left(\sum_{j=1}^d x_j^2\right)^{1/2} = \left(\underline{x}^t \underline{x}\right)^{1/2}$

- Idea: "length" of the vector
- But recall strange properties for high d, e.g. "length of diagonal of unit cube" = \sqrt{d}
- "length normalized vector": $\frac{\underline{x}}{\|\underline{x}\|}$ (has length one, this is on surface of unit sphere)

- get "distance" as:
$$d(\underline{x}, \underline{y}) = \|\underline{x} - \underline{y}\| = \sqrt{(\underline{x} - \underline{y})^t (\underline{x} - \underline{y})}$$

Inner (dot, scalar) product:

- for vectors
$$\underline{x}$$
 and \underline{y} , $\langle \underline{x}, \underline{y} \rangle = \sum_{j=1}^{d} x_j y_j = \underline{x}^t \underline{y}$

- related to norm, via $\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle} = \sqrt{\underline{x}^t \underline{x}}$

- measures "angle between \underline{x} and \underline{y} " as:

$$angle(\underline{x}, \underline{y}) = \cos^{-1}\left(\frac{\langle \underline{x}, \underline{y} \rangle}{\|\underline{x}\| \cdot \|\underline{y}\|}\right) = \cos^{-1}\left(\frac{\underline{x}^{t} \underline{y}}{\sqrt{\underline{x}^{t} \underline{x} \cdot \underline{y}^{t} \underline{y}}}\right)$$

- key to "orthogonality", i.e. "perpendicularity": $\underline{x}\perp\underline{y}$ if and only if $\langle \underline{x}, \underline{y} \rangle = 0$

Orthonormal basis $\underline{v_1}, ..., \underline{v_n}$:

- All ortho to each other, i.e. $\langle \underline{v}_i, \underline{v}_i \rangle = 0$, for $i \neq i'$
- All have length 1, i.e. $\langle \underline{v}_i, \underline{v}_i \rangle = 1$, for i = 1, ..., n
- "Spectral Representation": $\underline{x} = \sum_{i=1}^{n} a_i \underline{v}_i$ where $a_i = \langle \underline{x}, \underline{v}_i \rangle$ check: $\langle \underline{x}, \underline{v}_i \rangle = \langle \sum_{i'=1}^{n} a_{i'} \underline{v}_{i'}, \underline{v}_i \rangle = \sum_{i'=1}^{n} a_{i'} \langle \underline{v}_{i'}, \underline{v}_i \rangle = a_i$
- Matrix notation: $\underline{x} = B\underline{a}$ where $\underline{a}^{t} = \underline{x}^{t}B$ i.e. $\underline{a} = B^{t}\underline{x}$
- \underline{a} is called "transform (e.g. Fourier, wavelet) of \underline{x} "

Parseval identity, for \underline{x} in subsp. gen'd by o. n. basis $\underline{v}_1, \dots, \underline{v}_n$:

-
$$\|\underline{x}\|^2 = \sum_{i=1}^n \left\langle \underline{x}, \underline{v_i} \right\rangle^2 = \sum_{i=1}^n a_i^2 = \|\underline{a}\|^2$$

- Pythagorean theorem
- "Decomposition of Energy"
- ANOVA sums of squares
- Transform, \underline{a} , has same length as \underline{x} , i.e. "rotation in \Re^{d} "

Projection of a vector \underline{x} onto a subspace V:

- Idea: member of V that is closest to \underline{x} (i.e. "approx'n")
- Find $P_V \underline{x} \in V$ that solves: $\min_{v \in V} \|\underline{x} \underline{v}\|$ ("least squares")
- For inner product (Hilbert) space: exists and is unique
- General solution in \Re^d : for basis matrix B_V $P_V \underline{x} = B_V (B_V^t B_V)^{-1} B_V^t \underline{x}$
- So "proj'n operator" is "matrix mult'n": $P_V = B_V (B_V^t B_V)^{-1} B_V^t$ (thus projection is another linear operation) (note same operation underlies "least squares")

Projection using orthonormal basis $v_1, ..., v_n$:

- Basis matrix is "orthonormal": $B_{V}^{t}B_{V} = I_{n \times n}$ $\begin{pmatrix} \underline{v}_{1}^{t} \\ \vdots \\ \underline{v}_{\underline{n}}^{t} \end{pmatrix} \begin{pmatrix} \underline{v}_{1} & \cdots & \underline{v}_{\underline{n}} \end{pmatrix} = \begin{pmatrix} \langle \underline{v}_{1}, \underline{v}_{1} \rangle & \cdots & \langle \underline{v}_{1}, \underline{v}_{\underline{n}} \rangle \\ \vdots & \ddots & \vdots \\ \langle \underline{v}_{\underline{n}}, \underline{v}_{\underline{1}} \rangle & \cdots & \langle \underline{v}_{\underline{n}}, \underline{v}_{\underline{n}} \rangle \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$
- So $P_V \underline{x} = B_V (B_V^t \underline{x}) = \text{Recon}(\text{Coeffs of } \underline{x} \text{ "in } V \text{ dir'n"})$
- For "orthogonal complement", V^{\perp} , $\underline{x} = P_V \underline{x} + P_{V^{\perp}} \underline{x}$ and $\|\underline{x}\|^2 = \|P_V \underline{x}\|^2 + \|P_{V^{\perp}} \underline{x}\|^2$
- Parseval inequality: $\|\underline{x}\|^2 \le \|P_V \underline{x}\|^2 = \sum_{i=1}^n \langle \underline{x}, \underline{v}_i \rangle^2 = \sum_{i=1}^n a_i^2 = \|\underline{a}\|^2$

Eigenvalue Decomposition:

For a (symmetric) square matrix $X_{d \times d}$

Find a diagonal matrix $D = \int_{-\infty}^{-\infty} D$

$$egin{pmatrix} \lambda_1 & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \lambda_d \end{pmatrix}$$

And an orthonormal matrix $B_{d \times d}$ (i.e. $B^t \cdot B = B \cdot B^t = I_{d \times d}$)

So that: $X \cdot B = B \cdot D$, i.e. $X = B \cdot D \cdot B^{t}$

Intuition behind Eigenvalue Decomposition:

For X a "linear transformation" (via matrix multiplication)

-
$$X \cdot \underline{v} = (B \cdot D \cdot B^t) \cdot \underline{v} = B \cdot (D \cdot (B^t \cdot \underline{v}))$$

- First "rotate"
- Second "rescale coordinate axes (by λ s)
- Third "invert rotation"

For X a basis matrix of \Re^d , B gives "rotation to make parallel to coordinate axes"

Computation of Eigenvalue Decomposition:

- Details too complex to spend time here
- A "primitive" of good software packages
- Eigenvalues $\lambda_1, ..., \lambda_d$ are unique
- Columns of $B = (v_1 \cdots v_d)$ are called "eigenvectors"
- Eigenvectors are " λ -stretched" by X: $X \cdot \underline{v_i} = \lambda_i \cdot \underline{v_i}$

Eigenvalue Decomposition solves matrix problems:

- Inversion:
$$X^{-1} = B \cdot \begin{pmatrix} \lambda_1^{-1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_d^{-1} \end{pmatrix} \cdot B^t$$

- Square Root:
$$X^{1/2} = B \cdot \begin{pmatrix} \lambda_1^{1/2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_d^{1/2} \end{pmatrix} \cdot B^t$$

- $rank(X) = \# \{\lambda_i : \lambda_i \neq 0\}$

- X is positive (semi) definite \Leftrightarrow all $\lambda_i > (\geq)0$

Multivariate Probability Review

Given a "random vector", $\underline{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$,

A "center" of the dist'n is the mean vector, $\underline{\mu} = E \underline{X} = \begin{pmatrix} EX_1 \\ \vdots \\ EX_n \end{pmatrix}$

A "measure of spread" is the covariance matrix: $\Sigma = \operatorname{cov}(X) = \begin{pmatrix} \operatorname{var}(X_1) & \cdots & \operatorname{cov}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(X_n, X_1) & \cdots & \operatorname{var}(X_n) \end{pmatrix}$

Multivariate Probability Review, (cont.)

Covariance matrix:

- Nonegative Definite (since all variances are ≥ 0)
- Provides "elliptical summary of distribution"
- Calculated via "outer product":

$$\Sigma = \operatorname{cov}(X) = E \begin{pmatrix} (X_1 - \mu_1)(X_1 - \mu_1) & \cdots & (X_1 - \mu_1)(X_n - \mu_n) \\ \vdots & \ddots & \vdots \\ (X_n - \mu_n)(X_1 - \mu_1) & \cdots & (X_n - \mu_n)(X_n - \mu_n) \end{pmatrix} = \Sigma = E (\underline{X} - \underline{\mu}) (\underline{X} - \underline{\mu})^t$$

Multivariate Probability Review, (cont.)

Empirical versions:

Given a "random sample" $X_1, ..., X_n$,

Estimate the "theoretical mean" μ , with the "sample mean":

$$\underline{\hat{\mu}} = \underline{\overline{X}} = \begin{pmatrix} \overline{X}_1 \\ \vdots \\ \overline{X}_d \end{pmatrix} = \frac{1}{n} \sum_{i=1}^n \underline{X}_i$$