
Course Overview

Finished heuristic look at:

1. Understanding population structure – PCA
- Toy examples
- Cornea data - robustness

2. Discrimination (Classification)
- Fisher Linear Discrimination
- Corpus Callosum Data – Orthogonal subspace projection

Now take careful look at mathematics - numerics



Linear Algebra Review

Vector Space:

- set of “vectors”,  x,
- and “scalars” (coefficients),  a

- “closed” under “linear combination”  (∑
i

ii xa   in space)
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Linear Algebra Review, (cont.)

Subspace:

- subset that is again a vector space

- i.e.  closed under linear combination

- e.g.  lines through the origin

- e.g. planes through the origin

- e.g. subspace “generated by” a set of vectors
(all linear combos of them  = containing hyperplane)



Linear Algebra Review, (cont.)

Basis of subspace:  set of vectors that:

- “span”,  i.e. everything is a linear combo of them

- are “linearly independent”,  i.e. linear combo is unique

- e.g.  dℜ   “unit vector basis”   
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- e.g.      
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Linear Algebra Review, (cont.)

Basis Matrix, of subspace of  dℜ

Given a basis,  nvv ,...,1 ,  create “matrix of columns”:
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Linear Algebra Review, (cont.)

Dimension of subspace  (a notion of “size”):

- number of elements in a basis (unique)

- ( ) dd =ℜdim    (use basis above)

- e.g.    dim of a line is  1

- e.g.    dim of a plane is  2

- dimension is “degrees of freedom”



Linear Algebra Review, (cont.)

Norm of a vector:

- in  dℜ ,    ( ) 2/1
2/1
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- Idea: “length” of the vector

- But recall strange properties for high d ,
e.g.   “length of diagonal of unit cube” = d

- “length normalized vector”:    
x

x

(has length one, this is on surface of unit sphere)

- get “distance” as:   ( ) ( ) ( )yxyxyxyxd t −−=−=,



Linear Algebra Review, (cont.)

Inner (dot, scalar) product:

- for vectors x and y ,   yxyxyx t
d
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- related to norm, via  xxxxx t== ,

- measures “angle between x and y ” as:
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- key to “orthogonality”, i.e. “perpendicularity”:
yx⊥    if and only if  0, =yx



Linear Algebra Review, (cont.)

Orthonormal basis nvv ,...,1 :

- All ortho to each other,  i.e.  0, ' =ii vv ,    for   'ii ≠

- All have length 1,  i.e.  1, =ii vv ,    for   ni ,...,1=

- “Spectral Representation”:  ∑
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- Matrix notation:  aBx =     where   Bxa tt =     i.e.  xBa t=

- a   is called “transform (e.g. Fourier, wavelet) of  x”



Linear Algebra Review, (cont.)

Parseval identity,  for  x  in subsp. gen’d by o. n. basis nvv ,...,1 :
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- Pythagorean theorem

- “Decomposition of Energy”

- ANOVA - sums of squares

- Transform, a , has same length as  x,  i.e. “rotation in dℜ ”



Linear Algebra Review, (cont.)

Projection of a vector  x  onto a subspace  V:

- Idea:  member of  V   that is closest to  x   (i.e. “approx’n”)

- Find  VxPV ∈   that solves:    vx
Vv

−
∈

min     (“least squares”)

- For inner product (Hilbert) space:    exists and is unique

- General solution in dℜ :  for basis matrix  VB
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- So “proj’n operator” is “matrix mult’n”: ( ) t
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t
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(thus projection is another linear operation)
(note same operation underlies “least squares”)



Linear Algebra Review, (cont.)

Projection using orthonormal basis  nvv ,...,1 :

- Basis matrix is “orthonormal”:    nnV
t
V IBB ×=
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- So  ( )xBBxP t
VVV =    =   Recon(Coeffs of x “in V  dir’n”)

- For “orthogonal complement”,   ⊥V ,
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Linear Algebra Review, (cont.)

Eigenvalue Decomposition:

For a (symmetric) square matrix    ddX ×

Find a diagonal matrix    
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And an orthonormal matrix    ddB ×     (i.e.  dd
tt IBBBB ×=⋅=⋅ )

So that:    DBBX ⋅=⋅ ,    i.e.  tBDBX ⋅⋅=



Linear Algebra Review, (cont.)

Intuition behind Eigenvalue Decomposition:

For X a “linear transformation”  (via matrix multiplication)

- ( ) ( )( )vBDBvBDBvX tt ⋅⋅⋅=⋅⋅⋅=⋅

- First “rotate”

- Second “rescale coordinate axes (by λ s)

- Third “invert rotation”

For  X   a basis matrix of dℜ ,  B  gives “rotation to make parallel
to coordinate axes”



Linear Algebra Review, (cont.)

Computation of Eigenvalue Decomposition:

- Details too complex to spend time here

- A “primitive” of good software packages

- Eigenvalues  dλλ ,...,1   are unique

- Columns of  ( )dvvB "1=   are called “eigenvectors”

- Eigenvectors are “λ -stretched” by X :
iii vvX ⋅=⋅ λ



Linear Algebra Review, (cont.)

Eigenvalue Decomposition solves matrix problems:

- Inversion:    t
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- X   is positive (semi) definite  ⇔    all  0)(≥>iλ



Multivariate Probability Review

Given a “random vector”,    
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A “measure of spread” is the covariance matrix:
( ) ( )

( ) ( ) 














==Σ

nn

n

XXX

XXX

X

var,cov

,covvar

)cov(

1

11

"

!#!

"



Multivariate Probability Review, (cont.)

Covariance matrix:

- Nonegative Definite (since all variances are ≥ 0)

- Provides “elliptical summary of distribution”

- Calculated via “outer product”:
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Multivariate Probability Review, (cont.)

Empirical versions:

Given a “random sample”  nXX ,...,1 ,

Estimate the “theoretical mean” µ , with the “sample mean”:
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