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 Biological Background  
 
 
 
 

Refer to Jing Qiu’s talk. 
 
 
Cell Cycle 

  
• Includes G1, S, G2, M, M/G1 five phases in literature. 

 
 
 

Cell–cycle–specific Gene 
 
• Gene expresses periodically over cell cycle. 

 
• Intuitively, call it “periodic gene”. 

 
 



Biological Background (cont.) 
 
 
 

Yeast Genome 
 
 

• Include over 6,000 genes  
 

• By 1998, 104 “known” periodic genes 
 

• Spellman (1998) 
 

- Identified 800 periodic genes  
 

- 94 “known” genes were included 
 

- Considered as “standard” 
 
 

• Main data source for studying periodic genes



 
Biological Background (cont.) 

 
 
 

Gene expression level 
 
 

• Measured by cDNA-microarray experiment. 
 
• Expression ratio between test gene and reference gene. 

 
 
 
Figure: yeast genome-wide gene expressions over 2 cell cycles  
 
 

•  Data source: 
genome−www.Stanford.edu/cellcycle. 

 
• Referenced by over 293 published papers so far.  



Biological Background (cont.) 
 
 
    Figure: yeast genome-wide gene expressions over 2 cell cycles 
 
 

• Each curve represents the time series for each gene over 18 
sampling points 

 
• Sampling at 7-min intervals for 120 minutes.  
 
• The time interval covers approximately 2 cell cycles 

 
• 4,489 time series in the population 

 
x−axis: sampling points over time. 

 
y−axis: log2(gene expression level)  

      



 
Biological Background (cont.) 

 
 

 

Periodic gene classification 
 

• Peak expression at a specific phase during a cell cycle. 
 
• Have five groups (G1, S, G2, M, M/G1) 

 
e.g., G1 group peak expression at G1 phase 

 
 
 
Figure: yeast cell genome-wide periodic gene classification (200 genes)



Biological Questions 
 
 

 
 
 
 

• Identification of  Periodic Genes 
 
 
Figure: yeast genome-wide periodic genes identification 

 
 
 
 
• Classification of Periodic Genes 

 
 

Figure:  
       Yeast cell genome-wide periodic gene classification (200 genes) 
 



Data Description 
 
 
 
 
 

• Yeast cells synchronized by α-factor arrest 
 

 
 

• Raw data 
 
 

        
































nd

n

d x

x

x

x

,

,1

1,

1,1

,, MLM     Where      489,4,18 == nd

 
 

jix ,  : log2 (expression level) for jth gene at ith sampling point.  



Our Approach 
 
 
 
 

• Project Goals: 
 

Goal 1: Understand “population structure”.  
 

Goal 2: Explore identification and classification for periodic genes. 
 
 
• This is an exploratory analysis 

 
 
 

• Fit in the framework of “Functional Data Analysis”. 
 

Object Space ↔ Feature Space  
   (curves ↔ data vectors) 

 



Our Approach (cont.) 
 
 

Object Space  Feature Space (i.e., curves  data vectors) 
 

• Approach to Goal 1: 
 

- PCA for data  
 

- PCA for projections onto an appropriate Fourier subspace 
 

• Approach to Goal 2: 
 

Project data onto a 2-dim Fourier subspace 
 

- Identify periodic genes 
  

    - Classify periodic genes  



 
Our Approach (cont.) 

 
 
 
Feature Space  Object Space (i.e., data vectors  curves) 

 
 

• Visualization of “population structures”    
 
 
 
Figure: yeast cell genome-wide periodic gene classification (200 genes) 



Functional Data Analysis 
  
 
 
 
 

Object Space View: 
 
 

• Overlay plots of curves 
 
 
 

    Recall: 
 
    Figure: yeast genome-wide gene expressions over 2 cell cycles 

 
 
 

 
 



Functional Data Analysis (Cont.) 
 
 

Feature Space Data Representation 
 

• Data vectors 
 

 
Recall: 
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     : logjix , 2 (expression level) for jth gene at ith sampling point. 
 
 



Functional Data Analysis (Cont.) 
 
 

Feature Space Data Representation  
 
 

Center data vector over time  centered data 
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data matrix = 
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Understand Population Structure 
 
 

1.  PCA for data 
 
 

Curve View Graphic: a nice approach to view PCA 
 
Figure: spellman_alpha_complete_pca.eps 

 
 

• No dominant eigenvalue, as shown clearly in the power plot. 
 
• 1st PC only explains about 25% of total energy. 

 
• 2nd PC only explains about 16% of total energy. 

 
• Periodic direction is not the PC directions, but might be a rotation 

of the PC directions. 



Understand Population Structure (Cont.) 
 

 
 

2. PCA for projections onto a Fourier subspace 
 
 

Fourier basis B = {sin(iωt), cos(iωt), i = 2, 4, 6, 8, t = 1, …, 18}18×8 

 

Where   ω = 
T
π2

,   T  = 18 

 
Reasons:  

 
• The time interval covers two cell cycles. 

 
• The period of periodic genes is consistent with that of a cell 

cycle. 
 

• 18 (equally spaced) sampling points available. 
 



Understand Population Structure (Cont.) 
 
 
 

 

2.  PCA for projections onto a Fourier subspace 
 
 

Projection matrix = B(BTB)-1BT(data matrix) 
     18 × 4,489             18 × 4,489 

 
 

Perform PCA on the projected data 
 

 
Figure: spellman_alpha_complete_proj_pca.eps 



Understand Population Structure (Cont.) 
 
 
 

 

2. PCA for projections onto a Fourier subspace 
 
 

Figure: spellman_alpha_complete_proj_pca.eps 
 
 

• The first two PCs are dominant (explain about 65% of total energy) 
 

• 1st PC explains 37.31% of total energy. 
 

• 1st PC direction similar to a sine wave over two periods. 
 

• 2nd PC explains 27.54% of total energy. 
 

• 2nd PC direction similar to a cosine wave over two periods. 



Understand Population Structure (Cont.) 
 
 
 

 

2. PCA for projections onto a Fourier subspace 
 
 

• Projections onto the 2-dim Fourier subspace spanned by {sin(2ωt), 
cos(2ωt)} captures the main feature of the periodicity in the data.  

 

 
• Time shift issue is captured in the subspace: 

 
Reason: sin(2ωt + φ) = cos(φ)sin(2ωt) + sin(φ)cos(2ωt) 
 
       = a1sin(2ωt) + a2cos(2ωt),    

 
where a1 and a2 are constants 

 
  similar to cos(2ωt + φ)  



 Identification and classification for periodic genes 
 

 
 

1.  Identification of periodic genes 
 
 

Recall: Subspace spanned by {sin(2ωt), cos(2ωt)} captures  
periodicity.  

 
Idea: Periodic genes have large distance to the origin in the  

   subspace.  
 
 

Q: Which distance is considered as large? 
    

 
 



Identification and classification for periodic genes (cont.) 
 
 
1. Identification of periodic genes 
 
 

Q: Which distance is considered as large? 
 
 

We consider a range of thresholding criteria: 
 

• Rank all genes in decreasing order according to the distance to 
the origin in the subspace. 

 
• Choose a range of thresholding values:  

 
First 200, 400, 600, 800, and 1,000 genes 

 
 

Figure: Periodic gene identification scatterplots 



Identification and classification for periodic genes (cont.) 
 
 

Figure: Periodic gene identification scatterplots  
 

- G1 group is in red 
 

- S group is in green 
 

- G2 group is in blue 
 

- M group is in yellow 
 

- M/G1 group is in cyan 
 

- Non-periodic genes are in black 
 

- Purple lines are boundaries (explained later)



Identification and classification for periodic genes (Cont.) 
 
 
 

2.  Classification of periodic genes 
 
 

 Idea: set the boundaries for the angles in the 2-dim subspace. 
 
 

Q: Do we know the timing for G1, S, G2, M, M/G1 phases? 
 

A: No.  
 
 

Solution:  
 

- Initial guess from previous result: Spellman’s classification. 
 

- Modification using Sizer plot of angles and scatterplot in the  
      subspace. 



 
Identification and classification for periodic genes (Cont.) 

 
 
2. Classification of periodic genes 
 

I. Results by Spellman (1998): 
 

Figure: Spellman’s classification 
 

 
II. Modification by SiZer plot of first 200 gene angles: 

 

 
Figure: SiZer plot of first 200 gene angles 
 

 
III. Modification by scatterplot in the subspace  

 
Figure: periodic genes scatterplot by sizer (200, 400 genes) 



Identification and classification for periodic genes (Cont.) 
 
 
 
 

2. Classification of periodic genes 
 
 

Our set of angle boundaries for the five periodic gene groups: 
 
 M/G1 phase: [0.83, 2.04]  

G1 phase:   [2.04, 3.74]   
  
  

S phase:   [3.74, 4.58]   
G2 phase:   [4.58, 5.72]   
M phase:   [5.72, 0.83]   

    
Note:  

 
• This selection came from previous “standard” results and eyeball 

examination of the Sizer plot and scatterplot. 
 

• It may not be statistically robust. 



Identification and classification for periodic genes (Cont.) 
 

 
2. Classification of periodic genes 
 

Figure: compare classification results for 2 thresholds (200, 800) 
 
 
• Sizer plot for first 200 genes shows 2 significant bumps, G1 and S 

groups. 
 

• The Sizer plot for the first 800 genes shows 2 significant bumps: G1 
and G2 groups. 

 
• Suggests that S group has more highly periodic genes, and G2 

group has more low periodic genes. 
 

• Might have biological interpretation.



 Identification and classification for periodic genes (cont.) 
 
 
 
 

2. Classification of periodic genes 
 
 

 Kernel density estimator of periodic genes for different thresholds: 
 
 

Figure: Kde plot of periodic genes for 2 thresholds (200, 800) 
 
 

• Kde plot of first 200 genes: four bumps for G1, S, G2, and M/G1 
groups. 

 
• Kde plot for first 800 genes: G2 group became most significant. 

 
• G1 group is significant for each threshold. 

 
 



Identification and classification for periodic genes (cont.) 
 
 
2. Classification of periodic genes 

 
   Figure: Compare percentage of genes in each group for different  

   thresholds 
 
 

• G1 group is the largest group for each threshold. 
 
• S and M groups are the small groups for each threshold. 

 
• As the threshold increases, percentage of periodic genes 

 
-  decreases in G1 group  
-  increases in G2 group  
-  relatively stable in S, M, and M/G1 groups  

 
There might exist some meaningful biological interpretation. 



Visualization of “population structures” 
 

 
 

In object space, compare five groups of periodic genes for different 
thresholds: 
 

• Plot periodic gene curves for each threshold in each group. 
 
 
Figure:  
 

Plot of periodic gene curves for each threshold in G1 group 
 



 

Conclusions 
 

 
 
 

• Fourier subspace spanned by {sin(2ωt), cos(2ωt)} captures 
periodicity. 

 
 
•  G1 and S groups has more highly periodic genes 
 
 
•  G2 group has more low periodic genes 

 
 

•  Periodicity in M, and M/G1 groups is relatively uniform-  
           distributed. 
 
 

 



  

Possible Future Ideas  (cont.) 
 

 
 
I. Apply our approach to different microarray experiments 
 

Current microarray experiments: 
 

 Sampling
Interval 

 Total Experiment 
Time  

(minutes) (minutes) 

Cell Cycle 
Time 
(minutes) 

Number of 
Sampling 
Points 

Alpha-factor a  7 120   66 18
CDC 15 a     10 290 110 24
CDC28 b     10 160 85 17

Elutriation a     30 390 390 14
 

 

a: data is from Spellman, et al  
 
b: data is from Cho, et al  



Possible Future Ideas (cont.) 
 

 
 
 

II. Patterns should be experimentally reproducible and statistically 
     significant. 
 
 

Q: How reproducible are the patterns in current microarray  
  experiments?  

 
 
 

“Genes that are periodic under one synchronization procedure are  
 
not necessarily periodic under a different synchronization  
 
procedure.” 

 
- Shedden, Kerby and Cooper, Stephen (2002) 
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