OR 779 Functional Data Analysis Course Project

Analyzing Microarray Time–course Genome–wide Data

Presented by

Xin Zhao

April 29, 2002 Cornell University

Overview

1. Introduction

- Biological Background
- Biological Questions
- Data Description
- Our Approach
- 2. Data Analysis
 - Functional Data Analysis Approach
- 3. Conclusions
- 4. Possible Future Ideas
- 5. Acknowledgements
- 6.References

Biological Background

Refer to Jing Qiu's talk.

Cell Cycle

• Includes G1, S, G2, M, M/G1 five phases in literature.

Cell-cycle-specific Gene

- Gene expresses periodically over cell cycle.
- Intuitively, call it "periodic gene".

Yeast Genome

- Include over 6,000 genes
- By 1998, 104 "known" periodic genes
- Spellman (1998)
 - Identified 800 periodic genes
 - 94 "known" genes were included
 - Considered as "standard"
- Main data source for studying periodic genes

Gene expression level

- Measured by cDNA-microarray experiment.
- Expression ratio between test gene and reference gene.

Figure: yeast genome-wide gene expressions over 2 cell cycles

• Data source:

genome-www.Stanford.edu/cellcycle.

• Referenced by over 293 published papers so far.

Figure: yeast genome-wide gene expressions over 2 cell cycles

- Each curve represents the time series for each gene over 18 sampling points
- Sampling at 7-min intervals for 120 minutes.
- The time interval covers approximately 2 cell cycles
- 4,489 time series in the population

x-axis: sampling points over time.

y–axis: log₂(gene expression level)

Periodic gene classification

- Peak expression at a specific phase during a cell cycle.
- Have five groups (G1, S, G2, M, M/G1)

e.g., G1 group peak expression at G1 phase

Figure: yeast cell genome-wide periodic gene classification (200 genes)

Biological Questions

• Identification of Periodic Genes

Figure: yeast genome-wide periodic genes identification

• Classification of Periodic Genes

Figure:

Yeast cell genome-wide periodic gene classification (200 genes)

Data Description

- Yeast cells synchronized by α -factor arrest
- Raw data

$$\begin{pmatrix} x_{1,1} \\ \vdots \\ x_{d,1} \end{pmatrix}, \cdots, \begin{pmatrix} x_{1,n} \\ \vdots \\ x_{d,n} \end{pmatrix}$$
 Where $d = 18$, $n = 4,489$

 $x_{i,j}$: log₂ (expression level) for jth gene at ith sampling point.

Our Approach

• Project Goals:

Goal 1: Understand "population structure".

Goal 2: Explore identification and classification for periodic genes.

- This is an exploratory analysis
- Fit in the framework of "Functional Data Analysis".

Object Space \leftrightarrow Feature Space (curves \leftrightarrow data vectors)

Our Approach (cont.)

Object Space \rightarrow Feature Space (i.e., curves \rightarrow data vectors)

- Approach to Goal 1:
 - PCA for data
 - PCA for projections onto an appropriate Fourier subspace
- Approach to Goal 2:

Project data onto a 2-dim Fourier subspace

- Identify periodic genes
- Classify periodic genes

Our Approach (cont.)

Feature Space \rightarrow Object Space (i.e., data vectors \rightarrow curves)

• Visualization of "population structures"

Figure: yeast cell genome-wide periodic gene classification (200 genes)

Functional Data Analysis

Object Space View:

• Overlay plots of curves

Recall:

Figure: yeast genome-wide gene expressions over 2 cell cycles

Functional Data Analysis (Cont.)

Feature Space Data Representation

• Data vectors

Recall:

$$\begin{pmatrix} x_{1,1} \\ \vdots \\ x_{d,1} \end{pmatrix}, \cdots, \begin{pmatrix} x_{1,n} \\ \vdots \\ x_{d,n} \end{pmatrix}$$
 Where $d = 18$, $n = 4,489$

 $x_{i,j}$: log₂ (expression level) for jth gene at ith sampling point.

Functional Data Analysis (Cont.)

Feature Space Data Representation

Center data vector over time \rightarrow centered data

$$\begin{pmatrix} x_{1,1} - \overline{x}_1 \\ \vdots \\ x_{d,1} - \overline{x}_1 \end{pmatrix}, \dots, \begin{pmatrix} x_{1,n} - \overline{x}_n \\ \vdots \\ x_{d,n} - \overline{x}_n \end{pmatrix} \qquad \overline{x}_j = \frac{1}{d} \sum_{i=1}^d x_{i,j}$$

data matrix =
$$\begin{pmatrix} x_{1,1} - \overline{x}_1 & \cdots & x_{1,n} - \overline{x}_n \\ \vdots & \ddots & \vdots \\ x_{d,1} - \overline{x}_1 & \cdots & x_{d,n} - \overline{x}_n \end{pmatrix}$$
 18×4,489

Understand Population Structure

1. PCA for data

Curve View Graphic: a nice approach to view PCA <u>Figure</u>: spellman_alpha_complete_pca.eps

- No dominant eigenvalue, as shown clearly in the power plot.
- 1st PC only explains about 25% of total energy.
- 2nd PC only explains about 16% of total energy.
- Periodic direction is not the PC directions, but might be a rotation of the PC directions.

2.PCA for projections onto a Fourier subspace

Fourier basis B = {sin(i ω t), cos(i ω t), i = 2, 4, 6, 8, t = 1, ..., 18}_{18×8}

Where
$$\omega = \frac{2\pi}{T}$$
, $T = 18$

Reasons:

- The time interval covers two cell cycles.
- The period of periodic genes is consistent with that of a cell cycle.
- 18 (equally spaced) sampling points available.

2. PCA for projections onto a Fourier subspace

Projection matrix = $B(B^TB)^{-1}B^T$ (data matrix) 18 × 4,489 18 × 4,489

Perform PCA on the projected data

Figure: spellman_alpha_complete_proj_pca.eps

2. PCA for projections onto a Fourier subspace

Figure: spellman_alpha_complete_proj_pca.eps

- The first two PCs are dominant (explain about 65% of total energy)
- 1st PC explains 37.31% of total energy.
- 1st PC direction similar to a sine wave over two periods.
- 2nd PC explains 27.54% of total energy.
- 2nd PC direction similar to a cosine wave over two periods.

- 2. PCA for projections onto a Fourier subspace
- Projections onto the 2-dim Fourier subspace spanned by {sin(2ωt), cos(2ωt)} captures the main feature of the periodicity in the data.
- Time shift issue is captured in the subspace:

Reason: $sin(2\omega t + \phi) = cos(\phi)sin(2\omega t) + sin(\phi)cos(2\omega t)$

 $= a_1 \sin(2\omega t) + a_2 \cos(2\omega t),$

where a_1 and a_2 are constants

similar to $\cos(2\omega t + \phi)$

- 1. Identification of periodic genes
 - Recall: Subspace spanned by {sin(2ωt), cos(2ωt)} captures periodicity.
 - Idea: Periodic genes have large distance to the origin in the subspace.
 - Q: Which distance is considered as large?

1. Identification of periodic genes

Q: Which distance is considered as large?

We consider a range of thresholding criteria:

- Rank all genes in decreasing order according to the distance to the origin in the subspace.
- Choose a range of thresholding values:

First 200, 400, 600, 800, and 1,000 genes

Figure: Periodic gene identification scatterplots

Figure: Periodic gene identification scatterplots

- G1 group is in red
- S group is in green
- G2 group is in blue
- M group is in yellow
- M/G1 group is in cyan
- Non-periodic genes are in black
- Purple lines are boundaries (explained later)

2. Classification of periodic genes

Idea: set the boundaries for the angles in the 2-dim subspace.

Q: Do we know the timing for G1, S, G2, M, M/G1 phases? A: No.

Solution:

- Initial guess from previous result: Spellman's classification.
- Modification using Sizer plot of angles and scatterplot in the subspace.

- 2. Classification of periodic genes
 - I. Results by Spellman (1998):

Figure: Spellman's classification

II. Modification by SiZer plot of first 200 gene angles:

Figure: SiZer plot of first 200 gene angles

III. Modification by scatterplot in the subspace

Figure: periodic genes scatterplot by sizer (200, 400 genes)

2. Classification of periodic genes

Our set of angle boundaries for the five periodic gene groups:

M/G1 phase:	[0.83, 2.04]
G1 phase:	[2.04, 3.74]
S phase:	[3.74, 4.58]
G2 phase:	[4.58, 5.72]
M phase:	[5.72, 0.83]

Note:

- This selection came from previous "standard" results and eyeball examination of the Sizer plot and scatterplot.
- It may not be statistically robust.

2. Classification of periodic genes

Figure: compare classification results for 2 thresholds (200, 800)

- Sizer plot for first 200 genes shows 2 significant bumps, G1 and S groups.
- The Sizer plot for the first 800 genes shows 2 significant bumps: G1 and G2 groups.
- Suggests that S group has more <u>highly</u> periodic genes, and G2 group has more <u>low</u> periodic genes.
- Might have biological interpretation.

2. Classification of periodic genes

Kernel density estimator of periodic genes for different thresholds:

Figure: Kde plot of periodic genes for 2 thresholds (200, 800)

- Kde plot of first 200 genes: four bumps for G1, S, G2, and M/G1 groups.
- Kde plot for first 800 genes: G2 group became most significant.
- G1 group is significant for each threshold.

2. Classification of periodic genes

Figure: Compare percentage of genes in each group for different thresholds

- G1 group is the largest group for each threshold.
- S and M groups are the small groups for each threshold.
- As the threshold increases, percentage of periodic genes
 - *decreases* in G1 group
 - *increases* in G2 group
 - relatively stable in S, M, and M/G1 groups

There might exist some meaningful biological interpretation.

Visualization of "population structures"

In object space, compare five groups of periodic genes for different thresholds:

• Plot periodic gene curves for each threshold in each group.

Figure:

Plot of periodic gene curves for each threshold in G1 group

Conclusions

- Fourier subspace spanned by {sin(2ωt), cos(2ωt)} captures periodicity.
- G1 and S groups has more <u>highly</u> periodic genes
- G2 group has more <u>low</u> periodic genes
- Periodicity in M, and M/G1 groups is relatively uniformdistributed.

Possible Future Ideas (cont.)

I. Apply our approach to different microarray experiments

Current microarray experiments:

	Sampling	Total Experiment	Cell Cycle	Number of
	Interval	Time	Time	Sampling
	(minutes)	(minutes)	(minutes)	Points
Alpha-factor ^a	7	120	66	18
CDC 15 ^a	10	290	110	24
CDC28 ^b	10	160	85	17
Elutriation ^a	30	390	390	14

- ^a: data is from Spellman, et al
- ^b: data is from Cho, et al

Possible Future Ideas (cont.)

- II. Patterns should be experimentally reproducible and statistically significant.
 - Q: How reproducible are the patterns in current microarray experiments?

"Genes that are periodic under one synchronization procedure are not necessarily periodic under a different synchronization procedure."

- Shedden, Kerby and Cooper, Stephen (2002)

Acknowledgements

- My deep appreciation to Prof. Steve Marron, under whose guidance this project was conducted.
- Thank Prof. Martin Wells for his initiation on the project.

References

Some publications in this area:

Clustering Method:

Eisen, M.B, Spellman, P.T., Brown, P.O., and Botstein (1998), "Cluster Analysis and display of genome-wide expression patterns", *Proc. Natl. Acad. Sci. USA*, 95, 14863-14868.

Whitfield, M.L., Sherlock, G, Saldanha, A., Murray, JI, Ball, C.A., Alexande K.E., Matese J.C., Perou, C.M., Hurt M.M., Brown, P.O., and Botstein, D. (2002), "Identification of genes periodically expressed in the human cell cycle and their expression in tumors", *Mol. Biol. Cell*, 10, ???-???

Corresponse Analysis:

Fellenberg, K., Hauser, N.C., Brors, B., Neutzner, A, Hoheisel, J.D., and Vingron, M. (2001), "Correspondence analysis applied to microarray data", *Proc. Natl. Acad. Sci. USA*, 98(19), 10781-10786.

Singular Value Decomposition Method:

Holter, N., Mitra, M., Maritan, A., Cieplak, M., Banavar, JR, and Fedoroff, NV. (2000), "Fundamental patters underlying gene expression profiles: simplicity from complexity", *Proc. Natl. Acad. Sci. USA*, 97, 8409-8414.

Alter, O., Brown, P.O., and Botstein, D. (2000) "Singular value decomposition for genome-wide expression data processing and modeling", *Proc. Natl. Acad. Sci. USA*, 97(18), 10101-10106

Others:

Spellman, P. T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botsein, D. and Futcher, B. (1998), "Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast *Saccharomyces cerevisiae* by Microarray Hybridization", *Molecular Biology of the Cell*, 9, 3273–3297.

Cho R.J., et al. (1998), "A Genome-wide Transcriptional Analysis of the Mitotic Cell Cycle", *Molecular Cell*, 2, 65-73

Cooper, S. "Cell Cycle Analysis and Microarrays", *Trends in Genetics*, accepted for publication.

Shedden, K. and Cooper, S. (2002), "Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization", PNAS, 99(7), 4379-4384