Singular value decomposition for genome-wide expression data processing and modeling

Presented by Jing Qiu

April 23, 2002

Outline

- Biological Background
- Mathematical Framework:Singular Value Decomposition
 - SVD calculation
 - Pattern Inference
 - Data normalization
 - Data Sorting
- Biological Data Analysis I: Elutriation-synchronized cell cycle.

Biological Background–Cell cycle regulation

- Cell cycle: the program for cell growth and division
- Four broad phases: G_1 (and G_0), S, G_2 , and M
- Cell cycle diagram
 - G_1 (cell growth and protein for DNA synthesis)
 - S (DNA replication, two daughter cell)
 - G_2 (cell growth and protein synthesis)
 - M (split apart)
- Application: cancer(uncontrolled cell growth and proliferation)

Biological Background–Microarray Experiment

- Diagram of Central Dogma of Molecule Biology
- 100,000 genes in mammalian genome
- each cell express 15,000 of these genes
- each gene is expressed at a different level
- cell cycle regulated genes have different expression levels across the cycle period
- Microarrays:Massive parallel analysis of gene expression
- The process diagram

Mathematical Framework:Notation

- \hat{e} denotes a matrix;
- |v
 angle denotes a column vector
- $\langle u |$ denotes a row vector
- $\hat{e}|v\rangle$, $\langle u|\hat{e}, \langle u|v\rangle$ all denote inner products
- $|v\rangle\langle u|$ denotes outer product.
- $|a_m\rangle\equiv \widehat{e}|m
 angle$ —the mth column of \widehat{e}
- $\langle g_n | \equiv \langle n | \hat{e}$ -the *n*th row of the matrix \hat{e} .

Mathematical Framework: Data of interest

- Data of interest: \hat{e} (dim=N × M)(See Fig 13a)
- N rows–N genes of a model organism $\langle g_n | \equiv \langle n | \hat{e},$ —the relative expression of the *n*th gene across different arrays.
- M columns–M different samples(arrays) $|a_m\rangle \equiv \hat{e}|m\rangle$,—the genome-wide relative expression measured by the *m*th array.

Mathematical Framework:SVD of the data

•
$$\hat{e} = \hat{u}_{N \times N} \hat{\varepsilon}_{N \times M} \hat{v}_{M \times M}^T = \hat{u}_{N \times M}^* \hat{\varepsilon}_{M \times M}^* \hat{v}_{M \times M}^T$$

where $\hat{u}_{N \times N} = [\hat{u}_{N \times M}^*, \hat{h}_{(N-M) \times M}],$

 $\widehat{\varepsilon}_{N \times M} = [\widehat{\varepsilon}_{M \times M}^*, \mathbf{0}_{(N-M) \times M}]^T$

•
$$\hat{\varepsilon}^* = \begin{bmatrix} \varepsilon_1 & & \\ & \ddots & \\ & & \varepsilon_M \end{bmatrix}$$
, $\varepsilon_1 \ge \varepsilon_2 \ge \dots \ge \varepsilon_L \ge 0$.

- ε_l -the eigenexpression of the *l*th eigengene in the *l*th eigenarray.

- \hat{u} —the N-genes \times L-eigenarray basis sets
 - $|\alpha_l\rangle$, the genome-wide expression in the lth eigenarray.

- \hat{v}^T —M-eigengenes × M-arrays basis sets
 - $\langle \gamma_l |$,the lth eigengene across the different arrays
- The "fraction of eigenexpression":

$$p_l = \varepsilon_l^2 / \sum_{k=1}^M \varepsilon_k^2$$

• "Shannon entropy "

$$0 \le d = \frac{-1}{\log(M)} \sum_{k=1}^{M} p_k \log(p_k) \le 1$$

- measure the complexity of the dataset
- d = 0 captured by a single eigengene (eigenarray)
- d = 1-all eigengenes are equally expressed
- Figure 13 and Fig14

Mathematical Framework: SVD calculation

- $\hat{a} = \hat{e}^T \hat{e} = \hat{v} \hat{\varepsilon}^2 \hat{v}^T$
- diagonalizing $\hat{a}(\dim = M \times M; M \ll N)$ to get \hat{v} and $\hat{\varepsilon}$
- $\hat{u} = \hat{e}\hat{v}\hat{\varepsilon}^{-1}$.

Mathematical Framewor:Pattern Inference

- An eigengene $\langle \gamma_l |$ represents a regulatory process when this pattern is bilogically interpretable.
- $\langle n | \alpha_l \rangle \equiv \frac{\langle g_n | \gamma_l \rangle}{\varepsilon_l}$ —the relative amplitude of the *l*th eigengene pattern in $\langle g_n |$ relative to all other genes.
- The corresponding eigenarray $|\alpha_l\rangle$ represents the cellular state which corresponds to this process.

Mathematical Framework:Data normalization

• Normalizing the data by filtering out the eigengenes $\langle \gamma_l |$ which are inferred to represent noise

•
$$\hat{e} \rightarrow \hat{e} - \varepsilon_l |\alpha_l\rangle \langle r_l| = \hat{u} \hat{\varepsilon}'_{l-} \hat{v}$$
 where

$$\hat{\varepsilon}'_{l-} = \begin{bmatrix} \varepsilon_1 & & & \\ & \ddots & \\ & & \varepsilon_{l-1} & \\ & & & 0 \\ & & & \varepsilon_{l+1} & \\ & & & \ddots & \\ & & & & \varepsilon_M \end{bmatrix}$$

9

Mathematical Framework:Data sorting

- Sort data by similarity in the expression of any chosen subsets of the eigengenes
- Correlation plot: Scatter plot of $(C_{k,n}, C_{l,n})$, where

$$C_{k,n} \equiv \frac{\langle \gamma_k | g_n \rangle}{\langle g_n | g_n \rangle}$$

- $r_n = \frac{\sqrt{(|\langle \gamma_k | g_n \rangle|^2 + |\langle \gamma_l | g_n \rangle|^2)}}{\langle g_n | g_n \rangle}$: Amplitude of expression of the *n*th gene in the subspace spanned by $\langle \gamma_k |$ and $\langle \gamma_l |$ relative to its overall expression:
- $\phi_n \equiv tan^{-1} \frac{\langle \gamma_k | g_n \rangle}{\langle \gamma_l | g_n \rangle}$: The phase of the *n*th gene in the transition from the expression pattern $\langle \gamma_l |$ to $\langle \gamma_k |$ and back to $\langle \gamma_l |$.
- sort the genes according to ϕ_n .

Biological Data Analysis:Data

- Elutriation-synchronized cell cycle data of budding yeast
- N = 5981 genes, 784 of which were classified as cell cycle regulated in Spellman et al.,1998.
 M = 14 arrays in interval of 30 minutes
 L = min(M, N) = 14.

Biological Data Analysis:Pattern inference

- $\langle \gamma_1 |$ describes the time-invariant relative expression during the cell cycle.(Fig 14a, constantly red)
- Others show oscillation during the cell cycle.
- Low entropy:d = .14 ≪ 1-weak perturbation of a steady state of expression(figure 14b)
- $\langle \gamma_1 |$ captures more than 90% of the overall relative expression:
- $\langle \gamma_2 |, \langle \gamma_3 |, \langle \gamma_4 |$ capture 3%, 1%, .5% of the overall relative expression, respectively.
- The time variation of $\langle \gamma_3 |$ fits a normalized sine function of period T;(fig 14c)

- The time variations of $\langle \gamma_2 |$ and $\langle \gamma_4 |$ fit a cosine function of period,(fig 14c)
- $\langle \gamma_2 |$ show decreasing expression on transition from t = 0 to 30 min
- $\langle \gamma_4 |$ show increasing expression on transition from t = 0 to 30 min
- Inference:
 - $\langle \gamma_1 |$ represents experimental additive constants superimposed on a steady gene expression state.
 - $\langle \gamma_3 |$ represents expression oscillation during a cell cycle
 - $\langle \gamma_2 |$ and $\langle \gamma_4 |$ represent initial transient increase and decrease in expression in response to the elutriation, respectively.

Biological Data Anlalysis: Data Normalization

• Filter out the first eigengene to remove the steady state of expression:

$$\hat{e} \to \hat{e}_C \equiv \hat{e} - \varepsilon_1 |\alpha_1\rangle \langle \gamma_1 |$$

•
$$\hat{e}_C \rightarrow \hat{e}_{LV} \equiv [log(e_{C,nm}^2)]_{N \times M}$$
 where

$$e_{C,nm} = \langle n | \hat{e}_C | m \rangle$$

and $e_{C,nm}^2$ is the variance in the measured expression of the *n*th gene in the *m*th array.

- Figure 15a displays the eigengenes for \hat{e}_{LV}
- $|\gamma_1\rangle_{LV}$ captures more than 80% of the overall information in this dataset.

- It describes a weak initial transient increase superimposed on a time-invariant scale of expression variance (maybe a response to the elutriation).
- The time-invariant scale of expression variance suggests a steady scale of the data.
- It also suggests the time-invariant multiplicative constant noise may be superimposed on the data.
- Filter out $|\gamma_1\rangle_{LV}$, removing the steady scale of expression variance,

$$\hat{e}_{LV} \to \hat{e}_{CLV} \equiv \hat{e}_{LV} - \varepsilon_{1,LV} |\alpha_1\rangle_{LV} \langle \gamma_1 |_{LV}$$

- $\hat{e}_{CLV} \rightarrow \hat{e}_N \equiv [sign(e_C, nm) \sqrt{exp(e_{CLV, nm})}]_{N \times M}$
- \hat{e}_N tabulates expression pattern that are approximately centered at the steady state with variance

which are approximately normalized by the steady scale of the expression variance.

- $\langle \gamma_1 |_N$ and $\langle \gamma_2 |_N$ (of similar significance), capture together more than 40% of the overall normalized expression,d = 0.88.(Figure 1)
- The time variations of $\langle \gamma_1 |_N$ and $\langle \gamma_2 |_N$ fit normalized sine and cosine functions of period T and initial phase $\theta \approx 2\pi/13$.
- Inference: $\langle \gamma_1 |_N$ and $\langle \gamma_2 |_N$ represent cell cycle expression oscillations and assume $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$ represent the corresponding cell cycle cellular states.

Biological Data Analysis:Data sorting

- Assume $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$ approximately represent all cell cycle cellular states
- All arrays(except $|a_11\rangle$) have at least 25% of their normalized expression in this subspace.
- Suggest: $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$ are sufficient to approximate the elutriation array expression
- The array order according to ϕ_m is similar to the cell cycle time points. (an order of the cell cycle progress)
- Inferences:
 - $|\alpha_1\rangle_N$ is associated with the cell cycle cellular state of transition from G_1 to S.

- $-|\alpha_1\rangle_N$ is associated with the transition from G_2/M to M/G_1 .
- $|\alpha_2\rangle_N$ is associated with the cell cycle cellular state of transition from M/G_1 to G_1 .
- $-|\alpha_2\rangle_N$ is associated with the transition from S to S/G_2 .
- The phase of $|a_1\rangle$, $\phi_1 = -\theta \approx \frac{-2\pi}{13}$ corresponds to the 30-min delay between the start of the experiment and that of the cell cycle stage G_1 .
- Figure 2b
- Recall $\langle \gamma_1|_N$ and $\langle \gamma_2|_N$ are inferred to approximately represent all cell cycle expression oscillation

- Expect $\gamma_n \approx 1$ -cell cycle regulated $\gamma_n \approx 0$ -not regulated by the cell cycle at all.
- 641(classified as cell cycle regulated) have more than 25% of their normalized expression in this subspace.
- This sortinggives a different classification from that by Spellman et al(the poor quality of the elutriation expression data).
- With all genes sorted, the gene variations of $|\alpha_1\rangle_N$ and $|\alpha_2\rangle_N$ fit normalized sine and cosine functions(Figure 3).
- The sorted and normalized elutriation expression fit approximately a traveling wave of expression varying sinusoidally across both genes and arrays.

Some points

- SVD calculation: $\hat{\varepsilon}^{-1}$ don't necessarily exist.
- Data Sorting
 - What if more then 2 significant eigengenes?

-
$$C_{k,n} \equiv \frac{\langle \gamma_k | g_n \rangle}{\langle g_n | g_n \rangle}$$
 or $\equiv \frac{\langle \gamma_k | g_n \rangle}{\sqrt{\langle g_n | g_n \rangle}}$?

- What smoothing method to fit $|\gamma_1\rangle_N$?
- The disagreement due to poor quality of the data(too simple)?

Are the first two eigengenes enough to explain all?(capture only around 40% and Figure 2b-not good projection)