
ORIE 779:    Functional Data Analysis 
 

 
From last meeting 

 
 
Finished Strangeness of high dimensional space 
 
 
FLD    -   Expanding dimension view 
 
 
Revisited ICA (from discrimination viewpoint) 
 

- Toy examples 
 

- Corpora Collosa Data 



ICA for Corpora Collosa Data 
 
 
Typically found outliers 
 
 
Tried several approaches (looking for “separation of classes”): 
 

- PCA start 
 

- Reduced subspace 
 

- Project to sphere 
 

- Different non-linearities (tanh and gauss) 
 
 



ICA for Corpora Collosa Data (cont.) 
 
 
Idea for improvement:    find “directions to minimize kurtosis” 
 

(not absolute value of kurtosis) 
 
 
Implementation (short of recoding ICA): 
 

1. Look in all 20 ICA directions  (for some choice of opt’s) 
 

2. Compute kurtosis for each 
 

3. Sort in increasing kurtosis order 
 
 



ICA for Corpora Collosa Data (cont.) 
 
 
Attempts: 
 
 
a. Absolute Kurtosis,  random start [combined graphic]: 
 

- all kurtoses > 0,  found no “useful directions” 
 
 
b. Absolute Kurtosis,  PC start [combined graphic]: 
 

- found a bimodal direction (discovered earlier) 
 

- and a 2nd direction with kurtosis < 0 
 

- “Start” is still an important issue 



ICA for Corpora Collosa Data (cont.) 
 
 
c. Tanh, random start [combined graphic]: 
 

- found 4 directions with kurtosis < 0 
 

- none give “magic bullet” discrimination 
 

- maybe “4 together” (e.g. input to CART) can do well? 
 
 
d. Tanh, PC start [combined graphic]: 
 
 - OK, but not so good as (c) 
 



ICA for Corpora Collosa Data (cont.) 
 
 
 
e. Gaus, random start [combined graphic]: 
 
 - similar to above 
 
 
 
f. Gaus, PC start [combined graphic]: 
 

- again 4 directions with strongly negative kurtosis 
 

- quite different directions from those in (c)? 
 
 



ICA for Corpora Collosa Data (cont.) 
 
 
Some conclusions and ideas: 
 
 
i. ICA is a very promising method 
 
 
ii. Starting point is critical (and poorly understood) 
 
 
iii. Would like to try explicitly minimizing kurtosis 
 
 
 



Support Vector Machines 
 
 
 
Mechanics described last time by Rommel Regis 
 
 
 
One type of motivation: 
 
 

Polynomial Embedding 
 
 



Polynomial Embedding 
 
Aizerman, Braverman and Rozoner (1964) Automation and 

Remote Control, 15, 821-837. 
 
 
Motivating idea:    extend “scope” of linear discrimination, 
 
   by adding “nonlinear components” to data 
 

(better use of name “nonlinear discrimination”????) 
 
 
E.g.    In 1d,  “linear separation”   splits the domain 
 

{ }ℜ∈xx :  
 

into only 2 parts   [toy graphic] 



Polynomial Embedding (cont.) 
 
 
But in the “quadratic embedded domain” 
 

( ){ } 22 :, ℜ⊂ℜ∈xxx  
 
linear separation can give 3 parts   [toy graphic] 
 
 

- original data space lies in 1d manifold 
 

- very sparse region of   2ℜ
 

- curvature of manifold gives better linear separation 
 

- can have any 2 break points  (2 points    line) ⇒
 



Polynomial Embedding (cont.) 
 
 
Stronger effects for higher order polynomial embedding: 
 
 
E.g.  for cubic,   ( ){ } 332 :,, ℜ⊂ℜ∈xxxx  
 

linear separation can give 4 parts (or fewer)   [toy graphic] 
 
 

- original space lies in 1d manifold, even sparser in   3ℜ
 

- higher d curvature gives improved linear separation 
 

- can have any 3 break points  (3 points    plane)? ⇒
 

- relatively few “interesting separating planes” 



Polynomial Embedding (cont.) 
 
General View:       for original data matrix: 
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“add rows”: 
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Polynomial Embedding (cont.) 
 
 
Fisher Linear Discrimination:  Choose Class 1 for  0x   when: 
 

( ) ( ) ( ))2()1(1)2()1()2()1(10 ˆ
2
1ˆ XXXXXXx wwt

−Σ+≤−Σ −−  

 
in embedded space. 
 
 
 

- image of class boundaries in original space is nonlinear 
 

- allows much more complicated class regions 
 

- can also do Gaussian Likelihood Ratio (or others) 
 



Polynomial Embedding Toy Examples 
 
 
E.g. 1:    Parallel Clouds 
 
 
 - PC1 always bad (finds “embedded greatest var.” only) 
 
 
 - FLD stays good 
 
 
 - GLR OK discrimination at data, but  overfitting problems ∃
 
 



Polynomial Embedding Toy Examples (cont.) 
 
 
E.g. 2:    Split X 
 
 

- FLD rapidly improves with higher degree 
 
 

- GLR always good, but never “ellipse around blues”??? 
 
 
 - Should apply ICA first???       Or perhaps instead??? 
 
 



Polynomial Embedding Toy Examples (cont.) 
 
 
E.g. 3:    Donut 
 
 
 

- FLD:  poor for low degree, then good, no overfit 
 
 
 

- GLR:  best with no embed, “square shape” for overfitting? 
 
 



Polynomial Embedding (cont.) 
 
 
Drawback to polynomial embedding: 
 
 

- too many extra terms create spurious structure 
 
 

- i.e. have “overfitting” 
 
 

- High Dimension Low Sample Size problems worse 
 
 
 
 



Kernel Machines 
 
 
 
Idea:    replace polynomials by other “nonlinear functions” 
 
 
e.g. 1:    “sigmoid functions” from neural nets 
 
 
e.g. 2:    “radial basis functions” – Gaussian kernels 
 
 

Related to “kernel density estimation”  (smoothed histogram) 
 
 
 



Kernel Machines (cont.) 
 
 
 
Radial basis functions: at some “grid points”   

k
gg ,...,

1
, 

 
 
For a “bandwidth” (i.e. standard deviation)  σ , 
 
 
Consider  (  dim’al)  functions:     d ( ) ( )
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Replace data matrix with:    
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Kernel Machines (cont.) 
 
 
 
For discrimination:    work in radial basis function domain, 
 
 

With new data vector  0X   represented by:    
( )
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Kernel Machines (cont.) 
 
Toy Examples: 
 
 
E.g. 1:    Parallel Clouds – good at data, poor outside 
 
 
E.g. 3:    Split X – OK at data, strange outside 
 
 
E.g. 5:    Donut – mostly good (slight mistake for one kernel) 
 
 
Main lesson:  generally good in regions with data, 
 unpredictable results where data are sparse 
 



Kernel Machines (cont.) 
 
 
 
E.g. 7:  Checkerboard 
 
 

- Kernel embedding (FLD or GLR) is excellent 
 
 

- While polynomials (FLD – GLR) lack flexibility 
 
 

- Lower degree is worse 
 
 



Kernel Machines (cont.) 
 
 
 
 
Note:  Gaussian Likelihood Ratio had frequent numerical failure 
 
 
 
 
Important point for kernel machines: 
 

High Dimension Low Sample Size problems get worse 
 
 
 
This is motivation for “Support Vector Machines” 
 



Kernel Machines (cont.) 
 
 
 
∃   generalizations of this idea to other types of analysis, 
 
and some clever computational ideas. 
 
 
 
E.g. “Kernel based, nonlinear Principal Components Analysis” 
 
 
Schölkopf, Smola and Müller (1998) “Nonlinear component 

analysis as a kernel eigenvalue problem”, Neural 
Computation, 10, 1299-1319. 

 
 



Support Vector Machines 
 
Classical References: 
 
Vapnik (1982) Estimation of dependences based on empirical 

data, Springer (Russian version, 1979) 
 
Boser, Guyon & Vapnik (1992) in Fifth Annual Workshop on 

Computational Learning Theory, ACM. 
 
Vapnik (1995) The nature of statistical learning theory, Springer. 
 
 
Recommended tutorial: 
 
Burges (1998) A tutorial on support vector machines for pattern 

recognition, Data Mining and Knowledge Discovery, 2, 955-
974, see also web site: 

http://citeseer.nj.nec.com/burges98tutorial.html 



Support Vector Machines (cont.) 
 
 
Motivation:   High Dimension Low Sample Size discrimination 
 
(e.g. from doing a nonlinear embedding) 
 
∃    a tendency towards major over-fitting problems 
 
 
 
Toy Example: 
 
In 1st dimension:    Class 1:  )8.0,2(N     Class 2:  ( )8.0,2−N  

20=n(  of each, and threw in 4 “outliers”) 
 
In dimensions :    independent  d,...,2 )1,0(N  
 



Support Vector Machines (cont.) 
 
 
 
Toy Example:    for linear discrimination: 
 
 
Top:  Proj’n onto (2-d) subspace generated by 1st unit vector (- -) 

and Discrimination direction vector (----)  (shows angle) 
 
 
For “reproducible (over new data sets) discrimination”: 
 

Want these “near each other”,  i.e. small angle 
 
 
 
Bottom:  1-d projections, and smoothed histograms 
 



Support Vector Machines (cont.) 
 
 
Lessons from Fisher Linear Discrimination Toy Example: 
 

- Great angle for , but substantial overlap 1=d
 

- OK angle for , still significant overlap 10,...,2=d
 

- Angle gets very bad for , but overlap declines 18,...,11=d
 

- No overlap for    (perfect discrimination!?!?) 23≥d
 

- Completely nonreproducible (with new data) 
 

- Thus useless for real discrimination 
 
 



Support Vector Machines (cont.) 
 
Main Goal of Support Vector Machines: 
 
Achieve a trade off between: 
 

Discrimination quality for data at hand 
 

vs. 
 

Reproducibility with new data 
 
 
Approaches: 
 

1. Regularization  (bound on “generaliz’n”, via “complexity”) 
 

2. Quadratic Programming  (general’n of Linear Prog.) 



Support Vector Machines (cont.) 
 
 
 
Implementation:  Matlab code from: 
 

http://www.isis.ecs.soton.ac.uk/resources/svminfo/ 
 
 
(Caution:  must use class labels   ) 1±
 
 
 
Many others web available, e.g. see: 
 

http://www.kernel-machines.org/software.html 
 



Support Vector Machines (cont.) 
 
 
Caution:  SVM is not robust, instead “feels outliers” 
 

- reason is “higher penalty for data farther from plane” 
 

- note “jumping effect” – nonlinear min’ing artifact???? 
 
 
Can get strange results in “indeterminate case”: 
 

- generally good, stable answer 
 

- but hardly inside data at “crossing point”? 
 
 



Support Vector Machines (cont.) 
 
 
Possible weakness:  can be “strongly driven by a few points” 
 
 

- huge “range of chosen hyperplanes” 
 
  

- but all are “pretty good discriminators” 
 
 

- only happens when “whole range is OK”???? 
 
 
 



Support Vector Machines (cont.) 
 
 
Revisit toy examples (from Polynomial Embedding): 
 
 
E.g.  Parallel Clouds: 
 
 - SVM and FLD very comparable 
 
 
E.g.  Split X: 
 

- SVM & FLD fairly comparable 
 

- SVM had worse overfitting at cubic (could fix via C????) 



Support Vector Machines (cont.) 
 
 
E.g.  Donut: 
 

- SVM & FLD fairly comparable 
 

- SVM gives better “cutoffs” at higher degrees 
 

- since non-elliptical data, in high degree embedded space 
 
 
E.g.  Checkerboard – Kernel embedding 
 

- SVM gives better boundaries than FLD 
 

- But not so good as GLR 



General Conclusion about Discrimination 
 
 

“There Ain’t No Such Thing As a Free Lunch” 
 
 
I.e.  each method can be: 
 

- Great 
 

- Very Poor 
 
 
Depending on context, and data set at hand. 
 
 
Thus useful to understand, and to have a big bag of tricks. 
 



Validation for Discrimination 
 
How “well” does a method work? 
 
 
Theoretical Answer:    for a random point from the underlying 

distributions, what is the probability of “correct classification” 
 
 
Naïve Empirical Answer:    proportion of training data correctly 

classified 
 
 
Problem 1:    tendency towards “too optimistic” 
 
 
Problem 2:    Way off for overfitting (e.g. HDLSS)    [toy example] 
 



Validation for Discrimination (cont.) 
 
 
Better empirical answers:  Cross-Validation 
 
 
Simplest version: 
 

- Use ½ the data to “train”, i.e. construct the discrim’n rule 
 

- Use the other ½ to “assess”, i.e. compute error rate 
 

- Unbiased est. of prob. of correct classification 
 

- But get error rate for “wrong sample size” 
 
 



Validation for Discrimination (cont.) 
 
 
Cross-validation (cont.) 
 
 
More sophisticated version:   Leave – One - Out 
 

- Train with all but one data point 
 

- Use that for assessment 
 

- Repeat for each data point 
 

- Still unbiased est. of prob. of correct classification 
 

- Much closer to correct sample size 
 



Alternate view of Discrimination 
 
Neural Networks: 
 

“The Language” in 
 
 Duda, R. O., Hart, P. E. and Stork, D. G. (2001) Pattern 

Classification, Wiley. 
 
 
Advantages: 

- Broad framework that “includes everything” 
- Excellent results in some situations 

 
Drawbacks: 

- Only a “black box” 
- Usually no insight as to “why?” 
- “Good discrimination may not be “learning about data” 

 



Wish I had more time for: 
 

1. PCA time series – chemometrics data 
2. ICA in discrimination 
3. In vector space, orthogonal basis introduction 
4. Fourier basis  3-22-01 
5. Legendre basis 
6. Tensor product Fourier Legendre basis 
7. Zernike basis 
8. Revisit cornea data?   (compare “raw image” with “fit 

images”, fiddle with Cornean power map? (do this at 
home?), use Figure from LMTZ paper, see directories 
D:\DellInspiron7000\SW30\Docs\Steve and 
D:\DellInspiron7000\SW30\Pictures) 

9. Elliptical Fourier bases  4-05-01 
10. Complex plane representation (no simple real valued basis) 
11. Corpora Collosa Approximation 
12. Support Vector Machines 
13. Polynomial Embedding 



14. Micro-Array Data analysis 
15. Normal KerCli discrimination (in Cornean/demo) 
 

 
 
 
 



Old material had no time for: 
 
 
CC Sequential ICA vs. Simultaneous ICA   3-22-01:  3-5 
 
ICA and Projection Pursuit    3-22-01:  6-13 
 
Poly embedding:  4-19-01:   pg. 2-13 
 
Kernel machines:  4-19-01:  pg. 14-22 
 
SVM:   4-19-01:   pg.  23-27,    5-2-01:  pg. 2-20 
 
Validation of discrimination:   5-2-01:  pg. 21-32 
 


