ORIE 779: Functional Data Analysis

From last meeting

Fisher Linear Discrimination

- Mahalanobis distance view

- Likelihood view

- Generalized to Gaussian Likelihood ratio

- Generalized to “uneven weights”

- Generalized to multiple classes

- l.e. Principal Discriminant Analysis

- Corpora Callosa data (failed because of...)

Statistical Analysis



Last Time: Fisher Linear Discrimination

Corpora Callosa application:

Recall data: Schizophrenics Controls

Movie display of FLD direction vector and projections
- Great separation of subpopulations?!?

- Image doesn’t change when marching along vector?!?



Last Time: Corpora Callosa Fisher Linear Discrimination

Major problem: n=71<80=d:

gives “directions of perfect separation” (~8 dim subspace!)

[1a very small change in this direction (watch pixels)

numerics: use pseudo-inverse of covariance matrix

is FLD direction interesting or useful?



Last Time: Corpora Callosa Fisher Linear Discrimination (cont.)

Zoom in on FLD direction:

- Only pixel sampling artifacts

- Expect big changes with new data

- Direction neither useful nor insightful



Last Time: Big Picture View

This motivate new area of statistical analysis:

|ldea: face common Problem: n<<d



Last Time: Standard Approach to

Dimensionality Reduction

Example: Medial Representation of Corpora Callosa data
No longer had , since d =20<n=31,40
But still FLD gave similar poor performance

Maybe not “far from "



Rethink Big Picture Views of FLD

Classical View (assumes n>>d):

- have “good estimates” of x4 and X

—_—

- Thus “instability of estimation” is negligible

- FLD works when Mean Difference does [toy example]

- But Mean Diff. can fail when FLD works [toy example]

- So FLD is always recommended (no loss, potential gain)

- This idea is pervasive in statistical (and beyond) folklore



Rethink Big Picture Views of FLD (cont.)
HDLSS view:
- Gap in above argument is unstable estimation
- FLD very unstable for n<d
- And appears unstable for n=>d, but n=d

- Thus FLD might lose out to Mean Difference

Interesting Research Questions:
“‘Boundaries” between and classical analyses???

Possible to develop diagnostics?



General Trends in FDA

Try to draw “big picture trends” from:

Some personal examples of contexts

Cornea Data: n=42<66=d

Corpora Callosa (Fourier B'dry Rep'n): n=71<80=d

Genetic Micro-arrays: n=78<459=d



General Trends in FDA (cont.)

Towards Higher Dimensions:
- Research tending towards more complex “data objects”

- Appetite grows with capability (and understanding)

Towards Lower Sample Sizes:
- More complex data objects more costly too acquire

- Price comes down, but not as fast as above growth



General Trends in FDA (cont.)

Personal Conclusions:

Neither trend will end soon

Foolish to insist on “dimension reduction”

Critical to learn to analyze data

3 IS a research “Land of Opportunity”

Reinvention of most of multivariate analysis is needed

Will now give one example of this....



Old Conceptual Model for data

Projections into 1, 2 or 3 dimensions  [toy graphic]

(where our perceptual systems work),

Using:
- Coordinates

- Principal Components



Nature of Gaussian Data

For d dim’al “Standard Normal” dist’n:
/Zl\
z=| 1 |~N(0,1)
\Zd/

Euclidean Distance to Origin:

2=(32) ~(e)”
7= (+200,0)"

(recall: Ex2=d and var(y?)=2d)



Nature of Gaussian Data (cont.)

So (for Z ~N(0,1)), as d — oo,

1/2

1z =(@(+a20,m)"” =d(i+a">0,m)
iz|=d+0,()

1/2

Conclusion: data lie roughly on surface of sphere of radius /d



Nature of Gaussian Data (cont.)

Paradox:

- Origin, 0, is point of highest density

- Data lie on “outer shell”



Nature of Gaussian Data (cont.)

Lessons:

High dim’al space is “strange” (to our percept’l systems)
- “density” needs careful interp’n (hi dim’al space is “vast”)

(mass of “solid ball” is “concentrated near boundary”)

- Nobody is anywhere near “average in all respects” ?!?

- Low dim’al proj'ns can mislead

- Need new conceptual models



Nature of Gaussian Data (cont.)

High dim’al Angles:

For any (fixed or independent random) x,
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Nature of Gaussian Data (cont.)

Lessons:

- High dim’al space is vast (where do they all go?)

- Low dim’al proj’'s “hide structure”

- Need new conceptual models



A New Conceptual Model

Data lie in “sparse, high dim’al ring” [toy graphic]

What about non-spherical data?

- suitably stretch axes?
- Still makes sense to think of:

“data on surface of d -1 dim’l ellipse™???



A New Conceptual Model (cont.)

What about non-Gaussian data?

Personal View:

OK to build ideas in Gaussian context, if they “work outside”

e.g. PCA

Corpora Collosa: non-Gaussian (via Parallel Coord. Plot)

Yet PCA, “shows population structure” [PC1]



So What?

- What does this “new model” bring us?

e.g. Discrimination (i.e. Classification)

Corpora Colosa: try to separate

Schizophrenics [graphics] from [graphics]
n= 40 n — 31

clearly , since d =80



Recall Background:

PCA failed: data not in “separated clusters” PC1 PC2 PC3

Fisher Linear Discrimination Failed:

- means too close [graphic]

- singular covariance found useless directions

Problem 1. based on old conceptual model [graphic]

Problem 2: Must use “covariance structure”, not means



Solution Based on New Conceptual Model

ldea: Want to separate “two sparse rings of data” [toy graphic]

Approach: “Orthogonal Subspace Proj'n”

ldea: exploit vast size of high dim’al space.

Key on “subspaces generated by data”

(note: useless idea for large data sets, or low dimensions)



Subspace Projection

Toy Example:

ldea: Project Data in Class 2, onto subspace orthogonal to
subspace [graphic]

1% Discrim. Dir'n is 1% Eigenvector of projected data.



Corpora Collosa Example:

Best visual result:  [OSP 1 on 2] [OSP 2 on 1]

- Directions show “shape”?

Comparison? Try “X view”:

- Separate: directions look “similar” [1on 2 X] [20on 1 X]

-  Combined: really found anything useful here???




Subspace Projection (cont.)

Important Questions:

- Is this effect really there?

- l.e. Is it stable with respect to new data?

- Is it useful?

(some answers coming later)



An Aside on High Dimensions

Deep questions in probability:

Are there general limiting results as d - ©?

In particular, for non-Gaussian dist'ns (indep. only?)

Distance to Origin ~~/d?  Angles ~ 90°

Do data always “cluster along d -1 dim’al manifold™?



High Dimensional Space Is Strange

Example from Ed George:
1. Start with “unit cube” {x:-1<x, <1,i=1...,d}

2. Inscribe spheres in “quadrants”

{)_c:O <X <vi,i:1,...,d} iIndexed by v =

3. Consider sphere centered at 0, tangent to others

4. How “big” is that sphere? [graphic in 2-d]




High Dimensional Space Is Strange (cont.)

Strange Properties of Unit Cube in d dimensions:

- Volume = 2¢

- Number of “faces” = 2d

- Distance from 0 toface = 1

- Number of “vertices” = 2? (vertices are the v above)
- Distance from 0 to vertex = +/d

- Where is the “mass”?



High Dimensional Space Is Strange (cont.)

“Mass” of the Unit Cube in d dimensions:

Consider uniform distribution on unit cube

l.e. U, where U, areindependent Uniform (-1,1)
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High Dimensional Space Is Strange (cont.)

“Mass” of the Unit Cube in d dimensions (cont.):
- So “most of the mass” is /d/3=0.58/d away from 0
- Recall farthest point from 0 has distance +/d
- And faces have distance 1 to 0
- Conclude “mass is mostly near vertices™???
- Careful: only 2d, but 2¢ vertices

- Suggests very strong potential for ICAas d grows



High Dimensional Space Is Strange (cont.)
Size of Inscribed Sphere:

- Centers of Quadrant Spheres: 1y

!
- Distance from centerto 0: Jd/2

- Radius of Quadrant Spheres: 1/2

- Radius of Inscribed Sphere:  (Jd /2)-1/2

- Inscribed Sphere “pops out of face”, for d =9 ?!?!
- Quadrant Spheres “move out towards vertices” ?!7?!

- Makes “mass of Unit Cube” effect seem plausible?



