
ORIE 779:    Functional Data Analysis 
 

 
From last meeting 

 
 
Finished ICA 
 
Began Statistical Discrimination  (i.e. Classification) 
 

“automatic diagnosis” 
 
 

- Naïve methods (Mean Difference, PCA) 
 

- Fisher Linear Discrimination 
 
 



Fisher Linear Discrimination  (cont.) 
 
Relationship to “Mahalanobis distance” 
 
Idea:    For  ( )Σ,~, 21 µNXX ,    a “natural distance measure” is: 
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 - “unit free”,    i.e.  “standardized” 
 

- essentially “mod out” covariance structure 
 

- Euclidean distance applied to    &   1
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- Same as key transformation for FLD 
 

- I.e. FLD is “mean difference in Mahalanobis space” 
 



FLD Likelihood View 
 
 
Assume:  Class distributions are multivariate    ( )wjN Σ,)(µ  
 

(strong distributional assumption + common covariance) 
 
 
At a location  0x ,  the likelihood ratio, 
 
for choosing between Class 1 and Class 2, is: 
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where  wΣ

ϕ   is the Gaussian density with covariance   wΣ
 
 



FLD Likelihood View (cont.) 
 
 
Simplifying, using the form of the Gaussian density: 
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Gives (critically using the common covariance): 
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FLD Likelihood View (cont.) 
 
But: 
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so: 

( )=Σ− wxLR ,,,log2 )2()1(0 µµ  

( ) ( ) ( ))2()1(1)2()1()2()1(102 µµµµµµ −Σ++−Σ−=
−− wwt

x  
 
 
Thus  ( ) 1,,, )2()1(0 ≥ΣwxLR µµ     when 
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FLD Likelihood View (cont.) 
 
 
Replacing  )1(µ ,  )2(µ   and    by maximum likelihood estimates: wΣ
 

)1(X ,  )2(X   and   wΣ̂
 
 
 
gives the likelihood ratio discrimination rule: 
 
Choose Class 1, when 
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same as above, so FLD can be viewed as “Likelihood ratio rule” 



FLD Generalization I 
 
 
Gaussian Likelihood Ratio Discrimination 
 

(a. k. a. “nonlinear discriminant analysis”) 
 
 
Idea:  Assume class distributions are    ( ))()( , jjN Σµ  
 

Different covariances! 
 
 
Likelihood Ratio rule is straightforward numerical calculation 
 

(thus can easily implement, and do discrimination) 
 



FLD Generalization I  (cont.) 
 
But no longer have “separating hyperplane” representation 
 

(instead “regions determined by quadratics”) 
 

(fairly complicated case-wise calculations) 
 
 
Graphical display:  for each point, color as: 
 

 Yellow if assigned to Class 1 
 

 Cyan if assigned to Class 2 
 
   (“intensity” is “strength of assignment”) 
 
Illustrate with FLD for canonical [Toy Example]  



FLD Generalization I  (cont.) 
 
 
Toy Examples: 
 
 
1. Standard Tilted Point clouds [graphic]: 
 

- Both FLD and LR work well. 
 
 
2. Donut: 
 

- [FLD] poor (no separating plane can work) 
 

- [LR] much better 
 



FLD Generalization I  (cont.) 
 
 
3. Split X:     [FLD]      [LR] 
 

- neither works well  
 

- although  good separating quadratic surfaces ∃
 

- they are not “from Gaussian likelihoods” 
 

- so this is not “general quadratic discrimination” 
 
 



FLD Generalization II 
 
Different prior probabilities 
 
 
Main idea:  Give different weights to 2 classes 
 
I.e. assume not a priori equally likely 
 
 
Development is “straightforward” 
 

- modified likelihood 
 

- change intercept in FLD 
 
 
Won’t explore further here 



FLD Generalization III 
 
 
Principal Discriminant Analysis 
 
 
Idea: FLD-like approach to more than two classes 
 
 
Assumption:    Class covariance matrices are the same (similar) 
 

(but not Gaussian, same situation as for FLD) 
 
 
Main idea:     quantify “location of classes” by their means 
 

( )1µ ,  ( )2µ , … , ( )kµ  
 



FLD Generalization III (cont.) 
 
 
Simple way to find “interesting directions” among the means: 
 

PCA on set of means 
 
 
i.e.    Eigen-analysis of “between class covariance matrix” 
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where 
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Aside:   can show:    overall  wB knn Σ+Σ=Σ  



FLD Generalization III (cont.) 
 
 
But PCA only works like “mean difference”, 
 
Expect can improve by “taking covariance into account”. 
 

(recall FLD illustration) 
 
 
Blind application of above ideas suggests eigen-analysis of: 
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FLD Generalization III (cont.) 
 
There are: 
 

- smarter ways to compute (“generalized eigenvalue”) 
 

- other representations (this solves optimization prob’s) 
 
 
Special case: 2 classes,    reduces to standard FLD 
 
 
 
Good reference for more:    Section 3.8 of: 
 
 Duda, R. O., Hart, P. E. and Stork, D. G. (2001) Pattern 

Classification, Wiley. 
 



Fisher Linear Discrimination  (cont.) 
 
 
Corpora Callosa application: 
 
 
Recall data:        Schizophrenics          Controls 
 
 
 
Movie display of FLD direction vector and projections 
 
- Great separation of subpopulations?!? 
 
- Image doesn’t change when marching along vector?!? 
 



Corpora Callosa Fisher Linear Discrimination 
 
 
Major problem:    : dn =<= 8071
 
 
- gives “directions of perfect separation” (~8 dim subspace!) 
 
 
-  a very small change in this direction (watch pixels) ∃
 
 
- numerics:  use pseudo-inverse of covariance matrix 
 
 
- is FLD direction interesting or useful? 
 



Corpora Callosa Fisher Linear Discrimination (cont.) 
 
 
 
Zoom in on FLD direction: 
 
 
- Only pixel sampling artifacts 
 
 
- Expect big changes with new data 
 
 
- Direction neither useful nor insightful 
 
 



Big Picture View 
 
 
 
This motivate new area of statistical analysis: 
 
 
 

High Dimension - Low Sample Size  (HDLSS) 
 
 
 
Idea:  face common Problem:   dn <<
 
 
 



Standard Approach to HDLSS 
 
 
“Dimensionality Reduction” 
 
- Find some way to “reduce dimension” 
 
- Problem:  how to do this? 
 
- PCA is viewed as leading method 
 
- Has obvious limitations 
 
- Expect some “loss” 
 
- Major question:    when is that fatal???? 
 



A dimensionality approach to CCF data 
 
Completely different data representation: 
 
E.g. recall from Lecture 2-20-02: 
 
Medial Representation of Corpora Callosa data 
 
Yushkevich, P., Pizer, S. M., Joshi, S., and Marron, J. S. (2001) 

“Intuitive, Localized Analysis of Shape Variability”, 
Information Processing in Medical Imaging (IPMI), eds: 
Insana, M. F. and Leahy. R. M., 402-408. 
[http://www.cs.unc.edu/~pauly/ipmi2001/] 

 
 
Idea:  discrete “skeleton” of shape 
 
Summarization:     features are “location and angle parameters” 
 

http://www.cs.unc.edu/~pauly/ipmi2001/


A dimensionality approach to CCF data 
 
Recall:  Raw data 
 

- from same data as above Fourier boundary rep’n 
 

- but they look different 
 

- since different type of fitting was done 
 

- also, worst outlier was deleted 
 
 
Modes of variation?    Recall PCA 
 
                    PC1          PC2          PC3         PC4 
 



A dimensionality approach to CCF data (cont.) 
 
 
Some benefits from medial representation: 
 

- “more efficient use of parameters” 
 

- far fewer “parameters with little information” 
 

- such as “high frequency” Fourier coefficients 
 

- results in good representation with fewer parameters 
 

- Here:   Fourier    reduced to M-rep   80=d 20=d
 

- No longer have HDLSS,  now have   40,3120 =<= nd
 

- Practical benefits?     (maybe not “far from HDLSS”?) 



A dimensionality approach to CCF data (cont.) 
 
Toy Examples:  simulated Corpora Collosa data sets ( ) 25=n
 
Simulated data set 1:    (from Gaussian pop’n “like controls”) 
 
Simulated data set 2:    (like 1, but “less overall bending”)  
 
Simulated data set 3:    (like 1, but “bump on top center”) 
 
 
Reasons: 
 

- Want to study known differences 
 

- Unsure about differences in Schizophrenics vs. Controls 
 

- Are there any?     (in sense of statistical significance) 



A dimensionality approach to CCF data (cont.) 
 
Simulated Data 1   vs.   Simulated Data 2: 
 
FLD direction:     
 

- Doesn’t find “overall bending” direction 
 

- Small change suggests “spurious direction”? 
 

- Because of “near HDLSS setting”? 
 
Mean Difference Direction: 
 

- Found “overall bending” (as constructed) 
 

- Seems more stable in “near HDLSS setting”? 
 



A dimensionality approach to CCF data (cont.) 
 
Simulated Data 1   vs.   Simulated Data 2 (cont.): 
 
 
Projection views:         FLD          Mean Difference 
 

- Similar amounts of “separation of subpopulations” 
 

- But FLD is slightly more separated? 
 

- But FLD is “smaller scale effect” (see x-axes) 
 

- So Mean Difference found “better separation”? 
 

- Much less likely to be spurious 
 



A dimensionality approach to CCF data (cont.) 
 
Simulated Data 1   vs.   Simulated Data 3: 
 
FLD Direction: 
 

- Keys on “width of 4th medial atom” 
 

- Not on “bump in center” (the constructed difference) 
 

- Again missed due to “near HDLSS”? 
 
Mean Difference Direction: 
 

- Nicely finds “bump in center” 
 

- Again seems more stable in “near HDLSS situations” 
 



A dimensionality approach to CCF data (cont.) 
 
 
Simulated Data 1   vs.   Simulated Data 3 (cont.): 
 
 
Projection Views:          FLD         Mean Difference 
 

- FLD seems to give “better separation” 
 

- But again note an order of magnitude smaller 
 

- So FLD again found a “spurious sampling direction” 
 

- Again seems unstable for this “near HDLSS setting” 
 
 


