ORIE 779: Functional Data Analysis

Note: time to schedule remaining Student Presentations

From last meeting

Independent Component Analysis

Idea: Find "directions that maximize independence" Studied:

- Toy signal processing examples
- Toy FDA examples
- Local minima & non-linearities

Last Time: Careful look at Kurtosis

Recall for standardized (mean 0, var 1) data: $Z_1,...,Z_n$,

Kurtosis =
$$\frac{1}{n} \sum_{i=1}^{n} Z_i^4 - 3$$

- for
$$Z_i \sim N(0,1)$$
, Kurtosis = 0

- Kurtosis "large" for high peak, low flanks, heavy tails?
- Kurtosis "small" for low peak, high flanks, light tails?
- Can show Kurtosis \geq -2 (point masses at +-1)
- Thus very "asymmetric"? (see above examples)

E.g. three point distribution, with probability mass function:

$$f_w(x) = \begin{cases} \frac{1-w}{2} & x = \frac{-1}{\sqrt{1-w}} \\ w & x = 0 \\ \frac{1-w}{2} & x = \frac{1}{\sqrt{1-w}} \end{cases}, \quad \text{for} \quad w \in [0,1]$$

Some simple Calculations:

-
$$EX = 0$$
, $var(X) = 1$, $EX^4 = \frac{1}{1 - w}$

Special Cases: [graphic]

- w = 0 (no weight in middle), Kurtosis = -2 (minimum)
- w = 1/3 (uniform), Kurtosis = -1.5
- w = 2/3 Kurtosis = 0, (closest to Gaussian?)
- w > 2/3 (heavy tails), Kurtosis > 0, (finally positive)
- $w \approx 1$ (2 outliers), Kurtosis very large

Note strong asymmetry in Kurtosis

Aapo Hyvärinen comments:

Solve asymmetry problem with "different nonlinearities",

i.e. replace absolute kurtosis = $|E(\underline{w}^{t}\underline{Z})^{4} - 3|$ with:

1. "tanh":
$$\left(E\left|\underline{w}^{t}\underline{Z}\right| - \sqrt{\frac{2}{\pi}}\right)^{2}$$
 (since $E|N(0,1)| = \sqrt{\frac{2}{\pi}}$)

2. "gaus":
$$\left(E\varphi(\underline{w}^{t}\underline{Z})-\frac{1}{2\sqrt{\pi}}\right)^{2}$$

(since
$$E\varphi(N(0,1)) = \frac{1}{2\sqrt{\pi}}$$
)

Comparison via 3 point example: [graphic]

- upper left: noncomparable scales
- upper right: max rescaling is better
 - tanh and gaus "less asymmetric" than A. Kurt.
- lower left: still shows all are asymmetric
- lower right: "best scale"
 - A. Kurt. has pole at left, but "best for small w"
 - tanh and gaus have different zeros than A. Kurt.

ICA, Toy Examples Revisited (cont.)

E.g. Parabs Up and Down (two distant clusters)

Tanh: [graphic]

- Only IC2 finds an outlier
- IC1 and IC3 have kurt. < 0
- IC3 finds most of 2 clusters
- but not so well as PC1

ICA, Toy Examples Revisited (cont.)

Gaus: [graphic]

- IC1 is classical "heavy tail kurtosis"
- IC2 nicely finds clusters
- IC3 is another bimodal direction (no insights about data)

Conclusion: tanh and gaus work as expected, and are useful

Big Picture View of Course Material

Recall 2 vital concepts:

I. Data Representation & Conceptualization

II. Understanding "Population Structure"

Big Picture View of Course, Data Representation

One to one mapping couples visualization in Object Space, with statistical analysis in Feature Space

Feature space \leftrightarrow Point Clouds

Vectors

[Spinning Point Cloud Graphic]

-

Big Picture View of Course, Population "Structure"

Main Idea: "analyzing" populations of complex objects

2 common major goals:

- I. Understanding "population structure".
 - "visualization"
 - "intuition"
- II. Statistical Classification, i.e. Discrimination
 - put into "known groups", based on "training data"
 - e.g. disease diagnosis

Statistical Classification, i.e. Discrimination

Interesting Example:

Corpora Callosa data, Recall from Lecture 01-21.02

Special thanks to G. Gerig and S. Ho, UNC Computer Science

Reference:

Kelemen, A., Szekely, G. and Gerig, G. (1997) Three dimensional model-based segmentation, TR-178 Technical Report Image Science Lab, ETH Zurich.

Data Objects: boundaries of "segmented" corpora callosa

Recall Corpora Callosa Data

Data Curves [example]

Feature vectors: use coefficients of Fourier boundary representation, d = 80

Object Space view: can either overlay, or show sequentially

In either case: hard to see "population structure"

Recall Corpora Callosa PCA

Raw Data

Modes of shape variation?

<u>PC1</u>:

- "overall bending"

<u>PC2</u>:

- Rotation of right end, "Sharpening" of left end

<u>PC3</u>:

- "thin" vs. "thick"

Have 2 sub-populations:

Schizophrenics, n = 40 [sub-population of curves]

Controls, n = 31 [sub-population of curves]

Goal 1: See difference between populations? (???)

Goal 2: Given new shape: assign to a group

"automatic diagnosis (of schizophrenia)"

Very simple approach:

- Colored Parallel Coordinate view of data [graphic]
- Look for diff'nce between Schizophrenics and Controls
- Major "overplotting" problems (Schizos last, so "on top")
- No useful separation, since view is "too simple"
- Only looks in limited "coordinate directions"
- Perhaps "better separation" in other directions
- Caution: bottom show non-Gaussian

Another simple approach:

- for "widely separated data" [toy example]
- find "skewer through meatballs"
- using difference vector between means [toy example]
- Projection "separates sub-populations"

Alternate view:

- discrimination boundary is "orthogonal hyperplane"

Problem for Corpora Callosa Data:

- Subpopulation <u>means</u> nearly same
- Square of Difference, as Fraction of Total < 0.1%
- Thus effective discrimination must account for "spread"
- Perhaps can exploit covariance structure?

Another simple approach: PCA

- Again hope for "skewer between meatballs"
- This time focusing on covariance, not mean [toy example]
- Doesn't work for Corpora Callosa Data

Recall: <u>PC1</u> <u>PC2</u> <u>PC3</u>

- Recall PCA only feels "maximal variation"
- Different from "separating subsamples"
- PCA doesn't even use "class label information"

Another view of PCA problem: [toy data set]

- "maxim'l variation" can be different from "good separation"
- so PCA fails [PCA]
- mean difference better, not adequate [mean diff.]
- really want to work in "covariance structure"

Alternate Approach:

- modify mean difference, using "covariance structure"
- called Fisher Linear Discrimination

Fisher Linear Discrimination

Careful development:

Mathematical Notation (vectors with dimension d):

Class 1:
$$\underline{X}_{1}^{(1)}, \dots, \underline{X}_{n_{1}}^{(1)}$$
 Class 2: $\underline{X}_{1}^{(2)}, \dots, \underline{X}_{n_{2}}^{(2)}$

Class Centerpoints:
$$\underline{X}^{(1)} = \frac{1}{n_1} \sum_{i=1}^{n_1} \underline{X}_i^{(1)}$$
 and $\underline{X}^{(2)} = \frac{1}{n_2} \sum_{i=1}^{n_2} \underline{X}_i^{(2)}$

Covariances: $\hat{\Sigma}^{(j)} = \tilde{X}^{(j)} \tilde{X}^{(j)^{t}}$, for j = 1,2 (outer products)

Based on "normalized, centered data matrices":

$$\widetilde{X}^{(j)} = \frac{1}{\sqrt{n_j}} \left(\underline{X}_1^{(j)} - \underline{\overline{X}}^{(j)}, \dots, \underline{X}_{n_j}^{(j)} - \underline{\overline{X}}^{(j)} \right)$$

note: Use "MLE" version of normalization, for simpler notation

Terminology (useful later): $\hat{\Sigma}^{(j)}$ are "within class covariances"

Major assumption: Class covariances are same (or "similar")

Good estimate of "common within class covariance"?

(recall [toy example])

Pooled (weighted average) within class covariance:

$$\hat{\Sigma}^{w} = \frac{n_1 \hat{\Sigma}^{(1)} + n_2 \hat{\Sigma}^{(2)}}{n_1 + n_2} = \widetilde{X} \widetilde{X}^{t}$$

for the "full data matrix":

$$\widetilde{X} = \frac{1}{\sqrt{n}} \left(\sqrt{n_1} \widetilde{X}^{(1)} \sqrt{n_2} \widetilde{X}^{(2)} \right)$$

- Note: $\hat{\Sigma}^{w}$ is similar to $\hat{\Sigma}$ from before
 - i.e. "covariance matrix ignoring class labels"
 - important difference is "class by class centering"

(recall <a>[toy example])

Simple way to find "correct covariance adjustment":

Individ'ly transform subpop'ns so "spherical" about their means

 $\underline{Y}_{i}^{(j)} = \left(\widehat{\Sigma}^{w}\right)^{-1/2} \underline{X}_{i}^{(j)}$

(upper right in [toy example])

then:

"best separating hyperplane"

is

"perpendicular bisector of line between means"

So in transformed space, the separating hyperlane has:

Transformed normal vector: $\underline{n}_{TFLD} = \left(\hat{\Sigma}^{w}\right)^{-1/2} \underline{\overline{X}}^{(1)} - \left(\hat{\Sigma}^{w}\right)^{-1/2} \underline{\overline{X}}^{(2)} = \left(\hat{\Sigma}^{w}\right)^{-1/2} \left(\underline{\overline{X}}^{(1)} - \underline{\overline{X}}^{(2)}\right)$

Transformed intercept:

$$\underline{\mu}_{TFLD} = \frac{1}{2} (\hat{\Sigma}^{w})^{-1/2} \underline{\overline{X}}^{(1)} + \frac{1}{2} (\hat{\Sigma}^{w})^{-1/2} \underline{\overline{X}}^{(2)} = (\hat{\Sigma}^{w})^{-1/2} \left(\frac{1}{2} \underline{\overline{X}}^{(1)} + \frac{1}{2} \underline{\overline{X}}^{(2)} \right)$$

Equation:

$$\left\{\underline{y}:\left\langle\underline{y},\underline{n}_{TFLD}\right\rangle=\left\langle\underline{\mu}_{TFLD},\underline{n}_{TFLD}\right\rangle\right\}$$

(lower right in <a>[toy example])

Thus discrimination rule is:

Given a new data vector \underline{X}^{0} , Choose Class 1 when: $\left\langle \left(\hat{\Sigma}^{w} \right)^{-1/2} \underline{X}^{0}, \underline{n}_{TFLD} \right\rangle \geq \left\langle \underline{\mu}_{TFLD}, \underline{n}_{TFLD} \right\rangle$

i.e. (transforming back to original space) $\left\langle \underline{X}^{0}, (\hat{\Sigma}^{w})^{-1/2} \underline{n}_{TFLD} \right\rangle \geq \left\langle (\hat{\Sigma}^{w})^{1/2} \underline{\mu}_{TFLD}, (\hat{\Sigma}^{w})^{-1/2} \underline{n}_{TFLD} \right\rangle$ $\left\langle \underline{X}^{0}, \underline{n}_{FLD} \right\rangle \geq \left\langle \underline{\mu}_{FLD}, \underline{n}_{FLD} \right\rangle$

where:

$$\underline{n}_{FLD} = \left(\widehat{\Sigma}^{w}\right)^{-1/2} \underline{n}_{TFLD} = \left(\widehat{\Sigma}^{w}\right)^{-1} \left(\overline{\underline{X}}^{(1)} - \overline{\underline{X}}^{(2)}\right)$$
$$\underline{\mu}_{FLD} = \left(\widehat{\Sigma}^{w}\right)^{1/2} \underline{\mu}_{TFLD} = \left(\frac{1}{2}\overline{\underline{X}}^{(1)} + \frac{1}{2}\overline{\underline{X}}^{(2)}\right)$$

Thus (in original space) have separating hyperplane with:

Normal vector: \underline{n}_{FLD}

Intercept: μ_{FLD}

(lower right in <a>[toy example])