ORIE 779:    Functional Data Analysis
Note:  time to schedule remaining Student Presentations

From last meeting

Independent Component Analysis

Idea:  Find “directions that maximize independence”

Studied:  

· Toy signal processing examples

· Toy FDA examples

· Local minima & non-linearities

Last Time:  Careful look at Kurtosis

Recall for standardized (mean 0, var 1) data:   
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· Kurtosis “large” for high peak, low flanks, heavy tails?

· Kurtosis “small” for low peak, high flanks, light tails?

· Can show    Kurtosis  
[image: image4.wmf]³

  -2    (point masses at +-1)

· Thus very “asymmetric”?   (see above examples)

Last Time:  Careful look at Kurtosis (cont.)

E.g. three point distribution, with probability mass function:
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Some simple Calculations:
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Last Time:  Careful look at Kurtosis (cont.)

Special Cases:    [graphic]

-
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  (no weight in middle),    Kurtosis = -2   (minimum)


-
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  (uniform),    Kurtosis = -1.5
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    Kurtosis = 0,    (closest to Gaussian?)
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    (heavy tails),    Kurtosis > 0,   (finally positive)


-
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    (2 outliers),    Kurtosis very large

Note strong asymmetry in Kurtosis 

Last Time:  Careful look at Kurtosis (cont.)

Aapo Hyvärinen comments:

Solve asymmetry problem with “different nonlinearities”,

i.e. replace absolute kurtosis  =   
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“tanh”:    
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“gaus”: 
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Last Time:  Careful look at Kurtosis (cont.)

Comparison via 3 point example:   [graphic]

-
upper left:    noncomparable scales


-
upper right:    max rescaling is better

-
tanh and gaus “less asymmetric” than A. Kurt.

-
lower left:    still shows all are asymmetric


-
lower right:    “best scale”

· A. Kurt. has pole at left, but “best for small 
[image: image20.wmf]w

”

· tanh and gaus have different zeros than A. Kurt.
ICA, Toy Examples Revisited (cont.)

E.g. Parabs Up and Down   (two distant clusters)

Tanh:   [graphic]
· Only IC2 finds an outlier

· IC1 and IC3 have kurt. < 0

· IC3  finds most of 2 clusters

· but not so well as PC1

ICA, Toy Examples Revisited (cont.)

Gaus:   [graphic]
· IC1 is classical “heavy tail kurtosis”

· IC2 nicely finds clusters

· IC3 is another bimodal direction (no insights about data)

Conclusion:   tanh and gaus work as expected, and are useful

Big Picture View of Course Material

Recall 2 vital concepts:

I. Data Representation & Conceptualization 

II. Understanding “Population Structure”

Big Picture View of Course,   Data Representation

  Object Space
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One to one mapping couples visualization in Object Space, with statistical analysis in Feature Space

Big Picture View of Course,    Data Conceptualization

Feature space            
[image: image23.wmf]«

             Point Clouds
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[Spinning Point Cloud Graphic]    .

Big Picture View of Course, Population “Structure”

Main Idea:  “analyzing” populations of complex objects

2 common major goals:

I. Understanding “population structure”.

· “visualization”

· “intuition”

II. Statistical Classification, i.e. Discrimination

· put into “known groups”, based on “training data”

· e.g. disease diagnosis

Statistical Classification, i.e. Discrimination

Interesting Example:     

Corpora Callosa data, Recall from Lecture 01-21.02
Special thanks to G. Gerig and S. Ho, UNC Computer Science

Reference:

Kelemen, A., Szekely, G. and Gerig, G. (1997) Three dimensional model-based segmentation, TR-178 Technical Report Image Science Lab, ETH Zurich.

Data Objects:  boundaries of “segmented” corpora callosa

Recall Corpora Callosa Data

Data Curves   [example]
Feature vectors: use coefficients of Fourier boundary representation, 
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Object Space view:  can either overlay, or show sequentially

In either case:  hard to see “population structure”

Recall Corpora Callosa PCA

Raw Data                               Modes of shape variation?

PC1:

· “overall bending”

PC2:

· Rotation of right end,  “Sharpening” of left end

PC3:


-
“thin” vs. “thick”

Discrimination for Corpora Callosa Data

Have 2 sub-populations:

Schizophrenics,  
[image: image26.wmf]40
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  [sub-population of curves]
Controls,  
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  [sub-population of curves]
Goal 1:    See difference between populations?    (???)

Goal 2:   Given new shape: assign to a group

“automatic diagnosis (of schizophrenia)”

Discrimination for Corpora Callosa Data (cont.)

Very simple approach: 

· Colored Parallel Coordinate view of data [graphic]
· Look for diff’nce between  Schizophrenics  and  Controls
· Major “overplotting” problems (Schizos last, so “on top”)

· No useful separation, since view is “too simple”

· Only looks in limited “coordinate directions”

· Perhaps “better separation” in other directions

· Caution: bottom show non-Gaussian

Discrimination for Corpora Callosa Data (cont.)

Another simple approach:

-
for “widely separated data”   [toy example]
· find “skewer through meatballs”

· using difference vector between means  [toy example]
· Projection “separates sub-populations”

Alternate view:

-
  discrimination boundary is “orthogonal hyperplane”

Discrimination for Corpora Callosa Data (cont.)

Problem for Corpora Callosa Data:

· Subpopulation means nearly same

· Square of Difference, as Fraction of Total  <  0.1%

· Thus effective discrimination must account for “spread”

· Perhaps can exploit covariance structure?

Discrimination for Corpora Callosa Data (cont.)

Another simple approach:   PCA

· Again hope for “skewer between meatballs”

· This time focusing on covariance, not mean [toy example]
· Doesn’t work for Corpora Callosa Data

Recall:      PC1      PC2      PC3
· Recall PCA only feels “maximal variation”

· Different from “separating subsamples”

· PCA doesn’t even use “class label information”

Discrimination for Corpora Callosa Data (cont.)

Another view of PCA problem:    [toy data set]
· “maxim’l variation” can be different from “good separation”

· so PCA fails [PCA]
· mean difference better, not adequate    [mean diff.]
· really want to work in “covariance structure”

Alternate Approach:  

· modify mean difference, using “covariance structure” 

· called Fisher Linear Discrimination
Fisher Linear Discrimination

Careful development:

Mathematical Notation (vectors with dimension 
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Class Centerpoints:    
[image: image31.wmf]å

=

=

1

1

)

1

(

1

)

1

(

1

n

i

i

X

n

X

    and    
[image: image32.wmf]å

=

=

2

1

)

2

(

2

)

2

(

1

n

i

i

X

n

X


Fisher Linear Discrimination (cont.)

Covariances:   
[image: image33.wmf]t

j

j

j

X

X

)

(

)

(

)

(

~

~

ˆ

=

S

,   for  
[image: image34.wmf]2

,

1

=

j

    (outer products)

Based on “normalized, centered data matrices”:
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note:  Use “MLE” version of normalization, for simpler notation

Terminology (useful later):    
[image: image36.wmf])
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   are “within class covariances”

Fisher Linear Discrimination (cont.)

Major assumption:  Class covariances are same (or “similar”)

Good estimate of “common within class covariance”?

(recall [toy example])

Pooled (weighted average) within class covariance:
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for the “full data matrix”:
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Fisher Linear Discrimination (cont.)

Note:  
[image: image39.wmf]w
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  is similar to  
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  from before

· i.e.  “covariance matrix ignoring class labels”

· important difference is “class by class centering”

(recall [toy example])

Fisher Linear Discrimination (cont.)

Simple way to find “correct covariance adjustment”:

Individ’ly transform subpop’ns so “spherical” about their means
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(upper right in [toy example])

then:

“best separating hyperplane”

is

“perpendicular bisector of line between means”

Fisher Linear Discrimination (cont.)

So in transformed space, the separating hyperlane has:

Transformed normal vector:
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Transformed intercept:
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Equation:
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(lower right in [toy example])

Fisher Linear Discrimination (cont.)

Thus discrimination rule is:


Given a new data vector  
[image: image45.wmf]0
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i.e. (transforming back to original space)
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where:
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Fisher Linear Discrimination (cont.)

Thus (in original space) have separating hyperplane with:

Normal vector:    
[image: image51.wmf]FLD
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Intercept:    
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(lower right in [toy example])
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