ORIE 779: Functional Data Analysis

From last meeting

Finished SiZer Background

Started Independent Component Analysis



Independent Component Analysis

ldea: Find “directions that maximize independence”

Motivating Context: Signal Processing

References:

“Blind Source Separation”

Lee, T. W. (1998) Independent Component Analysis: Theory and
Applications, Kluwer.

Hyvarinen and Oja (1999) Independent Component Analysis: A

Tutorial,

http://www.clis.hut.fi/projects/ic

Al

Hyvarinen, A., Karhunen, J. and Oja, E. (2001) Independent
Component Analysis, John Wiley & Sons.


http://www.cis.hut.fi/projects/ica

ICA, motivating example

“Cocktail party problem”:
- hear several simultaneous conversations

- would like to “separate them”

Model for “conversations”: time series:

s,(t) and s,(t)

Toy Example




ICA, motivating example (cont.)

Mixed version of signals:

X (t) = ays; (t) +a,s, (t)

And also a second mixture (e.g. from a different location):

X, (t) = a8, (t) + 2,5, (t)

Mixed version of above toy example




ICA, motivating example (cont.)

N ) s, (1) . X, (1)
Goal: Recover “signal §(t):(S (t)j from “data” L((t):(x (t)j

a11 a'12

for unknown “mixture matrix” A :(
a21 a22

j, where

x=As, forall t

l.e. find “separating weights”, W, so that

s=Wx, forall t

Problem: W =A™ would be fine, but A is unknown



ICA, motivating example (cont.)

Relation to FDA: recall “data matrix”
( Xll xln \
X — (Xl . .

\Xdl X in )
Signal Processing: focus on rows (d time series, for t=1,...,n)

Functional Data Analysis: focus on columns (n data vectors)

Note: same 2 different viewpoints as “dual problems” in PCA



ICA, motivating example (cont.)

Scatterplot View (signal processing): plot

- | signals & scatterplot  {(s,(t),s, (t)):t =1,...,r}

- | dath & scatterplat — {(x, (), x,(t)):t =1,...,r}

- scatterplots give hint how ICA works
- affine trans. x = As “stretches indep. signals into dep.”

- “Inversion” is key to ICA (even when A is unknown)



ICA, motivating example (cont.)

Scatterplot view of:  Why not PCA?

- finds “direction of greatest variability” | [PCA - scatterplat]

- which is wrong direction for “signal separation”

[PCA decomposition]




ICA, Algorithm

ICA Step 1.

“sphere the data” (shown on right in scatterplot view)

- l.e. find linear transf’n to make mean =0, cov = |
- i.e.work with Z =27"*(X - 1)

- requires X offullrank (atleast n=>d, I.e.no )
(is this critical??7??)

- search for “indep.” beyond linear and quadratic structure



ICA, Algorithm (cont.)
ICA Step 2:

- Find dir'ns that make (sph’d) data as “indep. as possible”

Recall “independence” means:

joint distribution is product of marginals

In cocktail party example [scatterplot]:

Happens only when “support parallel to axes”

Otherwise have “blank areas”, but marginals are non-zero



ICA, Algorithm (cont.)

Parallel Idea (and key to algorithm):

Find directions that maximize “non-Gaussianity”

Reason: starting from independent coordinates
“most projections are Gaussian”

(since projection is “linear combo”)

Mathematics behind this:

Diaconis and Freedman (1984) Annals of Statistics, 12, 793-815.



ICA, Algorithm (cont.)

Worst case for ICA:
- Gaussian
- Then sphered data are independent
- So have “independence” in all directions
- Thus can’t find useful directions
- Gaussian distribution is characterized by:

Independent & spherically symmetric



ICA, Algorithm (cont.)

Criteria for non-Gaussianity / independence:

kurtosis  (EX * —3(EX 2}, 4" order cumulant)
- negative entropy

- mutual information

- nonparametric maximum likelihood

- “Infomax” in neural networks

[1 Interesting connections between these



ICA, Algorithm (cont.)

Matlab Algorithm (optimizing any of above): “FastICA”

- numerical gradient search method

- can find directions “iteratively”

- or by “simultaneous optimization”

- appears fast, with good defaults

- should we worry about local optima???

- mixed versio

N

|ICA decomp.

Again view raw data



ICA, Algorithm (cont.)

Notational summary:

1. First sphere data: Z =2"*(X - f)

2. Apply ICA: find W, to make rows of S, =W.Z “indep’t”

3. Can transform back to “original data scale”: S =2>"?S,



ICA, Algorithm (cont.)

Identifiability problem 1: Generally can’'t order rows of S; (& S)

Since for a “permutation matrix” P
(pre-multiplication by P “swaps rows”)
(post-multiplication by P “swaps columns™)
for each column, z=A.s; =AP"'Ps; i.e. Ps; =PW,z

So PS; and PW; are also solutions (i.e. PS; =PW,Z)

(saw this in “switched order” in Cocktail Party ray, recon’d)

FastICA: appears to order in terms of “how non-Gaussian”



ICA, Algorithm (cont.)

|dentifiability problem 2: Can't find scale of elements of s

Since for a (full rank) diagonal matrix D

(pre-multiplication by D is scalar mult'n of rows)

(post-multiplication by D is scalar mult'n of columns)

for each col'n, z=A s, = A,D™Ds;

So DS, and DW, are also solutions

l.e. Dsg =DW. z

(also saw this in “inversion” in Cocktail Part

raw

recon’

)




ICA, Algorithm (cont.)

Signal Processing Scale identification: (Hyvarinen and Oja)

Choose scale so each signal s, (t) has “unit average energy’:

D si(t)?

(preserves energy along rows of data matrix)

Explains “same scales” in Cocktail Party Example

Again view raw data| ICA decomp.



ICA and non-Gaussianity

(X))

1
For indep., non-Gaussian, stand’zed, r.v.’'s:  x=| : |,

\Xd/

projections “farther from coordinate axes” are “more Gaussian™:

/uLk\

For the dir'n vector u, =| : |, whereu,, :{yﬁ 1=1..k
| 0

1=k +1,....d

\Ua k /

d
(thus |u|=1), have  x'u=N(01), forlarge d and k



ICA and non-Gaussianity (cont.)

lllustrative examples:

Assess normality with O—0 plat,

scatterplot of “data quantiles” vs. “theoretical quantiles”

connect the dots of {(q;, X ):i =1...,n;

%2 px<q)

where X, <---< X, and »



ICA and non-Gaussianity (cont.)

Q-Q Plot (*Quantile — Quantile”, can also do “Prob. — Prob.”):

Assess variability with overlay of simulated data curves [toy e.g.]

E.g. Weibull(1,1) (= Exponential(1)) data (n=500)

- Gaussian dist’n is poor fit (Q-Q curve outside envelope)

- Pareto dist’n is good fit (Q-Q curve inside envelope)

- Weibull dist’'n is good fit (Q-Q curve inside envelope)

- Bottom plots are corresponding log scale versions



ICA and non-Gaussianity (cont.)

lllustrative examples (d =100

a. Uniform marginals [graphic

n =500):

]

- k=1 very poor fit (Uniform “far from” Gaussian)

- k=2 muchcloser? (Triangular closer to Gaussian)

- k=4 very close, but still have stat’ly sig’t difference

- k=6 all differences could be sampling variation



ICA and non-Gaussianity (cont.)

lllustrative examples (d =100 n =500):

b. Exponential marginals| [graphi¢]

- still have convergence to Gaussian, but slower
(“skewness” has stronger impact than “kurtosis”)

- now heed n=25 to see no difference

c. Bimodal marginals| [graphic]

- Similar lessons to above



ICA and non-Gaussianity (cont.)

Summary:
( xl\

For indep., non-Gaussian, stand’zed, r.v.’'s:  x=| : |,

\Xd/
projections “farther from coordinate axes” are “more Gaussian”

Conclusions:
l. Usually expect “most projections are Gaussian”
Ii.  Non-Gaussian projections (target of ICA) are “special”
lii.  Are most samples really “random”??? (could test???)

Iv. High dimensional space is a strange place



ICA Toy Examples

E.g. Two sine waves | [combined graphic]

- Scatterplots show “time series structure”(not “random”)

- Since have exactly doubled the frequency

- PCA finds wrong direction

- Sphering is enough to solve this (“orthogonal to PCA”)

- So ICA s good (note: “flip”, and “constant signal power”)

- ICA works even without “honest joint distribution”



ICA, Toy Examples (cont.)

E.g. Sine wave and Gaussian noise| [combined graphic]

- PCA finds “diagonal of parallelogram”

- Sine is all in one (since “greatest variability” in that dir'n)
- but still “wiggles” (noise adds to “greatest variation™)

- ICA gets it right

- but magnifies the noise



ICA, Toy Examples (cont.)

E.g. Two realizations of Gaussian noise | [combined graphic

\ 4

- PCA finds “axis of ellipse” (happens to be “right”)

- Note even “realization” of noise is right

- Since that drives PC directions

- ICA s “wrong” (different noise realization)



