ORIE 779: Functional Data Analysis

From last meeting

Finished SiZer Background

Started Independent Component Analysis

Independent Component Analysis

Idea: Find "directions that maximize independence"
Motivating Context: Signal Processing
"Blind Source Separation"
References:
Lee, T. W. (1998) Independent Component Analysis: Theory and Applications, Kluwer.

Hyvärinen and Oja (1999) Independent Component Analysis: A Tutorial,,http://www.cis.hut.fi/projects/ica

Hyvärinen, A., Karhunen, J. and Oja, E. (2001) Independent Component Analysis, John Wiley \& Sons.

ICA, motivating example

"Cocktail party problem":

- hear several simultaneous conversations
- would like to "separate them"

Model for "conversations": time series:

$$
s_{1}(t) \text { and } s_{2}(t)
$$

Toy Example

ICA, motivating example (cont.)

Mixed version of signals:

$$
x_{1}(t)=a_{11} s_{1}(t)+a_{12} s_{2}(t)
$$

And also a second mixture (e.g. from a different location):

$$
x_{2}(t)=a_{21} s_{1}(t)+a_{22} s_{2}(t)
$$

Mixed version of above toy example

ICA, motivating example (cont.)

Goal: Recover "signal" $\underline{s}(t)=\binom{s_{1}(t)}{s_{2}(t)}$ from"data" $\underline{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}$ for unknown "mixture matrix" $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$, where

$$
\underline{x}=A \underline{s}, \quad \text { for all } t
$$

i.e. find "separating weights", W, so that

$$
\underline{s}=W \underline{x}, \quad \text { for all } t
$$

Problem: $\quad W=A^{-1}$ would be fine, but A is unknown

ICA, motivating example (cont.)

Relation to FDA: recall "data matrix"

$$
X=\left(\begin{array}{lll}
\underline{X}_{1} & \cdots & \underline{X}_{n}
\end{array}\right)=\left(\begin{array}{ccc}
X_{11} & & X_{1 n} \\
\vdots & \cdots & \vdots \\
X_{d 1} & & X_{d n}
\end{array}\right)
$$

Signal Processing: focus on rows (d time series, for $t=1, \ldots, n$)

Functional Data Analysis: focus on columns (n data vectors)

Note: same 2 different viewpoints as "dual problems" in PCA

ICA, motivating example (cont.)

Scatterplot View (signal processing): plot

- signals \& scatterpldt $\left\{\left(s_{1}(t), s_{2}(t)\right): t=1, \ldots, n\right\}$
- data \& scatterpldt $\left\{\left(x_{1}(t), x_{2}(t)\right): t=1, \ldots, n\right\}$
- scatterplots give hint how ICA works
- affine trans. $\underline{x}=A \underline{s}$ "stretches indep. signals into dep."
- "inversion" is key to ICA (even when A is unknown)

ICA, motivating example (cont.)

Scatterplot view of: Why not PCA?

- finds "direction of greatest variability" [PCA - scatterpldt]
- which is wrong direction for "signal separation"
[PCA decomposition]

ICA, Algorithm

ICA Step 1:

- "sphere the data" (shown on right in scatterplot view)
- i.e. find linear transf'n to make mean $=\underline{0}, \operatorname{cov}=I$
- i.e. work with $Z=\hat{\Sigma}^{-1 / 2}(X-\mu)$
- requires X of full rank (at least $n \geq d$, i.e. no HDLSS) (is this critical????)
- search for "indep." beyond linear and quadratic structure

ICA, Algorithm (cont.)

ICA Step 2:

- Find dir'ns that make (sph'd) data as "indep. as possible"

Recall "independence" means:
joint distribution is product of marginals

In cocktail party example [scatterplot]:
Happens only when "support parallel to axes"
Otherwise have "blank areas", but marginals are non-zero

ICA, Algorithm (cont.)

Parallel Idea (and key to algorithm):
Find directions that maximize "non-Gaussianity"

Reason: starting from independent coordinates
"most projections are Gaussian"
(since projection is "linear combo")

Mathematics behind this:
Diaconis and Freedman (1984) Annals of Statistics, 12, 793-815.

ICA, Algorithm (cont.)

Worst case for ICA:

- Gaussian
- Then sphered data are independent
- So have "independence" in all directions
- Thus can't find useful directions
- Gaussian distribution is characterized by:

Independent \& spherically symmetric

ICA, Algorithm (cont.)

Criteria for non-Gaussianity / independence:

- kurtosis $\left(E X^{4}-3\left(E X^{2}\right)^{2}, 4^{\text {th }}\right.$ order cumulant)
- negative entropy
- mutual information
- nonparametric maximum likelihood
- "infomax" in neural networks
- \exists interesting connections between these

ICA, Algorithm (cont.)

Matlab Algorithm (optimizing any of above): "FastICA"

- numerical gradient search method
- can find directions "iteratively"
- or by "simultaneous optimization"
- appears fast, with good defaults
- should we worry about local optima???

Again view raw data, mixed version ICA decomp.

ICA, Algorithm (cont.)

Notational summary:

1. First sphere data: $Z=\hat{\Sigma}^{-1 / 2}(X-\mu)$
2. Apply ICA: find W_{S} to make rows of $S_{S}=W_{S} Z$ "indep't"
3. Can transform back to "original data scale": $S=\hat{\Sigma}^{1 / 2} S_{S}$

ICA, Algorithm (cont.)
Identifiability problem 1: Generally can't order rows of $S_{S}(\& S)$
Since for a "permutation matrix" P
(pre-multiplication by P "swaps rows")
(post-multiplication by P "swaps columns")
for each column, $z=A_{S} \underline{s}_{S}=A_{S} P^{-1} P \underline{s}_{S}$ i.e. $P \underline{s}_{S}=P W_{S} \underline{z}$
So $P S_{S}$ and $P W_{S}$ are also solutions (i.e. $P S_{S}=P W_{S} Z$)
(saw this in "switched order" in Cocktail Party raw, recon'd)

FastICA: appears to order in terms of "how non-Gaussian"

ICA, Algorithm (cont.)

Identifiability problem 2: Can't find scale of elements of \underline{s}
Since for a (full rank) diagonal matrix D

> (pre-multiplication by D is scalar mult'n of rows) (post-multiplication by D is scalar mult'n of columns)

$$
\text { for each col'n, } \quad \underline{z}=A_{S} \underline{s}_{S}=A_{S} D^{-1} D \underline{s}_{S} \quad \text { i.e. } D \underline{s}_{S}=D W_{S} \underline{z}
$$

So $D S_{S}$ and $D W_{S}$ are also solutions
(also saw this in "inversion" in Cocktail Party raw, recon'd)

ICA, Algorithm (cont.)

Signal Processing Scale identification: (Hyvärinen and Oja)
Choose scale so each signal $s_{i}(t)$ has "unit average energy":

$$
\sum_{t} s_{i}(t)^{2}
$$

(preserves energy along rows of data matrix)

Explains "same scales" in Cocktail Party Example
Again view raw data, ICA decomp.

ICA and non-Gaussianity

For indep., non-Gaussian, stand'zed, r.v.'s: $\quad \underline{x}=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{d}\end{array}\right)$, projections "farther from coordinate axes" are "more Gaussian":

For the dir'n vector $\underline{u}_{k}=\left(\begin{array}{c}u_{1, k} \\ \vdots \\ u_{d, k}\end{array}\right)$, where $u_{i, k}=\left\{\begin{array}{cc}1 / \sqrt{k} & i=1, \ldots, k \\ 0 & i=k+1, \ldots, d\end{array}\right.$
(thus $\|u\|=1$), have

$$
\underline{x}^{t} \underline{u} \underset{\sim}{d} N(0,1), \text { for large } d \text { and } k
$$

ICA and non-Gaussianity (cont.)

Illustrative examples:

Assess normality with Q-Q plot,
scatterplot of "data quantiles" vs. "theoretical quantiles"
connect the dots of $\left\{\left(q_{i}, X_{(i)}\right): i=1, \ldots, n\right\}$
where $X_{(1)} \leq \cdots \leq X_{(n)}$ and $\frac{i-1 / 2}{n}=P\left\{X \leq q_{i}\right\}$

ICA and non-Gaussianity (cont.)

Q-Q Plot ("Quantile - Quantile", can also do "Prob. - Prob."):

Assess variability with overlay of simulated data curves [toy e.g.]
E.g. Weibull(1,1) $\quad(=$ Exponential(1)) data $(n=500)$

- Gaussian dist'n is poor fit (Q-Q curve outside envelope)
- Pareto dist'n is good fit (Q-Q curve inside envelope)
- Weibull dist'n is good fit (Q-Q curve inside envelope)
- Bottom plots are corresponding log scale versions

ICA and non-Gaussianity (cont.)

Illustrative examples $(d=100 \quad n=500)$:
a. Uniform marginal \$ [graphic]

- $\quad k=1 \quad$ very poor fit (Uniform "far from" Gaussian)
- $\quad k=2$ much closer? (Triangular closer to Gaussian)
- $\quad k=4 \quad$ very close, but still have stat'ly sig't difference
- $\quad k \geq 6$ all differences could be sampling variation

ICA and non-Gaussianity (cont.)

Illustrative examples ($d=100 \quad n=500$):
b. Exponential marginals [graphic]

- still have convergence to Gaussian, but slower
("skewness" has stronger impact than "kurtosis")
- now need $n \geq 25$ to see no difference
c. Bimodal marginals [graphic]
- Similar lessons to above

ICA and non-Gaussianity (cont.)

Summary:
For indep., non-Gaussian, stand'zed, r.v.'s: $\quad \underline{x}=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{d}\end{array}\right)$, projections "farther from coordinate axes" are "more Gaussian"

Conclusions:
i. Usually expect "most projections are Gaussian"
ii. Non-Gaussian projections (target of ICA) are "special"
iii. Are most samples really "random"??? (could test???)
iv. High dimensional space is a strange place

ICA Toy Examples

E.g. Two sine waves [combined graphic]

- Scatterplots show "time series structure"(not "random")
- Since have exactly doubled the frequency
- PCA finds wrong direction
- Sphering is enough to solve this ("orthogonal to PCA")
- So ICA is good (note: "flip", and "constant signal power")
- ICA works even without "honest joint distribution"

ICA, Toy Examples (cont.)

E.g. Sine wave and Gaussian noise [combined graphic]

- PCA finds "diagonal of parallelogram"
- Sine is all in one (since "greatest variability" in that dir'n)
- but still "wiggles" (noise adds to "greatest variation")
- ICA gets it right
- but magnifies the noise

ICA, Toy Examples (cont.)

E.g. Two realizations of Gaussian noise [combined graphic]

- PCA finds "axis of ellipse" (happens to be "right")
- Note even "realization" of noise is right
- Since that drives PC directions
- ICA is "wrong" (different noise realization)

