
 
ORIE 779:    Functional Data Analysis 

 
From last meeting 

 
 
 
 
Finished SiZer Background  
 
 
 
Started Independent Component Analysis 
 
 

 
 



Independent Component Analysis 
 
Idea:  Find “directions that maximize independence” 
 
Motivating Context:  Signal Processing 
 

“Blind Source Separation” 
 
References: 
 
Lee, T. W. (1998) Independent Component Analysis: Theory and 

Applications, Kluwer. 
 
Hyvärinen and Oja (1999) Independent Component Analysis: A 

Tutorial,  http://www.cis.hut.fi/projects/ica 
 
Hyvärinen, A., Karhunen, J. and Oja, E. (2001) Independent 
Component Analysis, John Wiley & Sons. 

http://www.cis.hut.fi/projects/ica


ICA, motivating example 
 
 
“Cocktail party problem”: 
 

- hear several simultaneous conversations 
 

- would like to “separate them” 
 
 
 
Model for “conversations”:  time series: 
 

( )ts1    and   ( )ts2  
 

 
Toy Example 
 



ICA, motivating example (cont.) 
 
 
 
Mixed version of signals: 
 

( ) ( ) ( )tsatsatx 2121111 +=  
 
 
And also a second mixture (e.g. from a different location): 
 

( ) ( ) ( )tsatsatx 2221212 +=  
 
Mixed version of above toy example 



ICA, motivating example (cont.) 
 

Goal:  Recover  “signal”  
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for unknown “mixture matrix”  
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A ,  where 

 
sAx = ,    for all  t  

 
 
i.e. find “separating weights”,  W ,  so that 
 

xWs = ,    for all  t  
 
 
Problem:    1−= AW     would be fine, but  A  is unknown 
 



ICA, motivating example (cont.) 
 
 
Relation to FDA:  recall “data matrix”   
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Signal Processing:  focus on rows (d   time series, for  nt ,...,1= ) 
 
 
Functional Data Analysis:  focus on columns (n  data vectors) 
 
 
Note:  same 2 different viewpoints as “dual problems” in PCA 
 



ICA, motivating example (cont.) 
 
 
Scatterplot View (signal processing):    plot 
 

- signals & scatterplot    ( ){ }nttsts ,...,1:)(),( 21 =  
 

- data & scatterplot    ( ){ }nttxtx ,...,1:)(),( 21 =  
 

- scatterplots give hint how ICA works 
 

- affine trans. sAx =   “stretches indep. signals into dep.” 
 

- “inversion” is key to ICA (even when A is unknown) 
 
 
 



ICA, motivating example (cont.) 
 
 
 
Scatterplot view of:      Why not PCA? 
 
 

- finds “direction of greatest variability”  [PCA - scatterplot] 
 
 

- which is wrong direction for “signal separation” 
 

[PCA  decomposition] 
 



ICA, Algorithm 
 
 
ICA Step 1: 
 

- “sphere the data”   (shown on right in scatterplot view) 
 

- i.e. find linear transf’n to make  mean = 0,  cov = I  
 

- i.e. work with ( )µ̂ˆ 2/1 −Σ= − XZ  
 

- requires  X   of full rank  (at least  dn ≥ ,  i.e. no HDLSS) 
(is this critical????) 

 
- search for “indep.” beyond linear and quadratic structure 

 
 



ICA, Algorithm (cont.) 
 
ICA Step 2: 
 

- Find dir’ns that make (sph’d) data as “indep. as possible” 
 
 
Recall “independence” means:  
 

joint distribution is product of marginals 
 
 
In cocktail party example [scatterplot]: 
 

Happens only when “support parallel to axes” 
 

Otherwise have “blank areas”, but marginals are non-zero 
 



ICA, Algorithm (cont.) 
 
 
Parallel Idea (and key to algorithm):   
 
Find directions that maximize “non-Gaussianity” 
 
 
Reason:  starting from independent coordinates 
 

“most projections are Gaussian” 
 

(since projection is “linear combo”) 
 
 
Mathematics behind this:   
 
Diaconis and Freedman (1984) Annals of Statistics, 12, 793-815. 



ICA, Algorithm (cont.) 
 
 
Worst case for ICA:   
 

- Gaussian 
 

- Then sphered data are independent 
 

- So have “independence” in all directions 
 

- Thus can’t find useful directions 
 

- Gaussian distribution is characterized by: 
 

Independent   &  spherically symmetric 
 



ICA, Algorithm (cont.) 
 
 
Criteria for non-Gaussianity / independence: 
 

- kurtosis    ( ( )224 3 EXEX − , 4th order cumulant) 
 

- negative entropy 
 

- mutual information 
 

- nonparametric maximum likelihood 
 

- “infomax” in neural networks 
 

- ∃   interesting connections between these 
 



ICA, Algorithm (cont.) 
 
 
Matlab Algorithm (optimizing any of above):    “FastICA” 
 

- numerical gradient search method 
 

- can find directions “iteratively” 
 

- or by “simultaneous optimization” 
 

- appears fast, with good defaults 
 

- should we worry about local optima??? 
 
 
Again view raw data, mixed version, ICA decomp. 
 
 



ICA, Algorithm (cont.) 
 
 
 
Notational summary: 
 
 
1. First sphere data:    ( )µ̂ˆ 2/1 −Σ= − XZ  
 
 
2. Apply ICA:   find SW     to make rows of   ZWS SS =     “indep’t” 
 
 
3. Can transform back to “original data scale”:   SSS 2/1Σ̂=  
 



ICA, Algorithm (cont.) 
 
Identifiability problem 1:  Generally can’t order rows of  SS   (& S ) 
 
 Since for a “permutation matrix”  P 
 

(pre-multiplication by  P  “swaps rows”) 
 
(post-multiplication by  P  “swaps columns”) 

 
for each column,  SSSS sPPAsAz 1−==     i.e. zPWsP SS =  

 
 So  SPS   and  SPW   are also solutions  (i.e.  ZPWPS SS = ) 
 
(saw this in “switched order” in Cocktail Party raw, recon’d) 
 
 
FastICA:    appears to order in terms of “how non-Gaussian” 



ICA, Algorithm (cont.) 
 
 
Identifiability problem 2:  Can’t find scale of elements of  s 
 
 Since for a (full rank) diagonal matrix  D  
 
  (pre-multiplication by  D   is scalar mult’n of rows) 
 
  (post-multiplication by  D   is scalar mult’n of columns) 
 
 

for each col’n,   SSSS sDDAsAz 1−==     i.e. zDWsD SS =  
 
 So  SDS   and  SDW   are also solutions 
 
(also saw this in “inversion” in Cocktail Party raw, recon’d) 
 



ICA, Algorithm (cont.) 
 
 
Signal Processing Scale identification:  (Hyvärinen and Oja) 
 
 Choose scale so each signal )(tsi  has “unit average energy”: 
 

∑
t

i ts 2)(  

 
 
 (preserves energy along rows of data matrix) 
 
 
Explains “same scales” in Cocktail Party Example 
 
Again view raw data, ICA decomp. 
 



ICA and non-Gaussianity 
 

For indep., non-Gaussian, stand’zed, r.v.’s:     
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projections “farther from coordinate axes” are “more Gaussian”: 
 
 

For the dir’n vector  
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ICA and non-Gaussianity (cont.) 
 
 
Illustrative examples: 
 
 
Assess normality with Q–Q plot, 
 
scatterplot of “data quantiles” vs. “theoretical quantiles” 
 

connect the dots of  ( ){ }niXq ii ,...,1:, )( =  
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ICA and non-Gaussianity  (cont.) 
 
 
Q-Q Plot (“Quantile – Quantile”, can also do “Prob. – Prob.”): 
 
 
Assess variability with overlay of simulated data curves [toy e.g.] 
 
 
E.g. Weibull(1,1)   (= Exponential(1))   data ( 500=n ) 
 
 - Gaussian dist’n is poor fit (Q-Q curve outside envelope) 
 
 - Pareto dist’n is good fit (Q-Q curve inside envelope) 
 

- Weibull dist’n is good fit (Q-Q curve inside envelope) 
 

- Bottom plots are corresponding log scale versions 
 



ICA and non-Gaussianity  (cont.) 
 
 
Illustrative examples ( 100=d    500=n ): 
 
 
a. Uniform marginals [graphic] 
 
 - 1=k     very poor fit (Uniform  “far from” Gaussian) 
 
 - 2=k     much closer?   (Triangular closer to Gaussian) 
 
 - 4=k     very close, but still have stat’ly sig’t difference 
 
 - 6≥k     all differences could be sampling variation 
 



ICA and non-Gaussianity  (cont.) 
 
Illustrative examples ( 100=d    500=n ): 
 
 
b. Exponential marginals  [graphic] 
 

- still have convergence to Gaussian, but slower 
 
(“skewness” has stronger impact than “kurtosis”) 

 
- now need  25≥n   to see no difference 

 
 
c. Bimodal marginals  [graphic] 
 

- Similar lessons to above 
 



ICA and non-Gaussianity  (cont.) 
 
Summary: 

For indep., non-Gaussian, stand’zed, r.v.’s:     

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projections “farther from coordinate axes” are “more Gaussian” 
 
Conclusions: 
 

i. Usually expect “most projections are Gaussian” 
 

ii. Non-Gaussian projections (target of ICA) are “special” 
 

iii. Are most samples really “random”???   (could test???) 
 

iv. High dimensional space is a strange place  



ICA Toy Examples 
 
 
E.g.  Two sine waves    [combined graphic] 
 

- Scatterplots show “time series structure”(not “random”) 
 

- Since have exactly doubled the frequency 
 

- PCA finds wrong direction 
 

- Sphering is enough to solve this (“orthogonal to PCA”) 
 

- So ICA is good  (note:  “flip”, and “constant signal power”) 
 

- ICA works even without “honest joint distribution” 



ICA, Toy Examples  (cont.) 
 
 
E.g.  Sine wave and Gaussian noise  [combined graphic] 
 
 

- PCA finds “diagonal of parallelogram” 
 

- Sine is all in one (since “greatest variability” in that dir’n)  
 

- but still “wiggles”  (noise adds to “greatest variation”) 
 

- ICA gets it right 
 

- but magnifies the noise 
 



ICA, Toy Examples  (cont.) 
 
 
E.g.  Two realizations of Gaussian noise   [combined graphic] 
 
 

- PCA finds “axis of ellipse”  (happens to be “right”) 
 
 

- Note even “realization” of noise is right 
 
 

- Since that drives PC directions 
 
 

- ICA is “wrong”  (different noise realization) 
 


